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Abstract—Given a set X of taxa, a phylogenetic X-tree T that is only partially resolved, and a collection of characters on X, we

consider the problem of finding a resolution (refinement) of T that minimizes the parsimony score of the given characters. Previous

work has shown that this problem has a polynomial time solution provided certain strong constraints are imposed on the input. In this

paper, we provide a new algorithm for this problem and show that it is fixed-parameter tractable under more general conditions.

Index Terms—Maximum parsimony, Fitch-Hartigan algorithm, optimal tree refinement, hitting set problem, fixed parameter tractability.
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1 INTRODUCTION

ONE of the most basic methods for phylogenetic tree
reconstruction is maximum parsimony (MP). The

starting point for constructing the most parsimonious tree
on a set X of n taxa is a collection ð�1; . . . ; �kÞ of r-state
characters, i.e., functions �i from X into some discrete set Si
for which j�iðXÞj � r for all i. In applications, the case r ¼ 2
typically corresponds to presence-absence of a character
state, while r ¼ 4 frequently corresponds to the four
nucleotides. The problem is to find a phylogenetic X-tree T
(i.e., a tree T ¼ ðV ;EÞwith vertex set V , edge set E, and leaf
set X � V ) and extensions �i : V ! Si for each character �i,
so that the total number of changes of states along the edges
of T taken over all extensions is minimized over all possible
trees and extensions. This problem, the MP problem, is NP-
hard even for r ¼ 2, [5], [8], and various methods have been
proposed for its solution (see, e.g., [6]).

In [3], the following variant of the MP problem was

introduced (precise definitions follow in Section 2). A

phylogenetic X-tree T 0 refines T if T can be obtained by

contracting some edges in T 0. Now, suppose that T is a

phylogenetic X-tree with maximum vertex degree d, and

that, as above, ð�1; . . . ; �kÞ is a collection of r-state characters

on X. The optimal parsimony refinement (OPR) problem

consists of the following two parts: calculating the minimal

parsimony score among all refinements of T (the OPR-score

problem) and finding a refinement of T 0 that has such score

(the OPR-tree problem).

A simple instance of the OPR problem is illustrated in
Fig. 1, where we have just a single character (rather than a
sequence of characters) and the state this character assigns
to each leaf is denoted by its subscript. Notice that the
parsimony score of this character for the tree in Fig. 1a is 4,
while for the refinement of this tree shown in Fig. 1b, the
parsimony score is 3.

The biological motivation for considering the OPR
problem is given as follows: Often, in applications, one
can be confident in the historical correctness of a partially
resolved tree, and one would like to resolve the tree further
by “expanding” vertices of degree at least 4. These higher
degree vertices (called “polytomies”) can arise from a
variety of biological processes: for example, a rapid
speciation event, or a divergence event deep in the past,
or from other processes (such as lineage sorting) that cause
conflicting phylogenetic signal. The partially resolved tree
would typically be some consensus (summary) tree show-
ing well-supported phylogenetic splits, and based on trees
obtained from various data sets and/or methods (not
necessarily based on MP). One wishes to use additional
informative characters to help resolve these vertices. The
use of the MP criterion for this purpose can be reasonable
when these additional characters concern rare genomic
changes where homoplasy (reverse or convergent evolu-
tion) is infrequent [16]. For example, this approach has been
employed for analyzing short interspersed nuclear element
(SINE) data, which describe the presence or absence of an
insertion of a particular DNA sequence into a specific
location of the genomes of the species under study [14].
Such markers have been used to refine the mammal tree,
providing, for example, evidence for the sister relationship
between whale and hippopotamus [13]. Note that the
number k of characters provided by SINE (and related)
data is typically quite small, which is relevant to the
running time of our algorithm as we describe below.

The OPR problem is NP-hard even when r ¼ 2 (taking T
to be the star tree, the OPR problem reduces to the MP
problem). However, in [3, Theorem 3], it was shown that the
OPR problem can be solved in O ðnkrkðdþ1Þþ1dfðdÞÞ time,
where fðdÞ :¼ ð2d� 3Þ!! :¼ ð2d� 3Þð2d� 5Þ . . . 3 (this is the
number of rooted binary phylogenetic trees with d leaves).
In particular, the OPR problem is fixed-parameter tractable
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[12], in that it can be solved in n � hðk; r; dÞ time, where h is a

function that grows exponentially in k, r, and d.

