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Evolutionists dream of a tree-reconstruction
method that is efficient (fast), powerful, con-
sistent, robust and falsifiable. These criteria
are at present conflicting in that the fastest
methods are weak (in their use of infor-
mation in the sequences) and inconsistent
(even with very long sequences they may
lead to an incorrect tree). But there has
been exciting progress in new approaches
to tree inference, in understanding general
properties of methods, and in developing
ideas for estimating the reliability of trees.
New phylogenetic invariant methods al-
low selected parameters of the underlying
model to be estimated directly from se-
quences. There is still a need for more
theoretical understanding and assistance in
applying what is already known.

Reconstructing evolutionary trees
has been notorious for its dif-
ficulties. But these same difficulties
make the field exciting because the
boundaries of hard science are
being extended. It is difficult to
make testable predictions' about
unique events that happened a
billion years ago. However, the
aim must be to make the study
of evolutionary trees as -objective
and quantitative as other branches
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of science. Our coverage is in
two parts: the criteria that we
want programs to meet, and recent
developments that help to meet the
criteria. The emphasis is on se-
quence data because trees from this
source will increasingly be the basis
on which the evolution of both
molecular and phenotypic charac-
ters is studied. The field has been
hindered by nonstandard math-
ematical nomenclature? so we clarify
our usage in Box 1. Readers should
also consult recent reviews*7.
Much of the earlier uncertainty
resulted from a lack of knowledge
of the strengths and weaknesses
of different approaches to tree
reconstruction. We would all like
programs to meet the five criteria of
being efficient (fast), powerful,
consistent, robust and falsifiable.
From our current perspective we can
see that the earlier methods are
best considered as exploratory data
analysis. Such methods have an
important place. Indeed, it should
be pointed out that so farmost of the
useful results in molecular evolution
have come from the simpler
methods — though to balance this,
the simpler methods have almost

© 1992, Elsevier Science Publishers Ltd (UK) 0169-5347/92/$05.00

Progress with Methods for

Constructing Evolutionary Trees
David Penny, Michael D. Hendy and Michael A. Steel

certainly given more wrong answers
than right ones. Advocates of
‘sophisticated’ methods have sel-
dom provided novel results! How-
ever, results from exploratory data
analysis should be considered as
tentative working hypotheses and
should be followed by more
detailed work. For reasons we
explain later, we put both simple
parsimony (minimal length) and
methods using genetic distances
in the category of exploratory data
analysis. Classes of methods for
inferring trees are summarized in
Box 2, and their general properties
are shown in Table 1.

Desirable criteria for programs
Criterion 1: Efficient (fast)

The fundamental problem of the
large number of trees is now well
known by biologists. Most tree-
building methods work by a double
optimization procedure. The first
optimization is on a single tree and
evaluates an optimality criterion
such as parsimony (minimum num-
ber of mutations), maximum likeli-
hood, or minimizing sums of squares
of genetic distances. Parsimony, for
example, minimizes the number of




Box 1. Terminology for graphs and trees
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Graphs {including trees) consist of points (vertices, nodes) and edges (lines, internodes
or links); edges may have weights (edge lengths). (a) A graph consisting of two com-
ponents, one with a cycle. (b) A tree {(connected acyclic graph). (c) A rooted tree derived
by inserting an identified additional point into the edge indicated by the arrow in (b).
(d) A weighted rooted tree, also derived from (b). The leaves (pendent points) have been
labelled, in this case, with names of taxa. This is an example of a phylogenetic tree, that
is, a tree (rooted or unrooted) with leaves labelled. Often it is useful to assign nucleotides
to the leaves. In addition, the edges have weights {edge lengths) so it is a weighted tree.
The path (a series of adjacent edges) connecting dog to rat is indicated by a dashed line
in (d). This path consists of two pendent edges and two internal edges, and passes three
internal points. (b) and (c) are topologies, unlabelled trees either rooted or unrooted. The
degree of a point is the number of edges incident at that point. A binary tree has points
of degree one (leaves) and three (internal points). Ambiguous and unnecessary terms, best
avoided, are ‘network’ {an unrooted tree or a connected graph with cycles) and ‘branch’
(either a path, an edge, or a subtree containing several edges and points — this latter being

botanically and mathematically correct).
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mutations needed to fit sequences
onto a tree.

