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a b s t r a c t

When two initially identical binary sequences undergo independent site mutations at a

constant rate, the proportion of site differences is often used to estimate the total time T

that separates the two sequences. In this short note we study the posterior distribution of

T when the prior distribution on T is exponential. We show that posterior estimates of T

(for any data) cannot grow faster than the logarithm of the sequence length, and this rate is

achieved for data generated at site saturation (i.e. in the limit as T →∞). The problem is

motivated by information-theoretic questions arising in molecular systematic biology, in

which onewishes to use DNA sequences to estimate the divergence time between present-

day species.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following problem: Long ago there was some (unknown) binary sequence of length k, and each position
(site) in the sequence was independently subjected to two independent and identical 2-state symmetric Markov processes
for a random time T/2 (T large) resulting in two derived sequences of length k that we observe today. Suppose we count the
number M of positions where the two observed sequences are in different states (the ‘Hamming’ or ‘mismatch’ distance).
On the basis ofM we wish to estimate T , perhaps as a posterior given some prior distribution on this random variable.

This problem is a special case of a problem arising in molecular systematics, in which one has two present-day DNA
sequences that have evolved from some common ancestral sequence that we cannot observe, and we wish to estimate how
long ago the two sequences diverged [1]. Although DNA sequences involve sequences of four states (A, C, G, T), these four
states are sometimes combined in pairs to form two states (purines and pyrimidines). The use of a process on just two
states helps us to simplify the calculations that follow, thoughwe expect similar results to hold for a fully symmetric 4-state
process (the ‘Jukes–Cantor’ model).

Although the problem as stated seems to involve three sequences (the ancestral and two observed sequences) the
reversibility of this particular Markov processes ensures that the problem is identical to the following problem, involving
just one sequence.Wehave k coins, initially all heads up. Each coin is subjected independently to the same2-state symmetric
Markov process for time T and we count the numberM of tails. We wish to use k to estimate the posterior distribution of T .

The maximum likelihood (ML) estimate T̂ of T has a simple, and well-known form:

T̂ = −1

2
log (1− 2M/k) ,

as can be verified by selecting the value of T to maximize the likelihood function pMT (1− pT )
k−M ,where pT = 1

2
(1− e−2T )

is the probability of observing a tail on any given coin after time T .
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Notice that it is entirely possible that T̂ is undefined (if the term inside the logarithm is negative), but if it is defined then

the largest value T̂ can possibly take, due to the fact that M is an integer less than k/2, is: T̂max = 1
2
log(k), which occurs

when k is odd andM = (k− 1)/2 (for related observations, see [2]). Thus if T is very large, ML will either give an undefined
estimate or it will be ‘small’ (of order log(k)). In this paper we ask whether Bayesian methods can do any better, given that
they are not based on taking logarithms of quantities that can be undefined. We show that essentially the same 1

2
log(k)

upper bound applies for an exponential prior on T .
More precisely we show that under an exponential prior Ψ with shape parameter ψ > 0, the posterior probability that

T exceeds ( 1
2
+ ε) log(k) converges to 0 as k grows for any data. This, in turn, implies that the expected posterior value of

T grows no faster than 1
2
log(k). We then show a matching order log(k) lower bound on posterior estimates of T when the

true value of T is infinity, again assuming an exponential prior on T .
The use of the exponential prior is motivated by the use of this distribution as a prior on branch lengths in

phylogenetics [3]—thus we wish to consider how long sequences might need to be in order to detect long time-scales.
In this short note we only consider two sequences, but in future work it would be interesting to derive more general results.

2. Bounds on posterior estimates of T for any data

Theorem 1. For an exponential prior on T , and for all c > 1 we have:

P

[
T >

c

2
log k|Dk

]
→ 0

uniformly for all binary strings Dk of length k.

Proof. LetM = M(D) denote the number ofmismatches in the dataD (i.e. the number of positionswhere the two sequences
take different values) and for any σ > 0 let

fσ (m) := P[e−2T < σ |M = m].
We first show that for smooth prior on T , fσ (m) is monotone increasing inm. To see this, first note that:

fσ (m) =
∫ σ
0
(1− x)m(1+ x)k−mdp(x)∫ 1

0
(1− x)m(1+ x)k−mdp(x)

,

where x = e−2T , and where p(x) denotes the distribution on x inherited from that on T . Now, set λ(x) := 1−x
1+x

and

C :=
(∫ 1

0
λ(x)m(1+ x)kdp(x)

)−2

, and observe that the conditions of the Leibniz integral rule allow us to differentiate under

the integral sign in the numerator and denominator of fσ (m) as follows.

