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a b s t r a c t

The reconstruction of a species tree fromgenomic data faces a double hurdle. First, the (gene) tree describ-
ing the evolution of each gene may differ from the species tree, for instance, due to incomplete lineage
sorting. Second, the aligned genetic sequences at the leaves of each gene tree provide merely an imper-
fect estimate of the topology of the gene tree. In this note, we demonstrate formally that a basic statistical
problem arises if one tries to avoid accounting for these two processes and analyses the genetic data di-
rectly via a concatenation approach. More precisely, we show that, under the multispecies coalescent
with a standard site substitution model, maximum likelihood estimation on sequence data that has been
concatenated across genes and performed under the incorrect assumption that all sites have evolved in-
dependently and identically on a fixed tree is a statistically inconsistent estimator of the species tree. Our
results provide a formal justification of simulation results described of Kubatko and Degnan (2007) and
others, and complements recent theoretical results by DeGIorgio and Degnan (2010) and Chifman and
Kubtako (2014).

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Modern molecular sequencing technology has provided a
wealth of data to help biologists infer evolutionary relationships
between species. Not only is it possible to quickly sequence a sin-
gle gene across a wide range of species, but hundreds, or even
thousands of genes can also be sequenced across those taxa. But
with this abundance of data comes new statistical and mathemat-
ical challenges. These arise because tree inference requires dealing
with the interplay of at least two random processes, as we now ex-
plain.

For each gene, the associated aligned sequence data provides
an estimate of the evolutionary gene tree that describes the ances-
try of this gene as one traces back its ancestry in time (each copy
being inherited fromone parent in the previous generation).More-
over, given sufficiently long sequences, severalmethods (e.g.maxi-
mum likelihood and corrected distancemethods) have been shown
to be statically consistent estimators of the gene tree topology
under various site substitution models (Felsenstein, 2004). ‘Sta-
tistical consistency’ here refers to the usual notion in molecular
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phylogenetics, namely that as the sequence length grows, the
probability that the correct gene tree topology is returned from the
data converges to 1 as the number of sites grows. Here the site pat-
terns are assumed to be generated independently and identically
(i.i.d.) under the substitution model on a binary (fully-resolved)
gene tree.

But inferring a gene tree is only part of the puzzle of reconstruct-
ing the main evolutionary object of interest in biology—namely a
species tree. This latter tree describes, on a broad (macroevolution-
ary) scale, how lineages (consisting of populations of a species)
successively separated and diverged from each other over evo-
lutionary time scales, with some lineages forming new species,
ultimately leading to the given taxa observed at the present (a pre-
cise definition of a species-level phylogenetic tree is problematic
as it requires first agreeing on a definition of ‘species’, for which
there are multitude of differing opinions) (Maddison, 1997; May-
den, 1997; Nichols, 2001). A species tree, together with the length
(time-scale) and width (population size) of its branches, induces a
probability distribution on the possible gene trees and, when the
discordance between gene trees is attributed to incomplete lineage
sorting, this probability distribution can be described by the so-
called multispecies coalescent process (details are provided in the
recent book by Knowles and Kubatko, 2010). This process extends
the celebratedKingman coalescent process froma single population
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to a phylogenetic tree, where the latter can be viewed as a ‘tree of
populations’.

The relationship between gene trees and species trees has at-
tracted a good deal of attention from mathematicians and statis-
ticians over the last decade or so (Degnan and Rosenberg, 2009;
Huang et al., 2010; Liu et al., 2009a,b; Roch, 2013b; Rosenberg,
2002). An early and easily verified result is that for three taxa, the
most probable gene tree topology under the multispecies coales-
cent matches the species tree (the other two competing binary
topologies have equal but lower probability) (Tajima, 1983). Con-
sequently, estimating the species tree by the gene tree that ap-
pears most frequently is a statistically consistent method (under
the multispecies coalescent) when we have just three taxa. More-
over, when there are more than three taxa, one can still estimate a
species tree consistently, for example, by estimating all the rooted
triples, and using these to reconstruct the species tree topology
(Degnan et al., 2009).

