
Annals of Combinatorics 5 (2001) 1-15

0218-0006/01/010001-15$1.50+0.20/0
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Abstract. Leaf-labelled trees are widely used to describe evolutionary relationships, particularly
in biology. In this setting, extant species label the leaves of the tree, while the internal vertices
correspond to ancestral species. Various techniques exist for reconstructing these evolutionary
trees from data, and an important problem is to determine how “far apart” two such reconstructed
trees are from each other, or indeed from the true historical tree. To investigate this question
requires tree metrics, and these can be induced by operations that rearrange trees locally. Here
we investigate three such operations: nearest neighbour interchange (NNI), subtree prune and
regraft (SPR), and tree bisection and reconnection (TBR). The SPR operation is of particular
interest as it can be used to model biological processes such as horizontal gene transfer and
recombination. We count the number of unrooted binary trees one SPR from any given unrooted
binary tree, as well as providing new upper and lower bounds for the diameter of the adjacency
graph of trees under SPR and TBR. We also show that the problem of computing the minimum
number of TBR operations required to transform one tree to another can be reduced to a problem
whose size is a function just of the distance between the trees (and not of the size of the two
trees), and thereby establish that the problem is fixed-parameter tractable.

Keywords: trees, metrics, subtree transfer, fixed parameter tractability

1. Introduction

Leaf-labelled trees are widely used to represent evolutionary relationships, particularly
in biology, but also in other areas of classification (including linguistics and philology).
Typically a set S of extant (present day) species label the leaves (degree one vertices)
of the tree and the remaining vertices represent ancestral species. A root vertex may be
present, which corresponds to the most recent ancestor of the species under study. It
is usually assumed that each “speciation” event leads simply to the appearance of one
new lineage, and thus, in this directed tree, each vertex has exactly two outgoing edges.

Given data (such as aligned DNA sequences), numerous methods exist for recon-
structing a tree (see [12]) that hopefully approximates the true historical tree of descent
∗ The authors wish to thank the generous support of the New Zealand Marsden Fund for this report
(UOC516).
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of the species under study. However, different data sets and different methods often
lead to different trees being reconstructed for the same set of species. Thus it becomes
imperative to determine how “close” two reconstructed trees are. This requires the in-
troduction of metrics on trees. Several such metrics have been considered (see, for
example, [9]). A particularly natural choice is to say that two trees are “close together”
if one can be obtained from the other by a small number of “local” operations. Typi-
cally, three types of local rearrangements have been studied and we will consider these
in detail in the next chapter. However, little is known about how pairs of trees are dis-
tributed according to these metrics, or even how to efficiently calculate them. In this
paper we investigate both questions. In particular we:

• establish new results on the diameter and density of the adjacency graph of unrooted
trees under the subtree prune and regraft and tree bisection and reconnection oper-
ations, thereby correcting an oversight in [10];

• establish a relationship between the number of tree bisection and reconnection op-
erations required to transform one tree into another and the size of the maximum
agreement forest for the two trees, thereby correcting an error in [6];

• investigate the computational complexity of the NNI, SPR and TBR Distance Prob-
lems, and point out that the TBR-Distance Problem is NP-hard;

• show that, for the tree bisection and reconnection operation, the question of whether
a given unrooted binary tree can be transformed to another given unrooted tree by
at most k operations, namely the Parameterized TBR-Distance Problem, is fixed
parameter tractable (FPT), and conjecture that the Parameterized SPR-Distance
Problem is FPT as well.

Two further motivations for analysing these tree edit operations are that (i) they
form the basis of tree reconstruction heuristics that attempt to locate the “best” tree
according to various criteria (see [9]), and (ii) one of the tree edit operations, the SPR,
is useful for modelling horizontal gene transfer and recombination events (see [3–6,8]).

However before we investigate any tree edit operations, we need to introduce tech-
nical definitions.

Definitions 1.1. (1) An unrooted binary phylogenetic tree (or more briefly a binary
tree) is a tree whose leaves (degree 1 vertices) are labelled bijectively by a (species)
set S, and such that each non-leaf vertex is unlabelled and has degree three. We let
UB(n) denote the set of such trees for S= {1, . . . ,n}.

(2) An edge of a tree incident with a leaf is a pendant edge, otherwise we say it is an
internal edge. Let L(T ) denote the leaf set of a tree T ; the other vertices are said to
be internal. A cherry of a tree T is subtree containing exactly two leaves and their
associated pendant edges, along with the vertex to which both pendant edges are
incident.

(3) A forced contraction is an operation on a tree in which we delete a vertex v of degree
two and replace the two edges incident to v by a single edge. Given a set U ⊆ L(T )
for some binary tree T , let T (U) denote the minimal subtree of T connecting leaves
from U, and let T|U denote the binary tree obtained from T (U) by applying forced
contractions to remove all vertices of degree 2.

