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Neutral macroevolutionary models, such as the Yule model, give rise to a probability distribution on the
set of discrete rooted binary trees over a given leaf set. Such models can provide a signal as to the approx-
imate location of the root when only the unrooted phylogenetic tree is known, and this signal becomes
relatively more significant as the number of leaves grows. In this short note, we show that among models
that treat all taxa equally, and are sampling consistent (i.e. the distribution on trees is not affected by taxa
yet to be included), all such models, except one (the so-called PDA model), convey some information as to
the location of the ancestral root in an unrooted tree.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Random neutral models of speciation (and extinction) have
been a central tool for studying macroevolution, since the pioneer-
ing work of G.U. Yule in the 1920s (Yule, 1925). Such models typ-
ically provide a probability distribution on rooted binary trees for
which the leaf set comprises some given subset of present-day
taxa. The ‘shape’ of these trees has been investigated in various
phylogenetic studies (see, for example, Blum and Francois, 2006)
as it reflects properties of the underlying processes of speciation
and extinction. Ignoring the branch lengths and considering just
the topology of the trees provides not only a more tractable anal-
ysis, it also allows for a fortuitous robustness: several different pro-
cesses (e.g. time- or density-dependent speciation and extinction
rates) lead to the same probability distribution on discrete topolo-
gies, even though the processes are quite different when branch
lengths are considered (Aldous, 1995).

In this short paper, we are concerned with the extent to which
phylogenetic models for tree topology convey information as to
where the tree is rooted. This is motivated in part by the fact that
such models are used as priors in phylogenetic analysis (Jones,
2011; Velasco, 2008) and that sequence data analysed assuming
the usual time-reversible Markov processes typically returns an
unrooted tree (i.e. the location of the root is unknown). Many tech-
niques attempt to estimate the root of the tree using the data and
additional assumptions (e.g. a molecular clock or the inclusion of
ll rights reserved.
an additional taxon that is known to be an ‘outgroup’), or using
properties of the tree that depend on branch length (e.g. ‘midpoint
rooting’, where the tree is rooted in the middle of the longest path
between any two leaves) (Boykin et al., 2010).

Here, we are interested in a much more basic question: what (if
any) information the prior distribution on the topology alone itself
might carry as to the location of the root of the tree. While it has
been known that some models convey root-location information,
we show here a stronger result – all models that satisfy two natural
requirements (exchangeability and sampling consistency) have
preferred root locations for a tree, except for one very special mod-
el. We begin by recalling some phylogenetic terminology.
2. Neutral phylogenetic models and their properties

Let RðnÞ denote the finite set of rooted binary phylogenetic trees
on the leaf set ½n� ¼ f1;2; . . . ;ng for n P 2; this set has size
ð2n� 3Þ!! ¼ 1� 3� 5� � � � � ð2n� 3Þ (see, for example, Semple
and Steel, 2003).

Given a tree T 2 RðnÞ, let T�q denote the unrooted binary phylo-
genetic tree obtained by suppressing the root vertex q. This many-
to-one association T # T�q is indicated in Fig. 1, where we have
used � to indicate the edge of T�q on which the root vertex q would
be inserted in order to recover T. Notice that placing q at the mid-
point of any edge of the tree on the right in Fig. 1 leads to a differ-
ent rooted tree.

Thus, since an unrooted binary tree with n leaves has 2n� 3
edges, if BðnÞ denotes the set of unrooted binary phylogenetic trees
on leaf set ½n� then jRðnÞj ¼ ð2n� 3ÞjBðnÞj.
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mailto:mike.steel@canterbury.ac.nz
http://dx.doi.org/10.1016/j.ympev.2012.06.022
http://www.sciencedirect.com/science/journal/10557903
http://www.elsevier.com/locate/ympev


Fig. 1. One of the 105 trees in Rð5Þ and the associated unrooted tree T�q in Bð5Þ obtained from T by identifying the two edges incident with q by a single edge (indicated by �).
Each of the seven edges of T�q corresponds to a different rooted tree.
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Given a subset Y of ½n�, and a (rooted or unrooted) binary phylo-
genetic tree T with leaf set ½n�, let TjY denote the induced binary
tree (root or unrooted, respectively) that connects the leaves in Y
(for further details, see Semple and Steel, 2003).