However, the alternative simple ‘majority rule’ strategy of
estimating the species tree by merely taking the most frequent
gene tree falls apart when we have more than three species. With
four taxa, the most probable gene tree topology can differ from
certain (unbalanced) species tree topologies, while for five ormore
taxa amore striking result applies—every species tree topology has
branch lengths for which the most probable gene tree topology
differs from that of the species tree (for details, see Degnan and
Rosenberg, 2009). Nevertheless, one can still infer a species tree
in a statistically consistent manner from a series of gene trees
generated i.i.d. by the multispecies coalescent process, and several
techniques have been developed for this (see e.g. Dasarathy et al.,
2014, DeGiorgio and Degnan, 2010, Degnan et al., 2009, Liu et al.,
2009b, Liu et al., 2010a, Liu et al., 2010b, Mossel and Roch, 2010
and Roch, 2013a).

There are also additional mechanisms that can lead to conflict
between gene trees and species trees, including reticulate evolu-
tion (e.g. the formation of hybrid species), lateral gene transfer (in
prokaryotic taxa such as bacteria) and gene duplication and loss,
but we do not consider these processes here.

We have so far discussed these two random processes – the
evolution of sequence site patterns on a gene tree under a site-
substitution model, and the random generation of gene trees from
the species tree under the multispecies coalescent process – as
separate process. But in reality these two processes work in con-
cert, a gene tree will have a random topology (determined by the
multispecies coalescent on the species tree) and on this random
gene tree sequences will evolve according to a substitution pro-
cess. Thus, it is not immediately obvious whether methods ex-
ist for inferring a species tree topology directly from a series of
aligned sequences (one for each gene) which would be statisti-
cally consistent as the number of genes grows. Using techniques
from algebraic statistics, Chifman and Kubatko (2014) recently es-
tablished that the species tree topology (up to the placement of
the root) is an identifiable discrete parameter under the combined
substitution–coalescence process. Moreover they describe an ex-
plicit method for estimating the species tree based on phyloge-
netic invariants and singular value decomposition techniques. For
Bayesian inference of species trees directly from sequence data
(e.g. via the program *BEAST, Heled and Drummond, 2010) the
statistical consistency has also been formally established (Steel,
2013).

In this paperwe consider a simpler and alternative strategy that
has been used widely for inferring the species tree directly from
sequence data, namely concatenation of sequences (e.g. Mered-
ith et al., 2011 and Rokas et al., 2003). In its simplest form, this
strategy simply concatenates all the sequences, and treats them as
though each site had evolved i.i.d. on a fixed tree. Kubatko andDeg-
nan (2007) used simulations to study the performance of such a
concatenation approach, and their finding suggested that it could
lead to misleading phylogenetic estimates. Nevertheless, the ac-
curacy of concatenation methods is still very much under debate
(e.g. Gatesy and Springer, 2013, Song et al., 2012 and Wu et al.,
2013). While many simulation studies have concluded that con-
catenation methods are significantly less accurate than ILS-based
methods or are prone to producing erroneous estimates with high
confidence (Heled and Drummond, 2010; Kubatko and Degnan,
2007; Kubatko et al., 2009; Larget et al., 2010; Leaché and Ran-
nala, 2011), others have found that they can be more accurate
under some conditions (such as low phylogenetic signal) (Bayzid
andWarnow, 2013; Gadagkar et al., 2005; Mirarab et al., in press).
Moreover, a formal proof of whether or not a standard statistical
method, such as maximum likelihood (ML), is statistically consis-
tent as an estimator of tree topology based on concatenated se-
quences has never been presented, with the exception of the work
of DeGiorgio and Degnan (2010) who established the consistency
of ML in the special case of three taxa under a molecular clock un-
der the 2-state symmetric model of site substitution.