The following results are well known.

Lemma 1.2. (1) Any tree in UB(n) has 2n−2 vertices and n−3 internal edges.
(2) |UB(n)|= (2n−5)!! := 1×3×5 · · ·× (2n−5).
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2. Subtree Transfer Operations

2.1. Definitions

We now recall three commonly used subtree transfer operations, which form a nested
sequence. We will describe them from the most restrictive to the most general.

2.1.1. Nearest Neighbour Interchange

Definition 2.1. Any internal edge of a unrooted binary tree has four subtrees attached
to it. A nearest neighbour interchange (NNI) occurs when one subtree on one side of an
internal edge is swapped with a subtree on the other side of the edge, as illustrated in
Figure 1.

T2

T3
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A C

D B

C
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e

B
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D
T1

Figure 1: Trees T2 and T3 result from the two possible NNI’s about edge e in T1.

2.1.2. Subtree Prune and Regraft

The main focus for this paper is the subtree prune and regraft operation. This is the
subtree transfer operation that is used to model the effect of a horizontal gene transfer
or recombination in genomic data sets.

Definition 2.2. A subtree prune and regraft (SPR) on a binary tree T is defined as
cutting any edge and thereby pruning a subtree, t, and then regrafting the subtree by
the same cut edge to a new vertex obtained by subdividing a pre-existing edge in T − t.
We also apply a forced contraction to maintain the binary property of the resulting tree.
See Figure 2 for schematic representation of an SPR.

2.1.3. Tree Bisection and Reconnection

Definition 2.3. A tree bisection and reconnection (TBR) on a binary tree T is defined as
removing any edge, giving two new subtrees, t1 and t2, which are then reconnected by
creating a new edge between the midpoints of any edge in t1 and any edge in t2. Again
forced contractions are applied to ensure the resulting tree is binary. In the case that
one of the subtrees is a single leaf, then the edge connecting t1 and t2 is incident to the
leaf. See Figure 2 for a schematic representation of a TBR.
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Figure 2: A schematic representation of the SPR and TBR operations. Note that the
SPR operation can also be considered as a TBR, but not conversely.

2.2. Tree Neighbours

In this subsection we count the number of trees one subtree transfer operation from any
given tree. Contrary to the findings of Page [10], the number of trees that are induced
by one SPR from any given T ∈UB(n) can be described by a simple formula involving
just n.

Definition 2.4. Two trees T ,T ′ are said to be neighbours under a specific subtree trans-
fer operation if T ′ can be obtained from T through one subtree transfer operation. The
neighbourhood of a tree T is all trees that are neighbours with T .

Theorem 2.5. The size of the neighbourhood for T ∈UB(n) is:

(1) 2n−6 for the NNI operation,
(2) 2(n−3)(2n−7) for the SPR operation,
(3) at most (2n−3)(n−3)2, and dependent on the topology of T for the TBR operation.

Proof. (1) was established by Robinson [11]. For (2), when a subtree is pruned and
regrafted we cut an edge and then re-attach it to a different edge. The number of edges
we can choose to cut is 2n−3 and the number we can re-attach to is 2n−4. Hence the
total number of possible subtree prune and regrafts is (2n−3)(2n−4). However not all
of these subtree prune and regrafts produce distinct trees, or even different trees to T .
We can eliminate over-counts by separating SPR operations into three disjoint cases:

(i) The edge to which the subtree will be regrafted is adjacent to the cut edge. This
results in no change to the tree’s topology.

(ii) The edge to which the subtree will be regrafted is separated by exactly one edge
from the edge to be cut. These are precisely the NNI transformations, and so from
part (1), precisely 2n−6 trees are generated.

(iii) Lastly, consider the case where the edge to which the subtree is regrafted is sep-
arated by more than one edge away from the cut edge. It can be checked that
any such prune and regraft will create a tree that can not be obtained by any other
single SPR. Now we must count the number of such SPR operations. If we code
an SPR operation by an ordered pair of edges (corresponding to the edge that is
cut, and the edge that is attached to) then the the number of SPR operations in this
last case is the number of ordered pairs of distinct edges (viz. (2n− 3)(2n− 4))
minus the number of ordered pairs that correspond to SPR’s covered by cases (i)
and (ii). For case (i) the number of such pairs is 6(n− 2) (since we have 6 such
pairs associated with each of the n− 2 internal vertices of T ), while for case (ii)
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the number of such pairs is 8(n− 3) (since each of the n− 3 internal edges of T
gives rise to 8 such pairs). Thus the number of SPR operations corresponding to
case (iii) is (2n−3)(2n−4)−6(n−2)−8(n−3)= 4(n−3)(n−4), as required.