Now suppose we have some random process for generating a
rooted binary tree on leaf set ½n�. We will denote the resulting ran-
domly-generated tree as Tn. Thus, Tn is an element of RðnÞ while
T�q

n is an element of BðnÞ. To distinguish more clearly between
rooted and unrooted trees, we will often write TU to make it clear
that we are referring to an unrooted tree.

A well-studied probability distribution on RðnÞ is the Yule–Har-
ding model (Harding, 1971; Yule, 1925), which can be described
recursively as follows. Start with a tree with two (unlabelled)
leaves, and repeatedly apply the following construction: For the
tree constructed thus far, select a leaf uniformly at random and at-
tach a new leaf to the edge incident with this leaf (by a new edge)
and continue until the tree has n leaves. This produces a random
rooted binary tree with n unlabelled leaves (sometimes referred
to as a ‘tree shape’). We then generate an element of RðnÞ by
assigning the elements of ½n� randomly to the leaves of this tree.

This probability distribution arises under quite general condi-
tions, provided an exchangeability assumption is made. We de-
scribe this briefly here (for more detail, see Aldous, 1995).
Consider any Markovian model of speciation and extinction in
which the rates of these two events can either be constant or vary
arbitrarily with time (and even depend on the past or on the num-
ber of lineages present). Then provided that each event (speciation
or extinction) is equally likely to affect any one of the extant lin-
eages at any given time, the resulting probability distribution on
RðnÞ is that described by the Yule–Harding model (moreover, this
model also provides an equivalent distribution on tree topologies
to that given by the Kingman coalescent model from population
genetics, when, once again, branch lengths are ignored (Aldous,
1995; Zhu et al., 2011)).

A feature of the Yule–Harding model is that given just the asso-
ciated unrooted tree T�q, one can readily calculate the maximum
likelihood (ML) estimate of the edge(s) of T�q on which the root
node q was located (such ML edges are always incident with one
of the (at most two) centroid vertices1 of T�q); moreover, the prob-
ability that an ML-edge contains the root node tends to a non-zero
constant (4 logð4=3Þ � 1 � 0:15) as n!1 (Steel and McKenzie,
2001). Indeed, if we consider the edges within three edges of this
ML edge, the probability that at least one of them contains the root
node is close to 0.9 (Steel and McKenzie, 2001). Thus, on a very large
unrooted tree, TU , we can isolate the likely location of the root to a
relatively small proportion of edges (edges that are incident with,
or near to the centroid vertex of TU). Similar results concerning the
1 A vertex v of an unrooted tree TU is a centroid vertex if each of the subtrees of TU

obtained by deleting vertex v from TU contain at most half the vertices of TU (Kang
and Ault, 1975).
initial (root) vertex for a quite different model of tree growth were
derived in 1970 (Haigh, 1970).

On the other hand, a model which provides no hint as to which
edge in the associated unrooted tree might have contained the root
is the PDA model (for ‘proportional to distinguishable arrange-
ments’), which is simply the uniform probability distribution on
RðnÞ. This model is not directly described by a model of macroevo-
lution involving speciation and/or extinction, in the same way that
the Yule–Harding distribution is, although it is possible to derive
the PDA distribution under somewhat contrived evolutionary
assumptions. These include (i) conditioning on events such as a
short window of opportunity for speciation and the survival of
the tree to produce n leaves (Steel and McKenzie, 2001); (ii) the
tree on n species sampled randomly from the leaves of a large tree
generated by a conditioned critical branching process (Aldous,
1995); and (iii) a general conditional independence assumptions
regarding parent and daughter branches in a tree (Pinelis, 2003).