In this paper, we shall present an alternative algorithm to

solve the OPR problem that is fixed-parameter tractable with

respect to just k and r, that is, it can be used to solve the OPR

problem in polynomial time in nwhen k and r are fixed, even

for large d. More particularly, while [3, Theorem 3] requires

all of k, d, and r to be bounded to obtain an algorithm that

runs in polynomial time in n, our result requires that k and

either d or r be bounded for polynomial time in n. Thus, our

algorithm is suited to applications in which one wishes to

refine a partially resolved phylogenetic tree using a small

number of low-homoplasy characters (such as occurs with

SINE data). Provided the characters are binary (for example,

showing presence or absence of some features), or at least

near binary (i.e., if r is small), or if the tree is already

moderately resolved (so, d is small), the algorithm has a

desirable running time.
Summarizing, our main result is the following.

Theorem 1.1. Suppose that T is a phylogenetic X-tree on an

n-set X with maximum vertex degree d and that ð�1; . . . ; �kÞ
is a collection of r-state characters on X. Then, the OPR

problem can be solved in

O ndkrs
m

s

� �
fðsÞ

� �
time, where m ¼ rk and s ¼ minðd; rkÞ. In particular, the

OPR problem can be solved in O ðndgðk; rÞÞ time with g some

function of k and r.

The proof of Theorem 1.1 will be presented in

Section 6. Note that this theorem provides an improved

complexity bound to the bound O ðnkrkðdþ1Þþ1dfðdÞÞ given

by [3, Theorem 3]: if d < m ¼ rk, then the ratio of two

asymptotics is

nkrkðdþ1Þþ1dfðdÞ
nd2kr rk

d

� �
fðdÞ

¼ r
kðdþ1Þ

rk

d

� �
d
� rkðd� 1Þ!;

for the other case d > m ¼ rk, the ratio is

nkrkðdþ1Þþ1dfðdÞ
ndkrkþ1fðrkÞ ¼

rkdfðdÞ
fðkÞ � r

kd:

Compared to the exact algorithm in [3], the main
difference in our approach is to introduce a local version
of the OPR-score problem (see Section 3 for details), which
provides a smaller search space and which allows us to
solve the OPR problem by working up through the vertices
of a rooted phylogenetic tree from the leaves to the root, in
a similar manner to the well-known Fitch-Hartigan algo-
rithm [7], [10].

The remainder of this paper is organized as follows: In
Section 2, we present some preliminaries. Then, in Section 3,
we present the local version of the OPR-score problem. In
Sections 4 and 5, we present an optimization problem for
bipartite graphs, a generalized hitting set (GHS) problem,
and show that the local OPR-score problem can be solved as
a special instance of this problem. We then present an
algorithm for solving the OPR problem in Section 6 and
prove Theorem 1.1. We conclude in Section 7 with a
discussion of the OPR problem for some special families
of characters and also outline future directions.

2 PRELIMINARIES

We refer readers unfamiliar with this area to [15] for further
details concerning phylogenetic trees that we shall use
freely in this paper.

To ease notation, we will consider a collection ð�1; . . . ; �kÞ
of r-state characters to be a map � from X to the set � ¼ �k;r
consisting of the set of words of length k over the alphabet
f0; 1; . . . ; r� 1g (i.e., � is the sequence space of length k
sequences over the alphabet f0; 1; . . . ; r� 1g). We also refer
to such maps � as ðk; rÞ-characters. Note that in solving either
the MP or OPR problem the state space for each character
could be much larger than r since we can always restrict to
the states we see at the leaves, namely f0; 1; . . . ; r� 1g. We
also denote by dH the Hamming distance on �, that is, the
metric defined, for �, �0 2 �, by

dHð�; �0Þ :¼
��fi : 0 � i � k� 1 and the ith letter �i

and �0i are differentg
��:

An extension of a character � : X ! � to a phylogenetic
X-tree T is a function �� from the vertex set of T , denoted by
V ðT Þ, to �, such that ��ðvÞ ¼ �ðvÞ for any leaf v of T . Given
e ¼ fu; vg 2 EðT Þ, we set

�ðe; ��Þ :¼ dH ��ðuÞ; ��ðvÞð Þ
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Fig. 1. (a) A partially resolved phylogenetic X-tree, for X ¼ f1; 2; . . . ; 7g, and a single character on four states, where x� denotes that leaf x receives

state � for � 2 f�; �; �; �g. (b) An OPR of the tree in (a) for this single character.