Combining cases (i), (ii) and (iii) the total number of trees at a distance of one SPR
is 0+2(n−3)+4(n−3)(n−4)= 2(n−3)(2n−7).

Finally, for part (3), there is an injection from the set of TBR’s on T to the set
of ordered pairs (e, {a, b}) where e is an edge of T , and where, if {A, B} is the bi-
partition of L(T ) induced about e, a is an edge from subtree T|A (or a = T|A if T|A
is a single vertex), and b is an edge from subtree T|B (or b = T|B if T|B is a single
vertex). Furthermore there are 2n−3 choices for e, |2|A|−3 choices for a and 2|B|−3
choices for b. Thus, there are at most (2n−3)(2|A|−3)(2|B|−3) trees, and furthermore
|A|+ |B| = n. For x+ y = n, (2x− 3)(2y− 3) attains its constrained maximum at x =
y= n/2. Hence the number of trees one TBR from T is at most (2n−3)(n−3)2.

2.3. Tree Metrics

Definition 2.6. Let the distance between two binary trees T1 and T2 with respect to a
specific subtree transfer operationΘ∈ {NNI, SPR, TBR} be the minimum number of Θ
operations required to transform T1 to T2. We write this as dΘ(T1, T2).

Lemma 2.7. (1) NNI ⊆ SPR⊆ TBR.
(2) For any T1, T2 ∈UB(n) :

(a) dTBR(T1, T2) ≤ dSPR(T1, T2) ≤ dNNI(T1, T2); and,
(b) dSPR(T1, T2) ≤ 2×dTBR(T1, T2).

Proof. Part (1) was observed by Maddison [9]. Part (2a) follows immediately from Part
(1). For Part (2b), consider the TBR of following general form in Figure 2. We can
also obtain the same tree after two SPR’s. We firstly prune the Z component subtree
and regraft it to the correct edge, as in Figure 2. We then reconnect the Z component
subtree so that it is joined at the correct vertex. This is achieved by treating the rest of
the tree as a subtree to be pruned and regraft to the correct edge in the Z component.
Thus we obtain exactly the same binary tree as that obtained from the TBR operation.

Definition 2.8. For Θ ∈ {NNI,SPR,TBR}, the Θ-adjacency graph GΘ(n) = (V, E) is
the graph with V = UB(n) and {tu, tv} ∈ E ⇐⇒ dΘ(tu, tv) = 1. The diameter of
GΘ(n), denoted ∆(GΘ(n)), is the maximum value of dΘ(T, T ′) over all pairs T, T ′ ∈
UB(n).

Robinson [11] showed that GNNI(n) is connected, that is, dNNI(T, T ′) is defined for
all T, T ′ ∈UB(n), and hence by Lemma 2.7 it follows that GSPR(n) and GTBR(n) are
also connected. Thus ∆(GΘ(n)) is well defined. For the NNI operation, Li et al. [7]
established the following nontrivial tight bound on the diameter of GNNI(n).

Theorem 2.9. [7]
n
4
log2 n−o(n logn) ≤ ∆(GNNI(n)) ≤ n log2 n+O(n).

We establish analogues for the SPR and TBR operations as follows.
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Theorem 2.10. For the SPR and TBR adjacency graphs, we have

(1) n/2−o(n)≤ ∆(GSPR(n)) ≤ n−3; and,
(2) n/4−o(n)≤ ∆(GTBR(n)) ≤ n−3.

Proof. For the lower bound of Part (1), recall from Theorem 2.5 that in UB(n) the
number of trees one SPR from a given tree is 2(n− 3)(2n− 7), and that the number
of unrooted binary trees is (2n− 5)!!. Thus, if d = ∆(GSPR(n)), then d > 1 for n > 4.
Furthermore, starting from any given tree T0 inUB(n)we can (by definition of d) reach
each tree inUB(n) in at most d SPR operations. Also, since we can move from T0 to T0
in exactly 2 SPR operations, and, also, in exactly 3 SPR operations, we can reach every
tree inUB(n) in exactly d SPR operations from T0. Thus, for n> 4,d > 1 we have:

[2(n−3)(2n−7)]d ≥ (2n−5)!!= (2n−4)!
2(n−2)(n−2)!

. (2.1)

where the second equality is from Lemma 1.2. By Equation ( 2.1) and Stirling’s facto-
rial approximation,

[2(n−3)(2n−7)]d ≥
√
2π(2n−4)(2n−4)(2n−4)e−(2n−4)

2(n−2)
√
2π(n−2)(n−2)(n−2)e−(n−2) e1/(12(n−2))

=
√
2 2(n−2) (n−2)(n−2)e−(n−2) e−1/(12(n−2)).