Notice that both the PDA and Yule–Harding models comprise a
family of probability distributions (i.e. they provide a probability
distribution on RðnÞ for each n P 2). Thus we will refer to any such
sequence ðpn : n P 2Þ of probability distributions on ðRðnÞ : n P 2)
as a phylogenetic model M for ðRðnÞ : n P 2Þ, and we will also write
PðTn ¼ TÞ for the probability pnðTÞ when T 2 RðnÞ.

We now list three properties that any family of probability dis-
tributions on ðRðnÞ : n P 2Þ can posses. The first two (the
exchangeability property (EP) and sampling consistency (SC)) are
satisfied by several models (including the PDA and Yule–Harding
model), while the third, root invariance (RI), does not hold for
the Yule–Harding model, as we saw above, however it does hold
for the PDA model.

EP [Exchangeability property] For each n P 2, if T and T 0 are trees
in RðnÞ and T 0 is obtained from T by permuting its leaf labels,
then pnðT

0Þ ¼ pnðTÞ.
SC [Sampling consistency] For each n P 2, and each tree T in RðnÞ

we have:
PðTnþ1j½n� ¼ TÞ ¼ pnðTÞ:
RI [Root invariance] For each n P 2, if T and T 0 are trees in RðnÞ
and they are equivalent up to the placement of their roots
(i.e. T�q ¼ T 0�q) then pnðT

0Þ ¼ pnðTÞ.

The exchangeability property (EP), from Aldous (1995), requires
the probability of a particular phylogenetic tree to depend just on
its shape and not on how its leaves are labelled (this property is
called ‘label-invariance’ in Steel and Penny (1993)).

The sampling consistency (SC) property, also from Aldous
(1995), states that the probability distribution on trees for a given
set of taxa does not change if we add another taxon (namely, nþ 1)
and consider the induced marginal distribution on the original set
of taxa. The condition seems reasonable if we wish the model to be
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‘stable’ in that sense that, in the absence of any data associated
with the taxa, pn should depend just on the taxa present, and not
on taxa yet to be discovered (or not included in the set of taxa un-
der study).2 An equivalent statement of the (SC) condition is that the
phylogenetic model describing the distribution of trees on all the
taxa also correctly describes the distribution of trees when we re-
strict these trees to any sample of taxa specified in advance (i.e. se-
lected without reference to the tree on all the taxa).

The root-invariance (RI) property states that the model does not
prefer any particular rooting of a tree (i.e. any re-rooting of the tree
would have equal probability).

Note that the three properties EP, SC and RI pertain to distribu-
tions on trees in which the taxa have yet to have any biological
data associated with them (i.e. they are ‘prior’ to considering any
particular data). If the taxa come with data that is used to construct
a probability distribution on trees, then clearly EP will often not
hold, and SC could also fail, since data provided by an additional
taxon can influence the relative support for trees on an existing
set of taxa. RI may or may not fail, depending on the assumptions
of the model (e.g. whether or not it is time-reversible, or whether
or not a molecular clock is imposed). We now consider pairwise
combinations of these three properties.

[EP + SC] Several families of probability distributions on ðRðnÞ :

n P 2Þ satisfy both EP and SC, including the ‘b-splitting
model’, a one-parameter family that was described by
Aldous (1995) and which includes, as special cases, the
Yule–Harding model (when b ¼ 0) and the PDA model
(when b ¼ �3=2). Other phylogenetic models satisfying
SC have also been studied recently in Jones (2011). Mod-
els satisfying EP and SC have been studied (and charac-
terised) recently by Haas et al. (2008) and McCullagh et
al. (2008).

[EP + RI] If we consider the combination of EP and RI several pos-
sible distributions on RðnÞ satisfy these two properties,
since one may simply define any probability distribution
on unrooted binary tree shapes, and extend this to
labelled and rooted trees by imposing RI and EP.

[SC + RI] Finally, consider the combination of SC and RI. The PDA
distribution satisfies these two properties, and, as noted
already, it also satisfies EP.