and define the changing score of ��, denoted by chð��Þ, to be

chð��Þ :¼
X

e¼fu;vg2EðT Þ
dH ��ðuÞ; ��ðvÞð Þ ¼

X
e¼fu;vg2EðT Þ

�ðe; ��Þ:

Now, given a phylogenetic X-tree T and a character � on
X, its parsimony score is defined as

lð�; T Þ :¼ min chð��Þ : �� is an extension of � on Tf g:

An extension �� that achieves this score, i.e., an extension ��
with chð��Þ ¼ lð�; T Þ, is called a minimum extension of � to T .
Given a character � on X, the maximal parsimony score of � is
defined as

lð�Þ :¼ min lð�; T Þ : T is a phylogenetic X-treef g:

Note that lð�Þ is determined only by �ðXÞ, and hence,
we will also denote it by lð�ðXÞÞ without mentioning
X explicitly. Correspondingly, the phylogenetic X-tree T
that minimizes lð�; T Þ is called a maximal parsimony tree for
�. In this notation, the MP problem can be stated as follows:

Problem 1. MP.

Input: A ðk; rÞ-character � on a finite set X of size n.

Task: Calculate lð�Þ and find a maximal parsimony tree T

for �.

As mentioned in Section 1, this problem is NP-hard
(even for the ðk; 2Þ-characters) [5], [8].

We conclude this section with a statement of the OPR

problem using our new notation. If T and T 0 are
phylogenetic X-trees such that T 0 refines T , we shall write
T 0 � T . The OPR-score for a pair ð�; T Þ consisting of a
character and a phylogenetic tree T is then

rlT ð�Þ :¼ min
T 0�T

lð�; T 0Þ ¼ min
T 0�T

min
��

chð��; T 0Þ:

A tree T 0 achieving such score is called an OPR-tree
of ð�; T Þ.

Problem 2. OPR.

Input: A phylogeneticX-tree T and a ðk; rÞ-character � onX.

Tasks: Calculate rlT ð�Þ and construct an OPR-tree

for ð�; T Þ.
As indicated in Section 1, to distinguish between the two

tasks in the above problem, we shall call them the OPR-
score problem and OPR-tree problem, respectively. Note
that if T 0 is an OPR-tree of ð�; T Þ and �� is a minimum
extension of � to T 0, then rlT ð�Þ ¼ chð��; T 0Þ, and we call
ð��; T 0Þ an OPR-pair.

3 THE LOCAL OPR-SCORE PROBLEM

In this section, we shall introduce a local version of the
OPR-score problem, which is defined on rooted phyloge-
netic X-trees, and show that this problem is well defined.
Note that a rooted phylogenetic X-tree T is a phylogenetic
X-tree with a distinguished leaf, called the root, which we
usually denote by � ¼ �T . Note also that our concepts
concerning MP and OPR extend naturally to rooted trees,
and so, we will only point out key differences where
necessary. We refer the reader to [15] for more details
concerning such trees.

Now, given a rooted phylogenetic X-tree T and a vertex

v of T , we define Tv to be the subtree of T lying below v

together with an additional root vertex �v connected by an

additional edge to v, unless v ¼ � in which case we set

Tv ¼ T and �v ¼ �. Given a character � : X ! �, we

associate a valid pair to v,

SSv ¼ SSv;� :¼ costðvÞ;�vð Þ

consisting of a natural number costðvÞ together with a

collection of nonintersecting subsets �v of �. In particular,

given � 2 �, we define costðv; �Þ to be the OPR-score of

ð�; TvÞ with �v labeled by �, thus

costðvÞ :¼ min
�2�

costðv; �Þ;

and we set

�v :¼ �0
v; . . . ;�k�1

v

� �
;

where, for any nonnegative integer i,

�iv :¼ � 2 � : costðv; �Þ ¼ costðvÞ þ if g:

Note that if v is a leaf of T , then we have

costðv; �Þ ¼ dH �; �ðvÞð Þ ð1Þ

for all � 2 � (so that costðvÞ ¼ 0 and �0
v ¼ f�ðvÞg as well).