This is the motivation for our current paper. We consider what
happens when ML is applied under the assumption that the sites
evolve i.i.d. on a fixed tree (in keeping with the concatenation
approach). Our main result (Theorem 1) shows that ML is statis-
tically inconsistent as an estimator of tree topology, for certain
fully-resolved trees on six leaves. Indeed the probability that the
true species tree is an ML tree can be made as small as we wish in
the limit as the number of genes grows (even with six taxa). What
makes this result non-trivial is that studying the behaviour of mis-
specified likelihoods can be challenging. Our proof of inconsistency
involves combining a number of arguments and results, includ-
ing a classic result in populations genetics (the ‘Ewens’ Sampling
formula’), a formal linkage between likelihood and parsimony,
and the interplay of various concentration and approximations
bounds.

2. Definitions and main result

Consider:

• a species tree topology T togetherwith branch lengths L (which,
for each edge e of T , combine temporal branch lengths (te) and
an effective population size for that edge Ne—note the subscript
e here refers to the edge e not ‘effective’).

• g aligned sequence data sets A1, A2, . . . , Ag , where each data set
Ai consists of sequences of the same length ℓ evolved i.i.d. under
a symmetric r-state site substitution model at substitution rate
θ on the randomgene tree (with associated branch lengths) that
is generated by (T , L) via the multispecies coalescent model.
That is, on each branch of T , looking backwards in time, lineages
entering the branch coalesce at constant rate according to the
Kingman coalescent with fixed population size. The remaining
lineages at the top of the branch enter the ancestral population.
For each locus, conditioned on the generated gene tree, each site
in the aligned sequence data set is generated according to the
symmetric r-state model.
The sequence length ℓ may in turn depend on the number of
data sets g , and so we write ℓ = ℓ(g).

• maximum likelihood tree(s) TML for the concatenated aligned
sequence data sets A1A2 · · · Ag inferred under the assumption
that all sites evolve i.i.d. on a tree according to the symmetric
r-state site substitution model (for branch lengths that are
optimized, as usual, as part of the ML estimation).

Let P(T , L, r, g, ℓ, θ) be the probability that T has the same
unrooted topology as (at least one) ML tree TML. Our main result
can be stated as follows.
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Theorem 1. Under the model described above, there exist tree
topologies T with branch lengths L for T , and a site substitution rate θ
sufficiently small, for which the following holds: For any δ > 0, there
is a value g0 so that

P(T , L, r, g, ℓ, θ) ≤ δ

for all g ≥ g0, and for all sequence length functions ℓ = ℓ(g).

3. Heuristic argument and a key preliminary result

The formal proof of Theorem 1 is presented in the next section.
Here we describe the idea of the proof, and establish a preliminary
result that is central to the proof. Notice that the although our proof
involves the most frequent gene tree topology differing from the
species tree topology, that in itself, does not imply that maximum
likelihood on the concatenation of data sets will pick the wrong
tree. However, what we show is that the wrong topology does
indeed lead to a higher expected likelihood.

An outline of the proof of the main theorem is as follows: We
show that the expected proportion of sites that are constant can
be made arbitrary large with low rates of evolution (the lower
bounds are formalized in Claim 4) and that the empirical frequen-
cies of site patterns is concentrated around the expected values
(Claim 2). When there are a large enough number of invariable
sites, it can be shown that likelihood scores and parsimony scores
converge to the same answer (formalized in Claim 1). Thus trees
that have better parsimony score have better likelihood under
these scenarios. Therefore, it suffices to show that parsimony is not
statistically consistent under arbitrary low rates of evolution. Fur-
thermore, it can be argued that if all the branches of the species
tree are small enough, chances of coalescence events and muta-
tions both becomes exceedingly small for all branches except the
ancestral population; therefore, the expected parsimony score of
the concatenated aligned sequence data sets is close to the parsi-
mony score of the coalescent tree in the ancestral population (for-
malized in Claim 5).