The point of this short note is to show that, unlike the other two
combinations of properties, apart from the PDA model, there is no
other phylogenetic model that satisfies this last combination of SC
and RI. This ‘impossibility’ result is of similar spirit to (but is quite
unrelated to) the result of Velasco (2007) concerning phylogenetic
models that are uniform on clades of all given sizes.

3. Results

We now state the main result of this short note, the proof of
which is given in Appendix A.

Theorem 1. A phylogenetic model M ¼ ðpn : n P 2Þ for ðRðnÞ : n P
2Þ satisfies the two properties SC and RI if and only if M is the PDA
model.
2 Note that in SC, the probability PðTnþ1 j½n� ¼ TÞ is simply the sum of pnðT 0Þ over all
T 0 2 Rðnþ 1Þ for which T 0 j½n� ¼ T , so SC is a linear constraint that applies between the
pn and pnþ1 values.
The relevance of this theorem is that the PDA model does not
describe the shape of most published phylogenetic trees derived
from biological data very well, as the latter trees are typically more
balanced than the PDA model predicts (Aldous, 1995; Aldous et al.,
2011; Blum and Francois, 2006). Moreover, as noted already, the
PDA model does not have a compelling biological motivation. Thus,
the significance of Theorem 1 is that any ‘biologically realistic’
sampling consistent distribution on discrete rooted phylogenetic
trees necessarily favours some root locations over others in the
associated unrooted tree topology. And this holds without knowl-
edge of the branch lengths or, indeed, of any data.

As a corollary of Theorem 1, the only value of b for which the b-
splitting model satisfies sampling consistency and root invariance
is b ¼ �3=2, which corresponds to the PDA model. For other values
of b, it may be of interest to determine how accurately one can esti-
mate the exact (or approximate) location of the edge of an unroot-
ed tree that contained the root node, when the rooted tree evolved
under the b-splitting model.

Notice that Theorem 1 does not require EP to hold at any point,
however it falls out as a second consequence of the theorem that
any phylogenetic model that satisfies SC and RI must also satisfy
EP (since this holds for the PDA model). The conditions EP and SC
also apply to phylogenetic models for unrooted trees – simply re-
place RðnÞ with BðnÞ in their definition – and the reader may won-
der whether Theorem 1 is merely a consequence of a result that
states that any phylogenetic model on unrooted trees that satisfies
SC is uniform. Such a result, if true, would indeed imply Theorem 1,
but such a result does not hold, even if we append condition EP to
SC; a simple counterexample is the probability distribution on
unrooted trees induced by the Yule–Harding model.

Finally, notice that Theorem 1 is not merely a consequence of RI
alone, as it does not hold if condition SC is dropped, or replaced by
EP. This is because, as noted already, there exists phylogenetic
models that satisfy EP + RI, and that are different from the PDA
model.
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Appendix A. Proof of Theorem 14

Since the PDA model clearly satisfies RI and SC, it remains to
establish the ‘only if’ claim. To this end, we first establish the fol-
lowing: for any phylogenetic model M ¼ ðpn : n P 2Þ for
ðRðnÞ : n P 2Þ that satisfies SC, and any TU 2 BðnÞ, the following
identity holds:

PðT�q
nþ1j½n� ¼ TUÞ ¼ PðT�q

n ¼ TUÞ: ð1Þ

To establish (1), first observe that for any tree Tnþ1 in Rðnþ 1Þ,
one has T�q

nþ1j½n� ¼ ðTnþ1j½n�Þ�q. Thus,

PðT�q
nþ1j½n� ¼ TUÞ ¼ PððTnþ1j½n�Þ�q ¼ TUÞ

¼
X

T2RðnÞ:T�q¼TU
PðTnþ1j½n� ¼ TÞ;

and, by SC, we can express this as:
X

T2RðnÞ:T�q¼TU

PðTn ¼ TÞ ¼ PðT�q
n ¼ TUÞ;