The second optimization step is
finding the global optimum over all
trees. Itis here that the fundamental
barrier of the large number of trees
arises. Any computable problem is
said to have an ‘efficient’ solution if
an algorithm is known for which,
even in the worst case, the time
required increases no faster than
a polynomial function of n, where n
is some measure of the size of the
problem. For example, if an algor-
ithm for n taxa requires time or
storage capacity proportional to, say,
nor n.In(n) or n% then-t is classified
as efficient. This contrasts with al-
gorithms whose time requirement
increases as an exponential func-
tion of n (say, 2" or n!). Biologists
are particularly well aware of the
explosive increase of exponential
growth from the potential increase
of population numbers.

Is there an efficient algorithm for
identifying the global optimum? We
don't know of any, and it is un-

likely that one will ever be found.
It is an example of a large class
of mathematical problems called
NP-complete (NP = nondeterminis-
tic polynomial)'°. These are inter-
related in that: (a) if one problem
could be solved efficiently then all
could be; but, (b) no efficient algor-
ithm is known forany of them. There
is no proof that an efficient algor-
ithm is impossible, though it is
doubted that efficient algorithms
exist.

NP-complete problems are framed
as questions with a simple yes/no
answer and it is straightforward to
decide whether a suggested sol-
ution is valid. The best-known evol-
utionary example is finding the
shortest tree: ‘Is there a tree that
requires only k, or fewer, changes for
this data set?' It is easy to check
whether a specific tree meets the
requirement, but difficult in general
to find such a tree. There is little
comfort to biologists in knowing
that mathematicians and computer
scientists have, without success,
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spent years trying to find efficient
algorithms for this class of problem.
Programs that do find the global
optimum for a given optimality
criterion are called 'exact’ methods.
Because the global optimum may be
so hard to find, people often resort
to ‘'heuristic’ methods (see Box 2)
that find good solutions quickly, but
without any guarantee of being the
best.

Criterion 2: Powerful

Biologists accept that with short
sequences we can get a ‘sampling
error, and would not be sur-
prised if details of the optimal tree
changed as longer sequences be-
came available. But eventually, with
longer sequences, we expect a pro-
gram to settle on a single tree.
This we call convergence''. But do
we need sequences of 103, 10° or
107 base pairs long? The answer
will depend on the method used
for inferring trees. A method that
converges with relatively short se-
quences we call powerful; one that
converges slowly (requires very long
sequences) is weak.

Different rates of convergence can
result from methods using different
amounts of the information in se-
quences. As the number of taxa
increases, methods using genetic
distances use only a vanishingly
small fraction of the information
in the data'?. The number of dis-
tance values increases in pro-
portion to n? while the number of
classes in the data (bipartitions or
splits) increases exponentially (see
Box 3). Parsimony methods omit
nucleotide positions that are con-
stant or where only one nucleotide
occurs more than once (singletons).
But both types of position give
information about the appropriate
model of evolution. In addition, they
usually occur more frequently so the
estimates of their true frequencies
are more accurately known.

Many methods ignore infor-
mation from insertions and/or de-
letions (which are highly informa-
tive”) or from other types of
biochemical information. Using only
subsets of taxa (such as quartets)
disregards most of the infor-
mation that can come from incom-
patibilities. Variability within taxa is
again ignored. Information loss is
not limited to a particular method.
All omit some information and
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consequently the power of the
method is reduced. As yet, we can
make only rather weak predic-
tions about the relative power of
methods. For large data sets, maxi-
mum likelihood and closest tree
methods use more sequence infor-
mation than parsimony, and these
together use more than is in dis-
tance data. Because of this, we
expect the power of the methods to
be: maximum likelihood = closest
tree't > parsimony > distance
methods. However, it is more
complicated than this because
distance methods use more infor-
mation than parsimony when the
data set is small.