Note that given a rooted phylogenetic tree T and a character

� on X, the valid pair SSv for each vertex v 2 V ðT Þ is unique.
The local OPR-score problem is now stated as follows:

Problem 3. Local OPR-score.

Input: A rooted phylogenetic X-tree T , a ðk; rÞ-character �

on X, an internal vertex v 2 V ðT Þ, and the valid pair
SSv0 for each child v0 of v.

Task: Determine the valid pair SSv ¼ ðcostðvÞ;�vÞ for v.

In the remainder of this section, we shall show that this

problem is well defined, that is, a valid pair SSv for v can

always be determined from the input data.
To this end, given a subset A of X (i.e., a subset A of the

leaf set of T ), we let lcaT ðAÞ denote the most recent common

ancestor of A in T (that is, the vertex in T furthest below the

root that lies above every element of A). Note that if T 0 is a

(binary) refinement of T , then we can define a canonical

mapping 	 : V ðT Þ ! V ðT 0Þ, by setting 	ðvÞ to be the most

recent common ancestor in T 0 of the subset of elements in X

that lie below v in T . Clearly, the map 	 is injective. In

addition, it induces a mapping from the set of rooted

subtrees Tv of T ðv 2 V ðT ÞÞ to the set of rooted subtrees of

T 0, for which the image of Tv is T 0	ðvÞ (which we will also

denote by T 0v in case no confusion may arise). Now, we state

a lemma concerning valid pairs.

Lemma 3.1. Let T be a rooted phylogenetic X-tree and let

� : X ! � be a character, together with a valid pair SSv ¼
ðcostðvÞ;�vÞ for each v 2 V ðT Þ. Then, there exists an

OPR-pair ð��; T 0Þ such that

�� 	ðvÞð Þ 2
[

�02�v

�0

for all v 2 V .
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Proof. For any OPR-pair ð��; T 0Þ of ð�; T Þ, set v0 :¼ 	ðvÞ and

disð��; T 0Þ :¼ v 2 V ðT Þ : ��ðv0Þ 62
[

�02�v

�0

( )
:

Note that, by definition, disð��; T 0Þ does not contain the

root �T or any leaf of T . Furthermore, it does not contain

the unique child of �T in T .
Using this notation, the lemma is equivalent to the

following claim: There exists an OPR-pair ð��; T 0Þ of
ð�; T Þ such that disð��; T 0Þ ¼ ; holds. We shall prove this
claim using induction on hðT Þ, the height of T (i.e., the
length of a longest path from any leaf of T to �T ).

Clearly, this claim holds for the base case hðT Þ ¼ 1
(that is, when T is a tree with one edge). So, assume that
the claim holds for all phylogenetic X-trees T with
hðT Þ � q for some integer q � 1.

Suppose that T is a tree with height q þ 1 and that the
claim fails for a pair ð�; T Þ. Let ð��; T 0Þ be an OPR-pair
of ð�; T Þ that minimizes the cardinality of disð��; T 0Þ.
Furthermore, let v 2 disð��; T 0Þ be a vertex of T such that
hðTvÞ is minimal. Note that 1 < hðTvÞ < q þ 1 holds since
disð��; T 0Þ does not contain any leaf of T , �T , or the
child of �T .

Now, let T � be the tree obtained from T 0 by pruning
off T 0v, and let u0 be the direct ancestor of v0 in T 0. Then,

chð��; T 0Þ ¼ �ðfu0; v0g; ��Þ þ
X

e2EðT 0vÞ
�ðe; ��Þ þ

X
e2EðT �Þ

�ðe; ��Þ:

Moreover, by the induction assumption, there exists
an OPR-pair ðe�; eTvÞ of ð�; TvÞ such that disðe�; eTvÞ ¼ ;.
Since v 62

S
�02�v

�0, it follows that

chðe�; eTvÞ ¼ costðvÞ � �kþ
X

e2EðT 0vÞ
�ðe; ��Þ:

Now, consider the tree T 00 that is obtained from T 0 by
replacing T 0v with eTv. Let v00 be the image of v under the
canonical mapping 	 between V ðT Þ and V ðT 00Þ. Further-
more, let �00 be a map on T 00 defined by

�00ðvÞ ¼ e�ðvÞ; if v 2 eTv;
��ðvÞ; else:

�
Then, we have

chð�00; T 00Þ�chð��; T 0Þ ¼ dH e�ðv00Þ; ��ðu0Þð Þ þ chðe�; eTvÞ
�� fu0; v0g; ��ð Þ �

X
e2EðT 0vÞ

�ðe; ��Þ

� �kþdH e�ðv00Þ; ��ðu0Þð Þ�� fu0; v0g; ��ð Þ
� 0:

Conversely, chð��; T 0Þ � chð�00; T 00Þ holds since ð��; T 0Þ
is an OPR-pair. Hence, we obtain chð�00; T 00Þ ¼ chð��; T 0Þ
so that ð�00; T 00Þ is an OPR-pair of ð�; T Þ as well. But, this
implies jdisð�00; T 00Þj < jdisð��; T 0Þj, a contradiction to the
minimality of disð��; T 0Þ. This completes the proof of the
induction step and, hence, of the lemma. tu

For an internal vertex v of T with children fv1; . . . ; vp�1g,
we now describe how to obtain the valid pair SSv for v from

the set of valid pairs SSvi , 1 � i � p� 1. First, define the set
of ðp� 1Þ-tuples

Av :¼ ða1; a2; . . . ; ap�1Þ : ai 2
[

�02�vi

�0

8<:
9=;;

noting that Av depends only on the valid pairs SSvi ; 1 � i �
p� 1. Now, for a ¼ ða1; a2; . . . ; ap�1Þ 2 Av, set 
0ðaiÞ ¼ t for
the unique t in f0; . . . ; k� 1g such that ai 2 �tvi holds, and


ðaÞ :¼
Xp�1

i¼1


0ðaiÞ:

In addition, for � 2 �, let �a;� : f0; 1; . . . ; p� 1g ! � be the
character

�a;�ðiÞ :¼ �; if i ¼ 0;
ai; otherwise:

�
We now show, for � 2 �, how we can compute

costðv; �Þ using Av and costðviÞ, 1 � i � p� 1. Since the
valid pair SSv can be directly deduced from the set of
scores fcostðv; �Þ : � 2 �g, it immediately follows that the
local OPR-score problem is well defined (Fig. 2).

Proposition 3.2. Suppose that T is a rooted phylogenetic X-tree
and � : X ! � is a character. For an internal vertex v 2 V ðT Þ,
let fv1; v2; . . . ; vp�1g denote the set of children of v. Then

costðv; �Þ ¼ min lð�a;�Þ þ 
ðaÞ : a 2 Av

� �
þ
Xp�1

i¼1

costðviÞ: ð2Þ

Proof. Given � 2 �, note that

costðv; �Þ� lð�a;�Þþ
Xp�1

i¼1

costðvi; aiÞ¼ lð�a;�Þþ
ðaÞþ
Xp�1

i¼1

costðviÞ

holds for any a ¼ ða1; a2; . . . ; ap�1Þ 2 Av by definition;
therefore, to prove that (2) holds, it suffices to show that

costðv; �Þ � lð�a;�Þ þ 
ðaÞ þ
Xp�1

i¼1

costðviÞ

holds for some a 2 Av.
Let ð��; T 0vÞ be an OPR-pair for ð�; TvÞwith root labeled

by � such that chð��; T 0vÞ ¼ costðv; �Þ and

��ðu0Þ 2
[

�02�u

�0

holds for each vertex u in Tv, which exists by Lemma 3.1.
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Fig. 2. Assuming � ¼ f00; 01; 02; 10; 11; 12; 20; 21; 22g (i.e., k ¼ 3 and
r ¼ 2) and considering an internal vertex u 2 V ðT Þ with valid sets
associated to its children fu1; u2; u3g as given in the table, then we
have Au ¼ fða1; a2; a3Þ : a1 2 f00; 01; 10g, a2 2 f02; 11; 20; 12; 22g, a3 ¼
f20; 11; 22; 21gg. For the element a ¼ ð00; 20; 21Þ in Au, we have 
ðaÞ ¼

0ða1Þ þ 
0ða2Þ þ 
0ða3Þ ¼ 0þ 1þ 1 ¼ 2.