which establishes the claimed identity (1).
Returning to the proof of Theorem 1, observe that, by RI, we can

describe the probability distribution pn as being equivalent to the
one in which we first generate an unrooted phylogenetic tree
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TU 2 BðnÞ with some associated probability qðTUÞ and then select
one of the edges of TU uniformly at random to subdivide as the root
vertex. We will refer to this second (uniform) process as the root-
edge selection process. Thus, for any TU 2 BðnÞ, we have:

qðTUÞ ¼ PðT�q
n ¼ TUÞ; ð2Þ

and, for any T 2 RðnÞ, we have, from RI that:

PðTn ¼ TÞ ¼ 1
ð2n� 3Þ qðT

�qÞ: ð3Þ

Let bðnÞ ¼ jBðnÞj (i.e. bðnÞ ¼ ð2n� 5Þ!! ¼ jRðn� 1Þj). We will
show by induction on n that q is uniform on BðnÞ for all n P 2
(i.e. qðTUÞ ¼ 1

bðnÞ for all TU 2 BðnÞ and all n P 2). This induction
hypothesis holds for n ¼ 2, so supposing that it holds for n P 2,
we will use this to show that q is uniform on Bðnþ 1Þ. First observe
that, for TU 2 BðnÞ, we can apply identity (1), since SC holds, to
deduce that:

PðT�q
nþ1j½n� ¼ TUÞ ¼ qðTUÞ ¼

1
bðnÞ ; ð4Þ

where the second equality holds by the induction hypothesis.
Now, for each edge e of TU consider the tree Te

U 2 Bðnþ 1Þ ob-
tained from TU by attaching leaf nþ 1 to the midpoint of edge e
with a new edge. Let pðeÞ ¼ PðAejBTU Þ where Ae;BTU denote the
nested events defined by:

Ae :¼ ‘T�q
nþ1 ¼ Te

U ’ and BTU :¼ ‘ðT�q
nþ1Þj½n� ¼ TU ’:

Notice that Eqn. (4) says that BTU has uniform probability on
BðnÞ, and we will now show that p (the conditional probability of
Ae given BTU ) also has uniform probability across the edge of TU;
this will allow us to establish the induction hypothesis.

To this end, recall that on Te
U each edge has a uniform root-edge

selection probability by RI. This implies (by SC) that the root-edge
selection process on TU will select e with the following probability:

pðeÞ 3
2n� 1

þ ð1� pðeÞÞ 1
2n� 1

: ð5Þ

In this expression, the term 2n� 1 in the denominator is simply
the number of edges of Te

U , the numerator term 3 corresponds to
the three edges of Te

U consisting of the edge incident with nþ 1
and the two edges incident with that edge. Since the root-edge
selection process on the edges of TU is also uniform, and this tree
has 2n� 3 edges, it follows from the expression in (5) that:

pðeÞ 3
2n� 1

þ ð1� pðeÞÞ 1
2n� 1

¼ 1
2n� 3

:

Thus, pðeÞ ¼ 1
ð2n�3Þ, and so p is the uniform distribution on the

edges of TU , as claimed.
Finally, observe that the uniformity of p now entails that q is
uniform on Bðnþ 1Þ since for any tree T 0U 2 Bðnþ 1Þ, we can select
TU 2 BðnÞ and an edge e of TU for which T 0U ¼ Te

U and then:

qðT 0UÞ ¼ qðTe
UÞ ¼ PðT�q

nþ1 ¼ Te
UÞ ¼ PðAeÞ

¼ PðAe&BTU Þ ¼ PðAejBTU ÞPðBTU Þ;

and thus:

qðT 0UÞ ¼
1

2n� 3
� 1
bðnÞ ¼

1
bðnþ 1Þ :

Thus, we have established the induction step required to show
that q is uniform on BðnÞ for all n P 2. It now follows from Eq. (3)
that pn is uniform on RðnÞ, for all n P 2, which completes the proof
of Theorem 1. h
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