(2.2)

Taking natural logarithms of both sides of (2.2) gives:

d[log4+ log(n−3)(n−7/2)]≥ (n−2)[log2+ log(n−2)−1]

+
1
2
log2− 1

12(n−2) .
(2.3)

Now, for n≥ 4, we have 1
12(n−2) ≤

1
2 log2, so

d[log4+ log(n−3)(n−7/2)]≥ (n−2)[log2+ log(n−2)−1], (2.4)

and if we let n→ ∞ we get:

d
n−2 =

log2+ log(n−2)−1
log4+ log(n−3)(n−7/2) →

1
2
. (2.5)

which establishes the lower bound for Part (1).
For the upper bound of Part (1), we use induction on the number of leaves. There

are three binary trees on four leaves, all of which are at distance one SPR from each
other. So the hypothesis holds for n = 4. Assume now that the hypothesis is true for
any pair of trees inUB(k) and suppose T1, T2 ∈UB(k+1). Considering the cherries of
T1 and T2, there are two cases:

(i) There is a cherry that occurs in both T1 and T2. Replace this cherry in both trees
by a single leaf to get T ′

1 and T ′
2 , both on k leaves. Hence T ′

1 can be transformed
to T ′

2 in at most k− 3 operations and therefore, so too for T1 and T2. Hence the
hypothesis is valid for n= k+1 in this case.
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(ii) If there is no cherry that occurs in both trees, then distinguish a cherry in T2. Let
i and j denote the leaves of this distinguished cherry. Let T ′

1 be the tree obtained
from T1 by applying an SPR operation that prunes leaf i and re-attaches it to the
edge incident with leaf j (thus, T ′

1 now also has a cherry with leaves i and j).
Now apply case (i) to deduce that T ′

1 can be converted to T2 in at most k−3 SPR
operations. Hence T1 can be converted to T2 in at most k−2 SPR operations, hence
the hypothesis is valid in this case for n= k+1 as well.

Since cases (i) and (ii) cover all problem instances, the hypothesis is valid for all n
by induction. It immediately follows that ∆(GSPR(n)) ≤ n−3.

The lower bound in Part (2) follows from Part (1) and Lemma 2.7(2b), and the upper
bound of Part (2) follows from Part (1) and Lemma 2.7(2a).

2.4. Induced Subtree Distances

Lemma 2.11. Suppose we have T, T ′ ∈UB(n). Let U ⊆ L(T ). Then dΘ(T|U , T ′
|U) ≤

dΘ(T, T ′) for all Θ ∈ {NNI,SPR,TBR}.

Proof. First note that aΘ-operation on T induces aΘ-operation on T|U (providedwe
also allow the identity operation which leaves T unchanged to count as a Θ operation).

Next we establish the result in the case dΘ(T, T ′) = 1. We will suppose that Θ =
SPR; the NNI and TBR cases are similar. Represent the two trees that are one SPR
apart as in Figure 2, and consider the following cases.

(i) If eitherU ∩L(B) = /0 orU ∩L(Z) = /0 then dSPR(T|U , T ′
|U) = 0.

(ii) If U ∩L(C) = /0, or U ∩L(A) = /0 and B is a pendant subtree, then there is no
change in the tree, since there is one central vertex from which Z is pruned and
then reconnected to. Hence dSPR(T|U , T ′

|U ) = 0.
(iii) Lastly, if none of the above cases are true then there must be at least one internal

vertex that distinguishes the placement of the Z|U subtree. Hence dSPR(T|U ,T ′
|U) =

1, as Z|U can be moved in one SPR.

Now, if dΘ(T, T ′) = k> 1, there are trees T 0, T 1, . . . ,T k such that T 0 = T, T k = T ′

and dΘ(T l , T l+1) = 1 for all l ∈ {0, 1, . . . ,k− 1}. Let t l = T l|U for all l ∈ {0, 1, . . . ,
k−1}. Then from the particular case above, dΘ(t l, t l+1)≤ 1 for all l ∈ {0, 1, . . . ,k−1}.
Thus, the trees t1, . . . ,tk define a series of at most k Θ-operations that transform T|U to
T ′
|U , as required.

2.5. Maximum Agreement Forests

The concept of a (maximum) agreement forest for two binary trees was introduced by
Hein et al. [6]. As we will see it is particularly useful for analysing the TBR operation.

Definition 2.12. Suppose we have two binary trees T1 and T2 with L(T1) = L(T2) = L .
Then (recalling Definition 3 from Section 1),
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• An agreement forest (AF) for T1, T2 is a collection F = {t1, . . . ,tk} of binary trees
such that, if we let L j := L(t j) for j ∈ {1, . . . ,k}, then the following are satisfied:

(1) L1, . . . ,Lk partitions L
(2) t j = T1|L j = T2|L j for all j ∈ {1, . . . ,k}; and
(3) For both i = 1 and i = 2 the trees {Ti(L j) : j = 1, . . . ,k} are vertex-disjoint

subtrees of Ti.