Moreover, it can be shown that the difference between the ex-
pected parsimony score for a coalescent tree under the r-state
models of evolution and the infinite alleles model (i.e. which im-
plies no back mutations) can be bounded (formalized in Claim 6).
Claims 3, 5 and 6 (given the right bounds) imply that the expected
parsimony score of the concatenated aligned sequence data sets is
arbitrarily close to the expected parsimony score of a coalescent
tree under infinite alleles model. A key insight (Proposition 1) is
that assuming an infinite alleles model, the balanced coalescent
tree on six taxa has a lower expected parsimony score than an un-
balanced tree with six taxa. Therefore, if the true tree is the unbal-
anced tree, the balanced tree has better parsimony score according
to infinite alleles model, and by extension (under the conditions
imposed by bounds), according to r-state model. Therefore, parsi-
mony would pick the balanced tree under these scenarios.

We state and prove this preliminary proposition in this section,
as it plays a key role in the final step (Claim 7) of the proof of the
theorem.

Given allele frequencies (a1, a2, . . . , an) where
n

j=1 jaj = n,
the celebrated ‘Ewens’ Sampling Formula’ describes the probability
of generating such an allele distribution in a coalescent tree, with
scaled mutation rate θ = 4Nµ under an infinite alleles model:

Pθ,n(a1, a2, . . . , an) =
n!
θ(n)

n
j=1

(θ/j)aj

aj!
,

where θ(n) = θ(θ + 1) · · · (θ + n − 1). (for details, see Durrett,
2008, p.18). We will apply this in the current setting, where n = 6
and θ = ϵ a small positive constant (to be determined later).
Fig. 1. The two binary tree shapes on six leaves: (a) the shape Y ; (b) the shape Z .
There are 15 and 90 phylogenetic trees on a given leaf set that have the shapes Y
and Z , respectively.

Let x = (0, 1, 0, 1, 0, 0) and y = (0, 0, 2, 0, 0, 0). Then

Pϵ,6(x) =
6!
ϵ(6)

(ϵ/2)1

1!
(ϵ/4)1

1!
=

3
4
ϵ + O(ϵ2). (1)

Similarly,

Pϵ,6(y) =
6!
ϵ(6)

(ϵ/3)2

2!
=

1
3
ϵ + O(ϵ2). (2)

Note that in both the equations, O(ϵ2) refers to any values –
negative or positive – which in absolute value is less than a
constant times ϵ2.

Consider the two unrooted binary tree shapes on six leaves,
shown in Fig. 1, and denote these as Y (the symmetric tree with
three cherries) and Z (the caterpillar treewith two cherries), where
a cherry refers to a pair of leaves that are adjacent to a shared
vertex.

We apply the above calculations to establish the following
result, where an unrooted binary phylogenetic tree is a leaf-labelled
tree, in which each non-leaf vertex has degree 3, and where a site
pattern refers to the partition of the leaf set.

Proposition 1. Let T and T ′ be two unrooted binary phylogenetic
trees of shapes Z and Y respectively. Consider a site pattern that is
randomly generated on a coalescent tree on the same leaf set under
the infinite alleles model with scaled mutation rate θ(= 4Nµ) = ϵ.
For a binary tree topology W, let PW (χ) denote the parsimony score
of a site pattern χ on W. Then

EESF[PZ (χ) − PY (χ)] =
1
60

ϵ + O(ϵ2)

where EESF denotes the expectation under the infinite-alleles model.

Proof. We first note that we need only consider binary site pat-
terns (which correspond to x and y) to establish Proposition 1.
This is because, apart from x and y, the only allele distributions
z = (a1, a2, . . . , an) for which Pϵ,n(z) is not O(ϵ2) are z =

(1, 0, 0, 0, 1, 0) and z = (0, 0, 0, 0, 0, 1), and each of these distri-
butions corresponds to a character that has equal parsimony scores
on the two tree topologies Y and Z . Thus it suffices to consider just
the two binary patterns.