Now, for each 1 � i � p� 1, set ai ¼ ��ð	ðviÞÞ. Then,

a ¼ ða1; . . . ; ap�1Þ 2 Av

and

costðviÞ þ 
0ðaiÞ ¼ costðvi; aiÞ � ch ��jV T 0við Þ; T
0
vi

� �
;

where the root of T 0vi is labeled by ai. Moreover, for the

tree T � obtained by pruning the trees T 0vi from T 0v (i.e.,

deleting all edges and vertices below vi) for all

i 2 f1; 2; . . . ; p� 1g, the inequality

lð�a;�Þ � ch ��jV ðT �Þ; T �
� �

clearly holds. Therefore, we have

costðv; �Þ ¼ ch ��; T 0v
� 	

¼ ch ��jV ðT �Þ; T �
� �

þ
Xp�1

i¼1

ch ��jV ðT 0vi Þ; T
0
vi

� �
� lð�a;�Þ þ

Xp�1

i¼1

costðviÞ þ 
0ðaiÞð Þ

¼ lð�a;�Þ þ 
ðaÞ þ
Xp�1

i¼1

costðviÞ;

as required. tu

4 A GENERALIZED HITTING SET PROBLEM

We now concentrate on finding an efficient algorithm to

solve the local OPR-score problem. To do this, in this

section, we introduce an optimization problem for bipartite

graphs, called the GHS problem, and describe a simple way

to solve it together with complexity bounds. In the next

section, we show how the local OPR-score problem can be

reduced to the GHS problem.
To this end, suppose that G ¼ ðU tW;EÞ is a bipartite

graph with W :¼ �, � : U ! IN as a function and that

fU0; U1; . . . ; Up�1g is a partition of U for a positive integer p.

For F any subset of E and U 0 any subset of U (W 0 any subset

of W ), we denote by U 0F (respectively, W 0
F ) the set of vertices

in U 0 (respectively, W 0) that are contained in some edge of

F . In addition, for 0 � i � p� 1, we set uiF :¼ minf�ðuÞ :

u 2 Ui
Fg if Ui

F 6¼ ; and uiF :¼ 1 else.
Now, for any subset W 0 of W , we define

!ðF Þ :¼ lðWF Þ þ
Xp�1

j¼0

ujF

and

!�ðGÞ :¼ min !ðF Þ : F � Ef g;

and we say that F is a minimal hitting set if jF j ¼ p and

!ðF Þ ¼ !�ðGÞ.

Problem 4. GHS.

Input: A bipartite graph G ¼ ðU tW;EÞ with a map

� : U ! IN, and a partition fU0; . . . ; Up�1g of U .

Task: Calculate !�ðGÞ.

Note that in case � ¼ �1;r and �ðuÞ ¼ 0 for all u 2 U , the
GHS problem is equivalent to the well-known Hitting Set
problem (see [9] and [12] and the references therein).

Now, for Y �W , define EY to be the subset of E
consisting of those edges in E that are incident to some
vertex in Y . Then, the GHS problem can be solved by
simply computing !ðEY Þ for each subset Y �W with
jY j � p, and then setting

!�ðGÞ ¼ min !ðEY Þ : Y �W and jY j � pf g:

Indeed, for F � E, we have F � EWF
, i.e., !ðF Þ � !ðEWF

Þ.
And, on the other hand, for each subset Y �W , if
!ðEY Þ<1, we can construct a subset F of EY , with jF j¼p
and !ðF Þ � !ðEY Þ.

In view of these considerations, we obtain the following
lemma.

Lemma 4.1. For any instance of the GHS problem with jW j ¼ rk
and U consisting of p blocks, where the cardinality of each
block in U is bounded by t, the GHS problem can be solved in

Xminðp;rkÞ

i¼1

rk

i


 �
krið2i� 5Þ!!þ ptið Þ

time.

Proof. Let Y �W , and set y :¼ jY j. First, note that to
compute !ðEY Þ we need to calculate lðY Þ, i.e., we need to
solve the MP problem for the canonical character on Y
that associates each element in Y with itself. This can be
done in Oðkryð2y� 5Þ!!Þ time, by making an exhaustive
search through all ð2y� 5Þ!! unrooted binary trees with
leaf set Y [15] and applying the Fitch-Hartigan algorithm
[7], [10] to each tree, which takes OðkryÞ time.

Now, to complete the proof, note that there at most
ty edges in E that are incident with Uj and Y for each
0 � j � p� 1. Therefore, we can calculate ujEY in ty time.
In particular, !ðY Þ can be computed in kryð2y� 5Þ!!þ
pty time. tu

5 A SOLUTION TO THE LOCAL OPR-SCORE

PROBLEM

In this section, we show that the local OPR-score problem
can be solved as a special instance of the GHS problem.
Using Lemma 4.1, this will also give us a bound on the
complexity for solving the local OPR-score problem.