Criterion 3: Consistent

We would all like an algorithm to
converge to the correct tree, the tree
from which the data were generated.
Unfortunately, this is not universally
the case and so the requirement for
consistency (convergence to the cor-
rect model) is additional to that of
convergence. Consistency requires
reference to a model of evolution
and a model has three parts (see Fig.
| foran example): (1) a tree (ormore
generally a graph) — the putative
ancestral relationships among the
taxa; (2) a mechanism for changes
to the sequences; and (3) edge
Iengths (weights or probabilities of
change on edges of the tree). In the
two-character-state (two-color) case
the probabilities of the states being
different at the ends of an edge
are the observed weights. The ob-
served and corrected edge lengths
are the p and vy values in Box 3.
(‘Discrete unordered character states’

are ‘colors’ in mathematics and we
will use this simpler expression.)

A frequent assumption is that
changes occurring in the sequence
are approximately ‘independent
and identically distributed’’®>. This
means that changes to the sequence
anywhere on the tree, and at any
site, are independent, and also that
all positions (nucleotide or amino
acid) have the same chance of
changing (identically distributed).
We call this the standard model.
Some mechanisms also assume the
same rate along each edge of the
tree — the molecular clock — and this
imposes additional constraints on
edge lengths.

The role of models of evolution

There has been confusion over
the need for ‘assuming’ a model of
evolution. You may want your pro-
grams to be ‘free’ of assumptions.
The wording has made it appear as
if assumptions could be added or
omitted at will. At one level, pro-
grams are free of assumptions. An
algorithm is simply a defined math-
ematical procedure or set of rules —
a numerical recipe. As such, the
output from an algorithm is quite
independent of any model of evol-
ution and many algorithms are ap-
plied to both biological and non-
biological data.

However, biologists require an
algorithm to give trees close to
historical reality. We need to ask, are
there possible mechanisms of evol-
ution that will result in an algorithm
converging to the correct tree? To
take a ludicrous example, a method
might join taxa based only on the

Box 2. Classification of tree-building methods

Tree-building methods vary in many
properties. They can be exact, or heuristic
{quick and dirty). Exact methods consider all
trees and so guarantee (given sufficient time)
to find the best tree(s) for the optimality
criterion being used. This of course does not
guarantee that the tree is correct, just that it
isthe best possible forthe data and optimality
criterion used. A branch and bound algorithm
usually greatly reduces the time required to
find an exact solution butthe reduction varies
with the data. Heuristic methods run quickly
and give an answer that, based on previous
experience, is hoped to be ‘close’ to the
correct solution.

Some methods use sequences directly;
others use distances or dissimilarities. Dis-
tances are a subclass of dissimilarities where
the values are metric; that is, for any three
taxa i, jand k d;;=0,d;; = d; >0anddj<
d;, + d;,; this last requqrement is the triangle
inequahty There is a loss of information in
converting sequences to distances which
gets worse as more taxa are used.

Methods may either optimize an optimality
criterion (or objective function), or follow an
algorithm without wusing an optimality
criterion (algorithmic methods). Cluster
analysis methods use distance data but no
optimality criterion. Frequently-used opti-
mality criteria are parsimony (for sequences
or distances), sum of squares of differences
between tree and observed distances,
maximum likelihood, closest tree, and
statistical tests based on invariants.

Methods that use an optimality criterion
can be further subdivided into those that
evaluate the objective function over all taxa,
or evaluate the criterion on subsets of taxa
(usually four taxa or quartets) and then look
for a tree compatible with all subsets.
Several quartet methods, including evol-
utionary parsimony®, are described by Li
et al.®

Some properties of the different classes are
shown in Table 1.

alphabetical order of their scien-
tific names. But there is no known
mechanism of evolution that would
relate evolutionary trees to Latin
binomials. We must use our biologi-
cal knowledge to select algorithms