• A maximum agreement forest (MAF) for T1, T2 is an agreement forest F for T1, T2
for which |F | is minimal. Let m(T1, T2) :=min{|F |−1 : F is an AF for T1, T2}.

Remarks.

(1) Informally,m(T1, T2) is the smallest number of edges that need to be cut from each
of T1 and T2 so that the resulting forests agree, once unlabelled vertices of degree
less than three are removed (by deletion of unlabelled vertices of degree 1, and
forced contractions).

(2) For T1, T2 ∈ UB(n), the same number of edges must be cut in both T1 and T2 to
construct their MAF.

(3) An MAF for T1, T2 ∈UB(n) need not be unique. Suppose T1, T2 are two different
unrooted binary trees on four leaves. By removing the same leaf from both trees
we obtain an MAF, however there are four possible leaves that we can remove, and
so four possible MAFs.

2.6. MAF Size and SPR- and TBR-Distance

Lemma 7 of [6] states that the size of an MAF for any two given rooted binary trees
T1, T2 is one more than their SPR-distance. However this is not true for unrooted trees,
and indeed, neither is it true for SPR transformations (suitably defined, see [1]) on
rooted trees as the counterexamples in Figure 3 show.

2

1
3 4

5

6
3 41 2

1 2 3 4 1 2 3 4

1

2
3 4 5

6 1

2

3 4

6

 5

Figure 3: Counterexamples to Lemma 7 of [6]. In the first (resp. second) box there
are two unrooted (resp. rooted) binary trees that are more than one SPR apart, yet their
MAF requires just one edge deletion.

Despite these counterexamples, Lemma 7 of [6] becomes true if we consider the
TBR operation instead of the SPR operation, as the next theorem shows.
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Theorem 2.13. Suppose we have two binary trees T, T ′ with L(T ) = L(T ′) = L . Then,

dTBR(T, T ′) = m(T, T ′).

In particular, m is a metric.

Proof.We first show thatm(T, T ′)≤ dTBR(T, T ′) by using induction on k= dTBR(T, T ′).
If k= 1, then only one edge needs to be cut in each of T and T ′ in order to construct an
MAF, hence the hypothesis holds.

Now, suppose that the hypothesis holds for pairs of trees with a TBR-distance of
k≥ 1 and suppose dTBR(T, T ′) = k+1. Then there is a tree T ′′ such that dTBR(T, T ′′) =
k and dTBR(T ′′, T ′) = 1. Thus, by the inductive hypothesis, there exists a partition
π = {A1, . . . ,Ak} of L such that {T ′′

|Ai : i = 1, . . . ,k} is an MAF for (T, T ′′), and a
bipartition π′ = {A, B} of L such that {T ′′

|A, T
′′
|B} is an MAF for (T ′′, T ′). Now, by

considering the subtrees {T ′′(Ai) : i= 1, . . . ,k} of T ′′, we see that π′ either splits no set
in π (case (i)), or π′ splits precisely one set in π - say A j (case (ii)). Thus, if we set π′′
equal to π in case (i), or equal to {π− {A j}}∪ {A j ∩A, A j ∩B} in case (ii), we have
that {T ′′

|U :U ∈ π′′} forms an agreement forest for (T, T ′′) and for (T ′′, T ′) and thereby
for (T, T ′). Thus, m(T, T ′) ≤ k+1, which completes the induction step.

To show that m(T, T ′) ≥ dTBR(T, T ′), we again use induction, this time on m =
m(T, T ′). For m = 1, the MAF is obtained by deleting a single edge from each of
T and T ′, hence dTBR(T, T ′) = 1. Now suppose the inductive hypothesis holds for
m ≤ k− 1 and that m(T, T ′) = k. Let {t1, . . . ,tk+1} be an MAF for T, T ′. For at least
one i ∈ {1, . . . ,k+ 1}, the subtree T (Li) of T can be pruned from the rest of T by
deleting one edge only. In T ′ there exists at least one j ∈ {1, . . . ,k+1} such that T ′(Li)
is joined to T ′(L j) by a path that does not include any vertices in ∪m̸=i, jT ′(Lm). Note
that this last sentence could not also be true with T ′ replaced by T , otherwise we could
construct a smaller MAF for T, T ′ by amalgamating Li and L j. Now, we can cut the
single edge of T incident with T (Li) and then re-attach T (Li) to T (L j) in such a way
that T|Li∪L j = T ′

|Li∪L j
. We call this new tree T ′′ and note that it must differ from T by

exactly one TBR. T ′′ and T ′ now have an AF of size k, and so m(T ′′, T ′)≤ k−1. Thus,
by the inductive hypothesis, dTBR(T ′′, T ′) ≤ k−1. Thus dTBR(T, T ′) ≤ dTBR(T, T ′′)+
dTBR(T ′′, T ′) ≤ k, as required to establish the induction step.