Suppose that T is a rooted phylogenetic X-tree, v is an
internal vertex in V ðT Þ with children v1; . . . ; vp�1, and that
we are given the valid pairs SSvi for 1 � i � p� 1. Given
� 2 �, we now use this data to define a bipartite graph
Gv;� ¼ ðU tW;EÞ (see Fig. 3 for an example), together with
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Fig. 3. The bipartite graph constructed for the data given in Fig. 2 with

� ¼ 01. Here, Ui ¼ f�0
ui
;�1

ui
g for i ¼ 1, 2, 3.



function � : U ! IN and a partition fU0; . . . ; Up�1g of U as
follows:

. U0 :¼ ff�gg, Ui :¼ f�0
vi
; . . . ;�k�1

vi
g, 1 � i � p� 1 and

U :¼ tp�1
i¼0U

i (so that, in particular, U consists of
subsets of �);

. W :¼ �;

. E consists of those fu;wg, u 2 U and w 2W , with
w 2 u;

. � : U ! IN is given by setting �ðuÞ ¼ 0 if u 2 U0 and
�ðuÞ ¼ t if u ¼ �tvi for some 1 � i � p� 1.

As a consequence of the following result, it immediately
follows by the discussion just preceding Proposition 3.2 that
the local OPR-score problem can be solved as an instance of
the GHS problem.

Proposition 5.1. In the terminology just defined above, we have

costðv; �Þ ¼ !�ðGv;�Þ þ
Xp�1

i¼1

costðviÞ:

Proof. First, we show that there is a bijection  between
elements of Av and the following family of subsets of F :

F :¼ F � E : jF j ¼ p and uiF 6¼ ; for all 0 � i � p� 1
� �

:

Let u ¼ f�g be the unique vertex in U0. Define  :
Av ! F by setting, for a ¼ ða1; . . . ; ap�1Þ,

 ðaÞ :¼ fu; �gf g t
�

�tvi ; ai

n o
: 1 � i � p� 1

and ai 2 �tvi with 0 � t � k� 1
�
:

Note that, by definition,  ðAvÞ � F . To see that  is
indeed a bijection, it is straight-forward to check that it
has the inverse  �1, which is defined, for any F 2 F , by
setting

 �1ðF Þ :¼ b1; . . . ; bp�1

� 	
;

where bi is the unique edge in F that is incident to some
vertex contained in Ui, 1 � i � p� 1.

Moreover, note that

lð�a;�Þ þ 
ðaÞ ¼ !  ðaÞð Þ

and

l � �1ðF Þ;�
� 	

þ 
  �1ðF Þ
� 	

¼ !ðF Þ:

Therefore, since  is a bijection, the proposition now
follows by Proposition 3.2 and the definition of !�ðGv;�Þ.tu
Since the graph Gv;� can be constructed in OðpkrkÞ time

(as it is specified by its edge set whose cardinality is
bounded above by prk and the cardinality of Ui is bounded
above by k for all 0 � i � p� 1), and since in solving the
GHS problem for Gv;� we can obtain a resolved tree with
leaves f�igpi¼1 in the proof of Lemma 4.1, where fUi

F ; �
ig ð1 �

i � pÞ belongs to a minimal hitting set F , the following result
immediately follows by Lemma 4.1.

Lemma 5.2. By reducing to an instance of the GHS problem as
described above, for a vertex with p� 1 children, the local
OPR-score problem can be solved in

pkrk þ
Xminðp;rkÞ

i¼1

rk

i


 �
krið2i� 5Þ!!þ pkið Þ

time. Moreover, we can find an optimal tree T �v;� solving the
corresponding local OPR-tree problem that is resolved, has
root � and leaves �i 2 �0

vi
t � � � t �k�1

vi
for 1 � i � p� 1, and

constructing such tree does not require additional time.

6 AN ALGORITHM FOR SOLVING THE OPR
PROBLEM

We now present our algorithm for solving the OPR

problem (Algorithm I depicted in Fig. 4). This algorithm
can be regarded as a generalization of the well-known
Fitch-Hartigan algorithm [7], [10] in that it works by
arbitrarily introducing a root vertex to the (unresolved)
phylogenetic tree of interest and then works up through the
vertices of the resulting tree from the leaves to the root. At
each stage, it uses the data previously computed for the
children of a given vertex to solve the local OPR-score and
local OPR-tree problems. Once it reaches the root, this gives
the required solutions for the OPR problem.