Table 1. General properties of classes of tree-building methods

Cluster Objective Minimal Quartet Hadamard Maximum
analysis distance length methods transformation  likelihood
Sequences or distances. Distances Distances Sequences Sequences Sequences Sequences
Uses objective function No Yes Yes Yes Yes Yes
Based on a mechanism of evolutron Not No No Yes Yes Yes
applicable
"Calculated over all or subsets of taxa  All All All Subsets All All
Allows selection of subset of trees, or Cut-off Cut-off Cut-off Selection Selection Selection
gives arbitrary cut-off (selection)
Consistent (for a given model, will No No No No Yes Yes
converge correctly)
Estimate of upper limit of number of Not 10? 207 ? 20+ 6
taxa for exact calculation applicable

In many cases, qualifications need to be put on the summary given here. For example, maximum likelihood is a general statistical
approach which with trees is usually used with sequence data. The maximal number of taxa for an exact method can only be approximate
because different data sets vary in attributes such as the number of paraliel changes and reversions. The numbers of taxa handled will be
larger when a method is used as a heuristic.
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Box 3. Parameters for the Hadamard (discrete Fourier) transforms

Four vectors

Subsets of

Index  Bipartitions even order s r Y p
0 At tatsty) {} 0.6288 0.0000 -0.5091 -
1 {t}, {tatats) {ti 1} 0.1575 0.3771 0.2554 0.2
2 {ta}, {ty. et} {tots} 0.0164 0.1421 0.0204 0.02
3 {ti.t}, {tats} {t,, 15} 0.0173 0.2758 0.0101 0.01
4 {tg}, {ti. ot} {tats} 0.0709 0.2231 0.1116 0.1
5 {t. s}, {tats} {tq.t5} 0.0191 0.3771 0.0000 -
6 {tots}, {ti 1) {tots} 0.0191 0.1421 0.0000 -
7 {t,, 15}, {t,} {ti.tota s} 0.0709 0.4990 0.1116 0.1

1.0000 0.0000

There are 27 ways of partitioning n taxa into two disjoint subsets (bipartitions or splits)
and these are shown above for the four taxa (n = 4) t,, t,, t; and t,. Bipartitions arise in two
ways during tree building. Each character with two colors, and each edge of a tree,
subdivides taxa into bipartitions. Check this for both characters and edges of trees. There
are also 2" subsets with an even number of taxa, which are shown above as ‘even-ordered
subsets’. There are thus 27 bipartitions and even-ordered subsets. There is a one-to-one
relationship between them so they can be interconverted. For example, even-ordered
subsets are the first subset of a bipartition (if it has an even number of members), otherwise
itis formed by adding t, to the first subset. The even-ordered subsets are equivalent to sets
of non-intersecting paths on a tree. The Hadamard transform relates bipartitions to even-
ordered subsets, and vice versa.

From a data set the relative frequencies of bipartitions are estimated for the entries in s.
Inthe example above they are the expected values underthe model in Fig. 1. The Hadamard
transform, followed by a standard correction for multiple changes, gives the inferred path
length entries shown in r. The inverse Hadamard transform gives the entries . The first
entry is the negative sum of all others so that the sum of entries in yis zero. Other entriesiny
aretheinferred number of changes, per character, along edges of every possible tree. Atree
is found by selecting a set of compatible bipartitions. Removing the expected number of
multiple changes from y recovers the p values of Fig. 1 precisely.

The two edge bipartitions with y; = 0 are the invariants for the model used. There is, for
example, no edge on the tree in Fig. 1 joining {1,3} to {2,4,5} and so the v for this edge

bipartition (yz) is zero. Figure 2 shows the s and v values as spectra.

76

that will converge to the correct tree
under the widest possible range of
reasonable biological assumptions.

To sum up, algorithms don't re-
quire assumptions, but the wrong
algorithm is more likely to give a
wrong result. The more we know
both about the mechanisms of evol-
ution and about the algorithms we
use, the better our results should
be. We can't escape models of evol-
ution. A tree itself is part of the
model!

To return to consistency. In an
important development'>'¢ it was
shown that with only four taxa but
with unequal rates of evolution, par-
simony and some distance methods
were not consistent, even under the
standard model. With five or more
taxa, parsimony is also inconsistent
even with equal rates of evolution,
and even with equal edge lengths
for larger numbers of taxa'4'7'8. The
performance of parsimony can be
improved with additional taxa that
join into what otherwise would be
long edges on the tree. Note that
a method is inconsistent under a
given model if there are any poss-
ible cases where it converges to the
wrong tree. It is a separate, but
important, question as to whether

such cases are common. This leads
us into the next criterion.