By Lemma 2.7(2a) and the first inequality of Theorem 2.13 we have:

dSPR(T1, T2) ≥ m(T1, T2). (2.6)

The counterexample at the start of this subsection show that the inequality can be
strict.

3. Complexity of Computing Distances Between Evolutionary Trees

A fundamental problem is determining the distance between two given trees from
UB(n) with respect to some tree metric. Seemingly the only paper to address the
complexity of the computing the SPR-distance between two trees is [6]. However the
authors base their treatment on Lemma 7 of [6], which, as pointed out in Section 2.6
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is incorrect. Consequently, the complexity of the SPR distance problem remains un-
resolved. However, Theorem 8 of [6] should not be disregarded since its proof can be
used to establish that the TBR-distance problem is NP-hard, by invoking Theorem 2.13.

3.1. Fixed Parameter Tractability for the Θ-Distance Problem

3.1.1. Tree Reduction Rules

Despite the fact that the TBR-distance problem is NP-hard and the suspicion that so
too is the SPR-distance problem, we show here that the Parameterized TBR-distance
problem is fixed parameter tractible (FPT). That is, we show that the problem of de-
termining the TBR distance between two trees, each with n leaves and whose TBR
distance is at most k can be solved by an algorithm which runs in polynomial time (in
n) and for which the degree of this polynomial is independent of k.

The first step of a typical FPT problem is to kernelize the problem, that is, the size
of the problem is reduced in such a way that the answer to the reduced problem is the
same as the answer to the original problem and so that the size of the reduced problem is
some function involving just the parameter k, i.e. it does not involve n (see [2]). In our
case we wish to kernelize the problem by reducing the size of the two given trees, while
still maintaining the SPR or TBR distance between them. We do this by repeatedly
applying the following:

• Rule 1. Replace any pendant subtree that occurs identically in both trees by a single
leaf with a new label.
and

• Rule 2. Replace any chain of pendant subtrees that occur identically in both trees
by three new leaves with new labels correctly oriented to preserve the direction of
the chain.

1T
A

a
1

/T

2T
A

a
/

2T

Figure 4: Reduction of two trees using Rule 1.

For both rules, the position of attachment of each pendant subtree must be the same
in the two trees. Figures 4 and 5 illustrate Rule 1 and Rule 2 respectively.
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T1

A B N

/T1

a b c a b c
/T2

A B N

T2

Figure 5: Reduction of two trees using Rule 2.

The following Lemma is easily demonstrated. We will not attempt to do so here,
nor quantify the time required. Useful further work might involve finding a fast imple-
mentation.

Lemma 3.1. For T1, T2 ∈UB(n), Rule 1 and Rule 2 can be repeatedly applied to reduce
T1 and T2, until they can be reduced no further, in polynomial time in n.

3.1.2. Preservation of Θ-Distance

Definition 3.2. An abc tree is a binary tree T whose leaf set includes three leaves a, b, c
with the following property; if va, vb, vc are the three vertices of T adjacent to a, b, c
(resp.) then {va, vb} and {vb, vc} are edges of T . Trees T ′

1 and T ′
2 in Figure 5 furnish

two examples of abc trees.

Lemma 3.3. If T, T ′ ∈UB(n) are two abc trees with L(T ) = L(T ′), then there exists
an MAF F for T, T ′ in which a, b, c are contained in the leaf set of one of the trees in
F .

Proof. Suppose F is an MAF for T, T ′. Let La (resp. Lc) be the set of leaves connected
to a (resp. c) once edge {va, vb} (resp. {vb, vc}) is deleted from T . Let L′a = La−
{a};L′c = Lc−{c}. We now distinguish two cases:

(1) There exists a tree t ∈ F with leaves from both L′a and L′c.
(2) No tree in F contains leaves from both L′a and L′c.