We refer to a binary pattern on the leaf set {1, 2, 3, 4, 5, 6} as a
k-clade if there are k leaves in one state, and 6−k in another (k ≤ 3).
Given such a binary pattern, the additional penalty of this clade is
its homoplasy score (i.e. the parsimony score minus 1, unless the
clade is a 0-clade in which case the penalty is 0).
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For a phylogenetic tree having shape Y there are:

•


3
2


· 2 · 2 = 12 in total 2-clades that cost an additional penalty

of +1;
•


3
1


·


2
1


= 6 in total 3-clades that cost an additional penalty

of +1;
•

1
22 · 2 · 2 = 4 in total 3-clades that cost an additional penalty of
+2.

Thus the expected value of the additional parsimonypenalty∆Y
for a tree phylogenetic tree having shape Y is:

1 · Pϵ,6(x) ·
12
6
2

 + 1 · Pϵ,6(y) ·
6

1
2


6
3

 + 2 · Pϵ,6(y) ·
4

1
2


6
3

 .

Substituting Eqs. (1) and (2) into this last expression gives:

EESF[∆Y ] =
16
15

ϵ + O(ϵ2). (3)

A similar analysis for a Z-shape tree shows that there are:

• 13 in total 2-clades that cost an additional penalty of +1;
• 5 in total 3-clades that cost an additional penalty of +1;
• 4 in total 3-clades that cost an additional penalty of +2.

Thus the expected value of the additional parsimony penalty∆Z
for a phylogenetic tree having shape Z is:

1 · Pϵ,6(x) ·
13
6
2

 + 1 · Pϵ,6(y) ·
5

1
2


6
3

 + 2 · Pϵ,6(y) ·
4

1
2


6
3

 .

Substituting Eqs. (1) and (2) into this last expression gives:

EESF[∆Z ] =
13
12

ϵ + O(ϵ2). (4)

Combining Eqs. (3) and (4) gives:

EESF[∆Z − ∆Y ] =
1
60

ϵ + O(ϵ2). (5)

Proposition 1 now follows from (5). �

4. Proof of Theorem 1

To establish Theorem 1 it suffices to do so for any number n
of taxa, and we do so for n = 6. For the species tree T , take any
rooted tree that has the unrooted topology of the Z-shaped tree
(caterpillar). Make the branch length L of all the non-root edges of
this tree less than β (see Fig. 2). We use the following notation:

• Denote by G1, . . . ,Gg the gene trees generated by the multi-
species coalescent on T .

• LetET denote the expectation operationunderT (i.e. for the ex-
pectation of quantities dependent on the gene tree, which are
sampled from T under the multispecies coalescent model) and
let G be a gene tree generated under T .

• Let C = [r]n be the set of r-state characters on the set of n taxa.
• Let χ

f
k ∈ C be the k-th character of the f -th aligned sequence

data set, where 1 ≤ k ≤ ℓ and 1 ≤ f ≤ g , and let X = {χ
f
k }k,f .

• For a character χ ∈ C, let N f
χ be the number of times character

χ appears in the f -th aligned sequence data set and let Nχ be
the number of times it appears overall.

• For an n-leaf treewithmutation probabilities {qe}, let pUχ denote
the probability that χ is produced by U under the symmetric
r-state site substitution model.

• Let pU0 denote the probability that the characters produced by U
under the symmetric r-state site substitution model assigns all
leaves the same state.
Fig. 2. Anomalous gene trees on a 6-taxon species tree with (unrooted) shape
Z . The event of deepest coalescence is depicted. For the associated unrooted
phylogenetic tree, any balanced tree (shape Y ) has higher probability than any
unbalanced tree (shape Z).

Observe that the (mis-specified, i.e., not taking into account the
coalescent) empiricalminus log-likelihood under treeU is given by

LU(X) = −
1
gℓ


k,f

log

rpU

χ
f
k


= −

1
gℓ


χ∈C

Nχ log

rpUχ

.

We want to show that with high probability LU(X) is not mini-
mized on the species tree topology. We follow the proof sketched
in Section 3.