Criterion 4: Robust

A method may be consistent un-
der the standard model, but be
inconsistent with only small devi-
ations from the model. Everyone
would like a method that is powerful
and consistent, even with sizable
deviations from the model, i.e.
a method that is robust. It ap-
pears that the standard model, with
a tree and sites being indepen-
dent and identically distributed, is
the easiest for tree-reconstruc-
tion methods to handle correctly.
Robustness is an area where there
is almost a conspiracy of silence
among those developing tech-
niques. We have little general idea
of the consistency of different
approaches as real data start
deviating from the simplest model.

We reported a case where a
consistent method became incon-
sistent when the frequencies of
character states (such as GC content)
varied between taxa®. Empirical
studies suggest that evolutionary
parsimony also becomes inconsist-
ent when nucleotide changes are
asymmetric. An extension' to the
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method (which uses more, but
not all, of the information in the
data) improves performance. Allow-
ing nucleotide positions to have
different rates of evolution (with a
lognormal distribution) gives more
reasonable trees?.

The problem of robustnesscanbe -
studied by simulations. A model is
specified, sets of data are calculated
under this model, and these data
sets are used to determine how
often a tree-building program finds
the original tree. This approach
is still only of limited help be-
cause the results are not integrated
into any theoretical understanding.
Simulation studies have usually not
separated the problem of the power
of a method (rate of convergence)
from consistency (converging to the
correct tree), though this could
easily be overcome. The real prob-
lem is that, considering all models,
there are billions of combinations of
parameters to be tested. By itself,
testing four or five combinations of
parameters is not that useful. How-
ever, simulations could be quite
powerful when testing predictions
from theoretical studies of algor-
ithms. Some predictions are given
in the section under convergence. It
would be useful to attempt to falsify
them, which is the topic of the next
section.

Criterion 5: Falsifiable

The most fundamental criterion
for a scientific method is that
the data must, in principle, be
able to reject the model. Hardly
any tree-reconstruction methods
meet this simple requirement. The
worst offenders are cluster analysis
methods because they (a) select a
tree even if the data were not
generated by a tree-like process,
and (b) (because they have no
optimality criterion) give no ranking
of the other [(2n—5)!!—1] trees.

One approach to falsifiability is
by using tree comparison metrics to
compare trees from different sets of
data. This may be done by compar-
ing trees derived from different data
sets (say cytochrome ¢, hemoglobin
a and rRNA) or by many random
samples of columns from a data set'.

There are several ways in which
the standard model may be in-
appropriate. The data might not
have been generated by a tree-like
process. There are many ways a
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non-tree model could sometimes
arise: new viruses could arise by
recombination of existing strains;
many plants form hybrids and there
is introgression between species;
endosymbiosis as well as lateral
transfer are possibilities; correc-
tions between copies of a multi-
gene family may give cycles in a
graph; mixing gene and species
phylogenies could confuse; and
the problem of heterozygosity in
natural populations can mislead
tree reconstruction?'.

Statistical geometry?? is an im-
portant new approach that retains
information about deviations from
a simple tree model. It has
been useful”® in studying RNA
viruses such as the human im-
munodeficiency virus (HIV). Such
studies with RNA viruses are
particularly interesting because of
the high rate of viral evolution
(about a million times faster than
DNA-based organisms). Experimen-
tal studies of evolution will increas-
ingly be carried out with viruses
simply because it occurs in ‘real’
time — on a human time scale.