∂

∂m
fσ (m) = ∂

∂m

(∫ σ
0
λ(x)m(1+ x)kdp(x)∫ 1

0
λ(x)m(1+ x)kdp(x)

)

= C

∫ σ

0

λ(x)m log(λ(x))(1+ x)kdp(x)

∫ 1

0

λ(x)m(1+ x)kdp(x)

− C

∫ σ

0

λ(x)m(1+ x)kdp(x)

∫ 1

0

λ(x)m log(λ(x))(1+ x)kdp(x)

= C

∫ σ

0

λ(x)m log(λ(x))(1+ x)kdp(x)

∫ 1

σ

λ(x)m(1+ x)kdp(x)

− C

∫ σ

0

λ(x)m(1+ x)kdp(x)

∫ 1

σ

λ(x)m log(λ(x))(1+ x)kdp(x)

≥ C log(λ(σ ))

∫ σ

0

λ(x)m(1+ x)kdp(x)

∫ 1

σ

λ(x)m(1+ x)kdp(x)

− C log(λ(σ ))

∫ σ

0

λ(x)m(1+ x)kdp(x)

∫ 1

σ

λ(x)m(1+ x)kdp(x)

= 0,

thereby establishing the claim that fσ (m) is monotone increasing in m. Consequently, it suffices to prove Theorem 1 in the
casewhenM(Dk) = k (i.e. amismatch occurs at all sites). Now, for an exponential distributionwith shape parameterψ > 0:

P

[
T ≥ c

2
log k|M = k

]
=
∫∞

c
2
log k
(1− e−2t)ke−ψtdt∫∞

0
(1− e−2t)ke−ψtdt

.
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Substituting x = e−2t gives:

P

[
T ≥ c

2
log k|M = k

]
=
∫ k−c

0
(1− x)kxψ/2−1dx∫ 1

0
(1− x)kxψ/2−1dx

=
2
ψ
xψ/2(1− x)k |k−c

0 + 2
ψ

∫ k−c

0
xψ/2k(1− x)k−1dx

2
ψ
xψ/2(1− x)k |10+ 2

ψ

∫ 1

0
xψ/2k(1− x)k−1dx

= k−cψ/2(1− k−c)k + ∫ k−c

0
xψ/2k(1− x)k−1dx∫ 1

0
xψ/2k(1− x)k−1dx

.

Since c > 1, we have (1− k−c)k → 1 as k→∞. Breaking up the above sum, we obtain:

k−c/2ψ(1− k−c)k∫ 1

0
xψ/2k(1− x)k−1dx

<
k−cψ/2∫ 1

0
xψ/2k(1− x)k−1dx

≤ k−cψ/2∫ 1

1/k
xψ/2k(1− x)k−1dx

≤ k−cψ/2

k−ψ/2
∫ 1

1/k
k(1− x)k−1dx

= k−cψ/2

k−ψ/2(1− 1/k)k

≤ 4(k(1−c)ψ/2) = o(1);
(where the last inequality uses (1− 1/k)k ≥ 1/4 for k > 1) and∫ k−c

0
xψ/2k(1− x)k−1dx∫ 1

0
xψ/2k(1− x)k−1dx

≤
∫ k−c

0
xψ/2k(1− x)k−1dx∫ 1

k−c xψ/2k(1− x)k−1dx

≤ k−cψ/2
∫ k−c

0
k(1− x)k−1dx

k−cψ/2
∫ 1

k−c k(1− x)k−1dx

= 1− (1− k−c)k

1
= o(1).

Thus limk→∞ P[T ≥ c
2
log k|Dk] = 0, where the convergence is uniform over all possible data-sets Dk. �

Corollary 2. Under an exponential prior with shape parameter ψ , and given c > 1, the following inequality holds uniformly over
all possible data Dk (thus irrespective of the ‘‘true’’ value of T that was involved in generating the data):

E[T |Dk] < c

2
log k+ o(1).

Proof.

E[T |Dk] =
∫ ∞

0

P[T > t|Dk]dt

≤
∫ c

2
log k

0

P[T > t|Dk]dt +
∫ ∞

c
2
log k

P[T > t|Dk]dt

≤ c

2
log k+

∫ ∞

c
2
log k

P[T > t|Dk]dt.

It remains to show that the last term in the above inequality converges to 0. We have:∫ ∞

c
2
log k

P[T > t|Dk]dt <
∫ ∞

c
2
log k

P[T > t|M(Dk) = k]dt

= log k

2

∫ ∞

c

P

[
T >

c ′

2
log k|M(Dk) = k

]
dc ′
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= log k

2

∫ ∞

c

⎡
⎣k−c′ψ/2(1− k−c′)k + ∫ k−c′

0
xψ/2k(1− x)k−1dx∫ 1

0
xψ/2k(1− x)k−1dx

⎤
⎦ dc ′

<
log k

2

∫ ∞

c

[
4(k(1−c′)ψ/2)+ 1− (1− k−c′)k

]
dc ′,

using the same bounds as in the proof of Theorem 1. For the first term of the integral, we have:

log k

2

∫ ∞

c

[
4(k(1−c′)ψ/2)

]
dc ′ = 4

ψ
k(1−c)ψ/2 = o(1).