For a binary tree topology W and a character χ ∈ C we let
PW (χ) denote the parsimony score of χ onW . Let

PW (X) =
1
gℓ


k,f

PW (χk,f ) =
1
gℓ


χ∈C

NχPW (χ).

Let E(W ) and V (W ) be the edges and vertices of W . We assume
that W is binary and has n leaves, hence |E(W )| = 2n − 3 and
|V (W )| = 2n−2. Let L∗

W (X) be theminus log-likelihood under an
optimal choice of branch lengths (in [0, +∞]) forW . LetN0 denote
the number of constant characters and N≠0 = gℓ − N0.

Claim 1 (Parsimony-Based Approximation of the Likelihood). If

N0 > 1,
gℓPW (X)

N0
≤ 1 (6)

then, for all q0 ∈ (0, 1),

L
∗

W (X) ≤ −PW (X) log


q0
r − 1


− 2n log (1 − q0) (7)

and

L
∗

W (X) ≥ −PW (X) log

gℓPW (X)

(r − 1)N0


−

N≠0

gℓ
n log r. (8)

Proof. First we recall some further notation: given a binary tree
topology W and a character χ ∈ C a minimal extension of χ is an
assignment of states to the interior vertices of T thatminimizes the
number of edges ofW with different states at the ends of the edge
(thus PW (χ) is the number of such edges).

We adapt several bounds derived in Tuffley and Steel (1997,
Lemmas 5 and 6). Letting U have topology W with all transition
probabilities equal to q0, by considering a minimal extension of χ
(see Tuffley and Steel, 1997, Eq. (52)) we have

rpUχ ≥


q0

r − 1

PW (χ)

(1 − q0)2n−3−PW (χ)

≥


q0

r − 1

PW (χ)

(1 − q0)2n ,
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and therefore

L
∗

W (X) ≤ −
1
gℓ


χ≠0

Nχ log


q0

r − 1

PW (χ)

(1 − q0)2n


+N0 log

(1 − q0)2n


= −PW (X) log


q0

r − 1


− 2n log(1 − q0),

where we used that N0 +


χ≠0 Nχ = gℓ. This proves (7).
For the other direction, let U be the tree with topology W

and optimal mutation probabilities (q∗
e )e. Let q̄ = maxe qe. Then,

summing over all minimal extensions of χ (see Tuffley and Steel,
1997, Eq. (63)),

rpUχ ≤ rn−2


q̄
r − 1

PW (χ)

≤ rn


q̄
r − 1

PW (χ)

,

and by considering two leaves whose connecting path goes
through an edge with probability q̄ (see Tuffley and Steel, 1997,
Eq. (9))

pU0 ≤ 1 − q̄.

Hence

LU(χ) ≥ −
1
gℓ


χ≠0

Nχ log


rn


q̄
r − 1

PW (χ)


+ N0 log(1 − q̄)



≥ −
N≠0

gℓ
n log r − PW (X) log


q̄

r − 1


+

N0

gℓ
q̄,

where we used − log(1 − q̄) ≥ q̄. Minimizing LU(χ) over q̄ (see
Tuffley and Steel, 1997, Eqs. (65) and (66)), a lower bound is ob-
tained by fixing q̄ to gℓPW (X)/N0. �

In order for the approximation in Claim 1 to be useful, we need
thatN0 is asymptotically larger thanmax{nN≠0, r} and that PW (X)
is not too small. We proceed to prove that these two properties
hold when the mutation rate is low enough.

We begin by showing that the empirical frequencies of
characters are close to their expectation when g → +∞.