The correctness of Algorithm I follows from the fact that
if T� is a rooted version of T , then lð�; T Þ ¼ lð�; T�Þ and
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Fig. 4. An algorithm for solving the OPR problem.



rlT ð�Þ ¼ rlT�ð�Þ, and the fact that for the tree T �v;� con-
structed in Step 2d, we have

ch T �v;�; �
� �

¼ costðTv; �Þ �
Xp�1

i¼1

cost Tvi ; �
i

� 	
;

from which it follows that chðT 0v;�; �Þ ¼ costðv; �Þ.
The proof of Theorem 1.1. Recall that m ¼ rk and s :¼

minðd;mÞ. Also, for an integer i�3, set hðiÞ :¼krið2i�5Þ!!.
Now, Steps 1 and 3 in Algorithm I can be computed in

constant time, and Step 2a can be performed in nkm
time. Therefore, since Step 2c is performed for each
interior vertex of T , and T 0v;� can be constructed from T �v;�
and T 0vi;�i ð1 � i � p� 1) in Step 2d in p� 1 time, it
follows by Lemma 5.2 that Algorithm I takes

n dkmþ kmþ dmþ
Xminðd;mÞ

i¼1

m

i

� �
hðiÞ þ dkið Þ

 !
time.

Now, since

hðiÞ þ dki ¼ krið2i� 5Þ!!þ dki � 2dkrð2i� 3Þ!!;

using the fact that m
i

� 	
ð2i� 3Þ!! is a monotone increasing

function of i 2 f1; . . . ;m� 1g,m � 3, and so is maximized
for i 2 f1; . . . ; sg by m

s

� 	
ð2s� 3Þ!!, we conclude that

n dkmþ kmþ dmþ
Xminðd;mÞ

i¼1

m

i

� �
hðiÞ þ dkið Þ

 !

� n 3dkmþ 2dkr
Xminðd;mÞ

i¼1

m

i

� �
ð2i� 3Þ!!

 !

� 5ndkr
Xminðd;mÞ

i¼1

m

i

� �
ð2i� 3Þ!!

� 5ndkrs
m

s

� �
ð2s� 3Þ!!

from which Theorem 1.1 immediately follows. tu

7 DISCUSSION

In this paper, we have presented an algorithm for solving
the OPR problem for a ðk; rÞ-character on an n-set.
However, for some special values of k and r, it is possible
to obtain a more efficient and/or explicit algorithm. For
example, in [11], an approach is proposed for solving the
OPR problem for (1,2)-characters, and in [1] and [4], the MP
problem for ð2; rÞ-characters is investigated.

We also note that for ð1; rÞ-characters the local OPR-score
problem can be reduced to an instance of the Hitting Set
problem in polynomial time (since lð�Þ ¼ j�ðXÞj � 1, and
for F � E, we clearly have !ðF Þ ¼ jWF j � 1; see Section 4).
In particular, it follows that the OPR-score problem for
ð1; rÞ-characters can be solved in Oðndr2tÞ time, where
t ¼ minfd; rg. In addition, for (2,2)-characters, the local
OPR-score problem can be solved in a more direct manner
without reducing to the GHS problem. For example, it can
be shown that the local OPR-score problem for a vertex v
with p� 1 children can be solved in OðpÞ time, from which

it follows that the OPR-score problem can be solved in
OðndÞ time.

In this paper, we have mainly focused on the exact
algorithms solving the OPR problem, but the approaches
designed here might also be helpful to study PTAS
algorithms, or fixed parameter algorithms for other variants
of the MP problem (cf. [2]).

There are several additional interesting directions for
possible future work. One is to consider trees with small
degree, say d ¼ 4 (since the case that d ¼ 3 is trivial). Either
a positive result (an efficient algorithm) or a negative result
(a complexity conclusion) would provide further insight
into the OPR problem. Another direction is to see whether
the approach taken in this paper could lead to better
randomized or approximation algorithms. Finally, it would
also be interesting to consider the optimal refining problem
with respect to other optimization criteria, such as max-
imum likelihood.
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