Finally, substituting y = k−c′ and dy = −y log(k)dc ′ in the second term and applying the inequality 1− (1−y)k < ky gives:

log k

2

∫ ∞

c

(1− (1− k−c′)k)dc ′ = log k

2

∫ k−c

0

(1− (1− y)k)
dy

y log k

≤ 1

2

∫ k−c

0

(1− (1− y)k)
dy

y

≤ 1

2

∫ k−c

0

ky
dy

y

= 1

2
k1−c = o(1). �

3. Lower bounds for the case where T = ∞ (Random sequences)

In this section we are concerned with providing bounds on the posterior distribution of T , under an exponential prior Ψ
with shape parameter ψ > 0, in the case when the data are i.i.d. samples from P∞, the probability distribution on binary
sequences that arises in the limit as T →∞ (the ‘‘saturated model’’) in which each site is a fair coin toss.

Theorem 3. For all β < 1
4
, there exists a sequence Ek of sets of bit strings of length k such that, as k increases:

• P∞[Dk ∈ Ek] → 1, and
• for all Dk ∈ Ek, P[T < β

2
log k|Dk] → 0, where the convergence is uniform.

Proof. Let Ek := {D ∈ {0, 1}k|M(D) > mk}, where

mk := k

2

(
1− ck√

k

)
.

Letting ck →∞ yields P∞[Ek] → 1 which establishes the first claim in Theorem 3.
Now let β ∈ (0, 1/4) and pick ε > 0 sufficiently small so that β(2+ ε) < 1/2, and let

tk = β

2
log k.

Note that E[M(Dk)|T = (2+ ε)tk] = k
2
(1− k−(2+ε)β) ≤ k

2
(1− ck√

k
) = mk. We will establish the following inequality:

For allm ≥ mk, P[T < tk|M(D) = m] ≤ P[M = m|T = tk]
P[M = m|T = 2tk]ψ(e

−2ψtk − e−(2+ε)ψtk)−1. (1)

To establish (1) we first show that for all m ≥ mk, the function fm(t) := P[M(Dk) = m|T = t] is increasing in t for
t ∈ (0, (2+ ε)tk). We have:

fm(t) = P[M(Dk) = m|T = t] = 1

2k
(1+ e−2t)k−m(1− e−2t)m,

and so

∂ fm(t)

∂t
/fm(t) = 2me−2t

1− e−2t
− 2(k−m)e−2t

1+ e−2t
≥ 0,

since

m ≥ mk = k

2
(1− cke

−(log k)/2) ≥ k

2
(1− e−2(2+ε)tk) ≥ k

2
(1− e−2t).
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This establishes our claim regarding the increasing property of fm(t), and we now use this to establish (1). We have

P[T ≤ tk|M = m] = P[M = m|T ≤ tk]P[T ≤ tk]
P[M = m] ≤ P[M = m|T ≤ tk]

P[M = m] ,

and so, since fm(t) is increasing in t for t ∈ (0, (2+ ε)tk) andm ≥ mk, we have:

P[T ≤ tk|M = m] ≤ P[M = m|T = tk]
P[M = m]

≤ P[M = m|T = tk]
P[M = m|T ∈ [2tk, (2+ ε)tk]]P[T ∈ [2tk, (2+ ε)tk]]

≤ P[M = m|T = tk]
P[M = m|T = 2tk]P[T ∈ [2tk, (2+ ε)tk]]

−1,

which establishes Inequality (1). Thus, it suffices for the proof of Theorem 3 to show that:

lim
k→∞

P[M = m|T = tk]
P[M = m|T = 2tk] (e

−2ψtk)−1 = 0, (2)

since

lim
k→∞

e−2ψtk − e−(2+ε)ψtk

e−2ψtk
= 1.

Setting xk := e−2tk = e−β log k = k−β , (2) is equivalent to:

lim
k→∞ x

−ψ
k

(1− xk)
mk(1+ xk)

k−mk

(1− x2k)
mk(1+ x2k)

k−mk
= 0. (3)

Substitutingmk = k
2
(1− ck√

k
) condition (3) becomes:

lim
k→∞ kψβ

(1+ k−β)ck
√
k

(1+ k−2β)k/2−c
√
k
= 0.

Taking logarithms, and using the inequality x > log(1+ x) > x− x2/2 for x > 0, this reduces further to:

lim
k→∞ψβ log(k)+ k−βck

√
k− (k−2β − k−4β/2)(k/2− c

√
k) = −∞.

Since 0 < β < 1/2, the dominant term in the above expression is−k1−2β/2, and thus the limit is indeed−∞, so (3) follows,
as required to complete the proof. �
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