Claim 2 (Concentration of Empirical Frequencies). For every ζ1 > 0,
with probability exceeding 1 − 2rn exp(−2gζ 2

1 ), for all χ ∈ C, 1gℓNχ − ET [pGχ ]

 < ζ1. (9)

Proof. For all χ ∈ C,

1
gℓ

Nχ =
1
gℓ


k,f

1
{χ

f
k=χ}

=
1
g


f

1
ℓ
N f

χ

=
1
g


f


1
ℓ


k

1
{χ

f
k=χ}


. (10)

Noting that the ℓ−1N f
χ s are in [0, 1] and independent, Hoeffding’s

inequality implies for all ζ1 > 0

PT

 1gℓNχ −
1
gℓ

ET [Nχ ]

 ≥ ζ1


≤ 2 exp


−2gζ 2

1


.

Moreover by Eq. (10)

1
gℓ

ET [Nχ ] =
1
gℓ


k,f

ET [1
{χ

f
k=χ}

] = PT [χ
f
k = χ ] = ET [pGχ ].

The result follows from the fact that |C| = rn. �
An immediate corollary is the concentration of the parsimony
score.

Claim 3 (Concentration of Parsimony Score). Under Eq. (9),

|PW (X) − ET [PW (χ)]| ≤ nrnζ1.

Proof. By definition,

|PW (X) − ET [PW (χ)]|

=

 1gℓ 
χ

PW (χ)Nχ −


χ

PW (χ)ET [pGχ ]


≤


χ

PW (χ)

 1gℓNχ − ET [pGχ ]


≤ rnnζ1. �

The next two claims relate the multispecies coalescent to the
standard coalescent. Wewill refer to the population of T ancestral
to all taxa as themaster population. We letD be the gene tree event
that no coalescence occurs before the master population, which
we refer to as deepest coalescence (c.f Fig. 2). We let TD be the
coalescent model on the master population (i.e., the standard n-
coalescent). We further let D ′ be the site event such that D occurs
and further no mutation occurs below the master population. Let
M be the number of mutations on a site.

Claim 4 (Lower Bound on the Number of Constant Characters). There
is ζ2 (depending only on n and β) such that, for any θ > 0,

ET [pG0 ] ≥ 1 − ζ2θ.

Proof. Note that when no mutations occur in the tree then all
leaves have the same state, and so:

ET [pG0 ] ≥ PT [M = 0]. (11)

The number of mutations on a site is stochastically dominated
by the samequantity conditioned onD . Indeed deepest coalescence
ensures the highest total length of the gene tree. Hence

PT [M = 0] ≥ PT [M = 0 | D] = ET [exp (−θHG) | D]
≥ ET [1 − θHG | D] , (12)

where HG is the total length of gene tree G. Note that, on D ,

HG ≤ n · nβ + H ′

G,

where H ′

G is the total length of the gene tree inside the master
population. Letting h(1)

n be the expected length of the standard
coalescent on n samples, we have, from (11) and (12):

ET [pG0 ] ≥ 1 − θ(n2β + h(1)
n ).

Therefore we can take ζ2 = n2β + h(1)
n . �

Claim 5 (Reduction to Standard Coalescent). For any θ and ζ3 > 0,
there is β small enough (depending only on ζ3, n, and θ ), such thatET [PW (χ)] − ETD [PW (χ)]

 ≤ ζ3.

Proof. Note that

ET


PW (χ) | D ′


= ETD [PW (χ)] .

Further

ET [PW (χ)] = ET


PW (χ) | D ′


PT [D ′

]

+ ET


PW (χ) | (D ′)c


PT [(D ′)c]

≤ ETD [PW (χ)] + n
ζ3

n
,
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by choosing β small enough to make the probability

PT [D ′
] ≥ (e−( n

2 )β)n exp(−θ(n · nβ)) ≥ 1 −
ζ3

n
.

Above we used that PW (χ) ≤ n. Similarly,

ET [PW (χ)] = ET


PW (χ) | D ′


PT [D ′

]

+ ET


PW (χ) | (D ′)c


PT [(D ′)c]

≥ ETD [PW (χ)]

1 −

ζ3

n


≥ ETD [PW (χ)] − n

ζ3

n
. �

Recall that EESF is the expectation under the infinite-alleles
model on TD .