The general problem of non-
falsifiability remains with most
methods. Goldman? describes the
problem with current implemen-
tations of maximum likelihood, where
either the tree or the mechanism of
evolution has to be assumed. We
prefer to give the results as ob-
served and expected frequencies'”
of the different classes of data. This
at least allows a decision that the
data do not fit the model! This
does not indicate in what way (or
ways) the model fails. But it is then
possible to try alternatives and see
whether a variation on the model fits
the data better — it could be allow-
ing an extra edge that represents
hybridization, a different distri-
bution of rates of changes between
nucleotide positions®, changing
proportions of nucléeotides (GC
content, for example), and so-on. It
is possible to keep adding more and
more parameters to ‘fit' the data
better. Caution is required here
because adding more parameters
allows a fit to virtually any model,
and the accuracy of each parameter
is markedly reduced. The aim is to
use as few as necessary; assuming
a molecular clock requires only n—1
parameters compared with 2n—3 for
an unrooted tree?. There are other

recent discussions of determin-
ing how many parameters are
appropriate?:?7,

In conclusion, for the foreseeable
future the five criteria appearincom-
patible. An example of the clash
among the first three criteria is
shown by comparing parsimony with
the standard maximum likelihood
method. Parsimony, combined with
one of the three branch and bound
approaches?, is an exact method
for 20 or more taxa — even though
it is inconsistent. Under the stan-
dard model, maximum likelihood
methods are consistent, buttheyare
usually used heuristically (Box 1} on
a subset of trees, and then usually
for a small number of taxa.

Recent developments: invariants and
spectral analysis

In this section we will mention
some improvements to existing ap-
proaches but concentrate on the
newest approach, invariants. Ex-
act methods, such as branch and
bound, can be used heuristically
by taking only the best choice at
any level and not completing the
total search. The neighbour joining
method for distances? appears one
of the most effective. It is important
to understand why it works well — is
it by using more of the information
when selecting the edge of the tree?
Its general approach to tree building
may be even more useful when
combined with other optimality
criteria. A new heuristic approach
that appears of great value is the
Great Deluge algorithm?®. This ap-
pears to be an effective heuristic
program for a wide variety of prob-
lems. It is very simple: a random
walk combined with a constantly
increasing ‘water level'. The pro-
gram moves rapidly over a wide
range of solutions and is particularly
effective at escaping from local
minima.

The major limitation with cur-
rent maximum likelihood methods
is that, despite being consistent,
they usually require excessive com-
puting time even with less than ten
taxa. For each tree, many different
edge lengths need to be tested.
Wouldn't it be desirable if some
properties of the model could be
inferred directly from the data,
without having to optimize a large
number of parameters by trial and
error? It is the ability to calculate

properties of the model directly
from the data that is the advantage
of invariant methods and spectral
analysis.

What are invariants? The term is
a general mathematical one for func-
tions, defined on the expected out-
put of a model, that will take the
same value (that is, are invariant)
whatever values certain ‘nuisance
parameters’ take. In the present
context, the model can be the tree
and specified mechanism of evol-
ution, and the nuisance parameters
the unknown (but variable) edge
weights (lengths) of the tree. Linear
invariants are a subclass that are
linear combinations of parameters
in the data. Thus it is valid to apply
the usual statistical tests of sig-
nificance.

For data generated exactly by a
model, phylogenetic invariants will
take a fixed value, and this will
generally be different for data
from another tree. We cannot
expect real data to fit a model
exactly but statistical tests are
possible that allow invariants to
distinguish between phylogenies. Be-
cause invariants are calculated
directly from the sequences we will
refer to them as ‘direct’ methods.
This is in contrast to standard
maximum likelihood, which works in
the other direction: it starts with a
model and preliminary estimates of
parameters, calculates some ex-
pected properties of the data, then
optimizes the parameters of the
model. Invariant methods estimate
properties of the model from the
data; maximum likelihood methods
calculate expected properties of the
data from a model. Perhaps com-
bining them would be even more
powerful? :

Three methods were introduced
in 1987. The best known is evol-
utionary parsimony®, which oper-
ates with nucleotides on subsets of
four taxa. In the same year Cavender
and Felsenstein3' published in-
variants for two-state characters on
trees with four taxa. We introduced_
a Hadamard (discrete Fourier)
transform'4, which at that time was
limited to about eight taxa and two
colors.