Case (1) Let ta = t|L′a and tc = t|L′c , and let I := |L(t)∩ {a, b, c}|. If I = 0 then each
of a, b and c must be isolated point in F (by property (3) in the definition of
an AF). Let F ′ := (F −{a, b, c, t})∪{ta, tc, tabc} (where tabc is the tree with
the three leaves a, b, c). Then F ′ is an agreement forest for T, T ′ with fewer
trees than F , contradicting the minimality of F , thus this case does not arise.
If I = 1, let x denote the leaf in L(t)∩ {a, b, c} and y, z denote the other
two leaves. Then, y and z must be isolated vertices in F and so F ′ := (F −
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{y, z, t})∪{ta, tc, tabc} is also an AF for T, T ′ with the same number of trees
as F . Thus we can replace F by F ′ to obtain an MAF in which a, b, c occur
in a single component.
If I = 2, then one of the leaves, x ∈ {a, b, c} is an isolated vertex in F . Let
t ′ := T|L(t)∪{x}. Then F ′ = (F −{x, t})∪{t ′} is also an AF forest for T, T ′,
but with fewer trees than F , a contradiction, so this case does not arise.
If I = 3, F already satisfies the condition we want and we are done.

Case (2) If F contains all three leaves a, b, c then we are done. Otherwise, we distin-
guish two subcases:

(i) at least one leaf x ∈ {a, b, c} occurs as an isolated vertex in F , or
(ii) leaves a, b are in one component t1 ∈ F and leaf c is in another t2 ∈ F

(or leaves b, c are in one component, and leaf a is in another).

In subcase (i), delete a, b, c from any trees in F and replace isolated leaf x
by the tree tabc to obtain an AF for T, T ′ of the same size as F . Since this
contains a, b, c in one tree we are done.
In subcase (ii), let t := T|L(t1)∪L(t2). Then F ′ := (F −{t})∪{t ′} is an AF for
T, T ′ yet smaller than F ; a contradiction.

Theorem 3.4. Let T1, T2 ∈UB(n) and let T ′
1 and T ′

2 be obtained from T1 and T2 respec-
tively by applying Rule 1 or Rule 2. Then dTBR(T1, T2) = dTBR(T ′

1 , T ′
2).

Proof. We establish the result for Rule 2; the corresponding result for Rule 1 is similar
but simpler. Label the subtrees in the chain shared by T1 and T2 as t1, . . . , tr where
r ≥ 3 (with this order). Suppose these are replaced by new leaves a, b, c under Rule 2.
Thus T ′

1 and T ′
2 are both abc trees, and so there exists an MAF F for T ′

1 , T ′
2 satisfying

Lemma 3.3. Now, in these trees, let us re-insert the trees t1, . . . ,tr in this order in
each of T ′

1 , T ′
2 to new vertices that subdivide the edge {va, vb} (where va, vb are the

vertices adjacent to a and b). Call the resulting trees T ′′
1 , T ′′

2 . Now, any MAF for
T ′
1, T ′

2 which has leaves a, b, c in the same component t can be modified to produce an
agreement forest for T ′′

1 , T ′′
2 of the same size, by simply attaching the trees t1, . . . , tr

along the edge {va, vb} of t (or, in case va = vb in t, along the edge from a to va).
Thus, by Theorem 2.13, dTBR(T ′′

1 , T ′′
2 ) ≤ dTBR(T ′

1 , T ′
2). However, since T1, T2 are both

induced subtrees of T ′′
1 , T ′′

2 , Lemma 2.11 gives dTBR(T1, T2) ≤ dTBR(T ′′
1 , T ′′

2 ) and thus
dTBR(T1, T2) ≤ dTBR(T ′

1 , T ′
2).

For the inverse inequality, with t1, . . . , tr as before, suppose we select a leaf a ∈
L(t1), b ∈ L(t2), c ∈ L(t3) and replace the chain t1, . . . ,tr in T1, T2 by leaves a, b, c
(correctly oriented) to obtain trees T ′

1 , T ′
2 . Let U denote the set of leaves of T1 that do

not lie in the chain, together with a, b, c. Then, by Lemma 2.11, dTBR(T1|U , T2|U ) ≤
dTBR(T1, T2), and since Ti|U = T ′

i for i= 1, 2 we obtain dTBR(T ′
1 , T ′

2) ≤ dTBR(T1, T2), as
required.

Combining both inequalities we get dTBR(T ′
1 , T ′

2) = dTBR(T1, T2), as required.

Note that Theorem 3.4 applies only to the TBR operation. Rule 1 is also distance
preserving for the SPR operation, however for Rule 2 we offer the following:
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Conjecture 3.5. Let T1, T2 ∈UB(n) and let T ′
1 and T ′

2 be obtained from T1 and T2 by
applying Rule 2. Then dSPR(T1, T2) = dSPR(T ′

1, T ′
2).

For the NNI-distance problem, Rule 2 is not distance preserving (see [1]).

3.1.3. Maximally Reduced Trees Have Bounded Size

Suppose that we are given T1, T2 ∈UB(n) such that dΘ(T1, T2)= k forΘ∈ {SPR, TBR},
and that T1 and T2 can be reduced no further by Rule 1 or Rule 2. In this section,
we show that the size of the leaf set of the two trees is bounded by some function f
which depends (linearly!) only on k, that is, |L(Ti)| ≤ f (k), where i ∈ {1, 2}. Given
T1, T2 ∈UB(n), and an MAF, t1, . . . ,tk, let degi(t j) for i = 1, 2 denote the number of
edges of Ti that are incident with the subtree t j.