Claim 6 (Infinite-Alleles Approximation). There is ζ4 depending only
on n such that, for any θ > 0,ETD [PW (χ)] − EESF[PW (χ)]

 ≤ ζ4θ
2.

Proof. Note that

ETD [PW (χ) | M ≤ 1] = EESF[PW (χ) | M ≤ 1],

as a single mutation has the same effect on the characters of
r-state symmetric and infinite-alleles models. Moreover, because
bothmodels are runwith the same parameters, they have the same
distribution of number of mutations. In particular,

PTD [M ≤ 1] = PESF[M ≤ 1].

Now, the number of mutations (M) follows a Poisson distribution
with a mean that is proportional to the total tree length and so:

PESF[M > 1] = EESF


i≥2

e−θHG
(θHG)

i

i!



≤ EESF


(θHG)

2

i≥0

e−θHG
(θHG)

i

i!


= θ2h(2)

n ,

where h(2)
n = EESF[H2

G]. Hence, since

ETD [PW (χ)] = ETD [PW (χ) | M ≤ 1]PTD [M ≤ 1]
+ ETD [PW (χ) | M > 1]PTD [M > 1],

we have on the one hand

ETD [PW (χ)] ≤ EESF[PW (χ) | M ≤ 1]PESF[M ≤ 1]
+ (EESF[PW (χ) | M > 1] + n)PESF[M > 1]

≤ EESF[PW (χ)] + nθ2h(2)
n .

And, on the other hand, we have

ETD [PW (χ)] ≥ EESF[PW (χ) | M ≤ 1]PESF[M ≤ 1]
+ (EESF[PW (χ) | M > 1] − n)PESF[M > 1]

≥ EESF[PW (χ)] − nθ2h(2)
n . �

Claim 7 (Final Argument). Let θ = ϵ. There are ϵ andβ small enough
(depending on n and r) such that L∗

Z (X) > L∗

Y (X), with probability
exceeding 1 − 2rn exp(−2gϵ4).
Proof. Choosing β small enough, ζ1 = ζ3 = ϵ2. Claims 2 and 4
imply that, with probability exceeding 1 − 2rn exp(−2gζ 2

1 ),

N0 ≥ gℓ[1 − ζ2ϵ − ϵ2
] = gℓ(1 − O(ϵ)), N≠0 = O(gℓϵ). (13)

By Claims 3, 5 and 6,

|PW (X) − EESF[PW (χ)]| = O(ϵ2). (14)

Together with Proposition 1, this implies that

PZ (X) − PY (X) =
1
60

ϵ + O(ϵ2). (15)

We finally return to the likelihood. Note that (6) in Claim 1 is
satisfied by (13) and

PY (X) ≤ nN≠0/gℓ = O(nε). (16)

Hence, taking

q0 = gℓPY (X)/N0 = O(nε), (17)

in Claim 1 yields

L
∗

Z (X) − L
∗

Y (X) ≥ −[PZ (X) − PY (X)] log


gℓPY (X)

(r − 1)N0


+ 2n log


1 −

gℓPY (X)

N0


−

N≠0

gℓ
n log r

≥


1
60

ϵ + O(ϵ2)


log[Ω((nϵ)−1)]

− 2n · O(nϵ) − n log r · O(ϵ)

> 0,

by (16) and (17), when ϵ is small enough (depending on n
and r). �

Theorem 1 now follows immediately from Claim 7 by noting
that the lower bound 1 − 2rn exp(−2gϵ4) converges to 1 as g
grows; consequently, the probability that Y has a higher likelihood
than Z (i.e. a lower minus log-likelihood) converges to 1 as the
number of aligned sequence data sets g increases.

5. Concluding comments

Our statistical inconsistency result applies for the particular
case of a tree with six leaves. While this suffices to establish
inconsistency in general, we conjecture that for any number n > 6
of leaves there is some species tree for which our inconsistency
claim holds. However a detailed proof of this assertion is beyond
the scope of this short note.
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