Evolutionary parsimony? has three
functions corresponding to internal
edges of the three unrooted trees
for four taxa (these correspond to
the bipartitions {1,2}, {1,3} and {1,4}
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Fig. 1. Tree used for Hadamard transform calculations (Box 3): (a) the unrooted tree and (b) a rooted
tree derived from it by inserting the root on the longest edge. There is a much lower rate of evolution
on the lineage leading to taxon t,. p values are probabilities, per character (nucleotide position), that
it is in a different character state at the ends of an edge. The values of p for pendent edges are shown;
p values are 0.01 for the internal edge.

Value

0.2

018 1-

0.16
0.14
0.12

0.1 1
0.08 1|

0.06

0.04 1
0.02

0

— see Box 3). Values for two of these
functions (the invariants) are ex-
pected to be zero, thus rejecting two
trees. The third is expected to be
positive. Insufficient data and/or
oversimplified assumptions about
mechanisms of evolution may leave
the third value not significantly
greater than zero. Scientifically this
is important as it suggests when the
data are unable to resolve a prob-
lem under a given model. If the
correct tree T is ((1,2)(3,4)) then the
value for {1,2} is expected to be
positive while those for {1,3} and
{1,4} should be zero.

Since 1987 there have been
two lines of development: ad
hoc methods for four colors

(nucleotides) for small numbers of
taxa?’3?23?, and a general method for
up to 20 taxa with two colors?*. The
general two-color case is shown in
Figs 1 and 2 and Box 3. The main
points are that with two colors (see
Box 3) there are 2"~' bipartitions,

1 2 3 T4 5 6 7

. Fig. 2. Spectra derived from the model in Fig. I. Entries

fors,_,and v _, from Box 3 (s, and v, are omitted). For
each pair the s value is on the left (shaded) and the v
value is on the right (unshaded). In general, bipartitions
that are larger in s are also larger in v, and vice versa.
But in this model, the observed value s; is larger than
s, even though v, is zero and v, is positive. This results
from the correction for multiple changes on different
edges of the tree.
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and 277! subsets with an even
number of taxa. A simple but
powerful matrix of 1's and —1's, the
Hadamard matrix, interconverts the
bipartitions and subsets. All calcu-
lations are invertible. The procedure
is a discrete Fourier analysis so
it is appropriate to refer to it as
spectral analysis. The vector vy has
2"~ entries. For a binary tree T,
2n—3 of these (the edge bipartitions
of T) should be positive and the
remaining entries (the invariants)
are expected to be zero — except the
first, which is the negative sum of all
the other entries, thus constraining
the sum of all entries to be zero. An
optimal tree for 20 taxa has been
found with nucleotide data®.

The four-color problem for evolutionary
trees

Can the two approaches be
unified by extending to four colors
for many species? From our current
knowledge, a generalized invariant
method on four colors looks like the
next major goal for phylogeny.

Is it possible? Almost certainly,
yes! There is a well-developed
mathematical theory of Fourier
transforms that describes necessary
and sufficient conditions for Fourier
analysis. The Hadamard transform
fits comfortably into this analysis.
A recent manuscript® describes
the general features of four-state
invariants for the Kimura three-
parameter model - but their
description is quite abstract.
Progress towards the goal has been
made (L. Székely, P. Erdés, M.A.
Steel and D. Penny, unpublished),
but there are still many unresolved
problems. What is the relationship
between partitions of the characters
and edges of the tree (itis no longer

TREE vol. 7, no. 3, March 1992

simply one-to-one)? What are the
equivalents of the even-sized
subsets of taxa that form the path
sets?

Solving the four-color problem for
evolutionary trees would be a major
step to more powerful methods. Of
course, it will never be enough.
Insertions and deletions (indels)
are highly informative'® and should
not be neglected. We may need a
six-color version to include indels.
Proteins would require a 20-color
version, information on gene re-
arrangements will be important, and
SO on.

We are optimistic that over the
next few years there will be continu-
ing progress in methods for infer-
ring and testing evolutionary trees.
More powerful approaches will be
found. However, a real bottleneck is
developing in implementing these
in the standard packages® so that
evolutionists can evaluate them. Ex-
perience will be needed to modify
and select the most effective ideas.
Biologists who want to use newer
approaches must insist that more
support is given to those who link
new ideas into workable computer
packages.
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