Lemma 3.6. For both i= 1 and i= 2 we have

∑
j
degi(t j) ≤ 2k−2.

Proof. In Ti, collapse each of t j, j= 1, . . . ,k to a single vertex of degree degi(t j) thereby
obtaining a tree, (V, E) consisting of these new vertices, and n3 ≥ 0 vertices of degree
3. Thus, |V | = n3+ k, and ∑ j degi(t j)+3n3 = 2|E|. Now, since (V, E) is a tree, |V | =
|E|+1, and so ∑ j degi(t j) = 2k−2−n3≤ 2k−2, as required.

Lemma 3.7. Let t1, . . . ,tk be an MAF for T1, T2 ∈UB(n). Then, by repeatedly applying
Rules 1 and 2, the number of leaves in t j (for j= 1, . . . ,k)can be reduced to c(deg1(t j)+
deg2(t j)) for a fixed constant c≤ 7.

Proof. Let I j be the set of edges of t j that are incident with edges of either T1 or T2. Let
t ′j denote the minimal subtree of t j containing among its edges the set I j. Let t ′′j be the
tree obtained from t ′j by replacing each maximal path that contains no edge from I j by a
single edge, let Fj denote this set of new edges. Let Pj denote the set of pendant edges
of t ′′j . Let i j := |I j|; f j := |Fj|; p j := |Pj|. We pause to make several observations.

(1) Pj ⊆ I j,
(2) I j ∪Fj forms a disjoint partition of the edges of t ′′j ,
(3) Any vertex of t ′′j of degree 2 is incident with at least one edge from I j,
(4) By applying Rules 1 and 2 to T1 and T2 the subtree t j can be reduced to a subtree of

size at most s, where
s := p j +3 f j. (3.1)

since each subtree of t j corresponding to an edge in Pj can be replaced by a single
leaf (by Rule 1) and each collection of subtrees corresponding to an edge in Fj can be
replaced by three leaves (by Rule 2). Now we claim that:

s≤ 7i j−9. (3.2)

mikesteel
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To establish this inequality, let v(k)j denote the number of vertices of t ′′j of degree k.
Then, v(1)j = p j, and v(k)j = 0, for k > 3. Counting the edges of t ′′j twice by summing
degrees we have:

v(1)j +2v(2)j +3v(3)j = 2(i j + f j) = 2(v(1)j + v(2)j + v(3)j −1), (3.3)

where the second equality is because t ′′j is a tree and so has one less edge than its number
of vertices. Rearranging Equation (3.3), and noting that v(1)

j = p j, we have

p j− v(3)j = 2.

Now, f j is the total number of edges of t ′′j minus i j, so we have

f j = (v(1)j + v(2)j + v(3)j −1)− i j.

Substituting these last two equations into Equation (3.1) gives,

s= p j +3(2p j+ v(2)j −3− i j) = 7p j +3(v(2)j − i j)−9.

Now, since each edge in Pj gives rise to at most one vertex of degree 2 and each edge
in I j−Pj gives rise to at most two vertices of degree 2, and (by observations (1) and (3)
above) all vertices of degree 2 are covered in this way we obtain v(2)

j ≤ p j +2(i j− p j).
Substituting this inequality into the previous equality gives:

s≤ 4p j +3i j−9≤ 7i j−9,

as claimed. This establishes inequality (3.2). Finally, we have,

i j ≤ deg1(t j)+deg2(t j),

which combined with inequality (3.2) completes the proof of the Lemma.

Theorem 3.8. The Parameterized TBR-Distance Problem is fixed-parameter tractable.

Proof. By Lemma 3.1, Rule 1 and Rule 2 can be repeatedly applied to reduce any two
trees fromUB(n) in polynomial time. By Lemmas 3.6 and 3.7 the number of leaves in
each reduced tree can be bounded above by:

∑
j
c(deg1(t j)+deg2(t j)) ≤ 4c(k−1),

which is independent of n. Computing the TBR-distance between these reduced trees
depends only on their size, and not the size of the leaf set of the original two trees,
and this distance is the TBR distance between the original two trees (by Theorem 3.4),
completing the proof.
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Theorem 3.8 shows that, provided the TBR-distance between two trees is suffi-
ciently small we will be able to determine the exact distance in realistic time. Note that
if Conjecture 3.5 is true, then the argument in Theorem 3.8 would also estalish that the
Parameterized SPR-Distance Problem is FPT.
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