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Self-sustaining autocatalytic networks play a central role in living systems,

from metabolism at the origin of life, simple RNA networks and the

modern cell, to ecology and cognition. A collectively autocatalytic network

that can be sustained from an ambient food set is also referred to more

formally as a ‘reflexively autocatalytic food-generated’ (RAF) set. In this

paper, we first investigate a simplified setting for studying RAFs, which is

nevertheless relevant to real biochemistry and which allows an exact math-

ematical analysis based on graph-theoretic concepts. This, in turn, allows for

the development of efficient (polynomial-time) algorithms for questions that

are computationally intractable (NP-hard) in the general RAF setting. We

then show how this simplified setting for RAF systems leads naturally to a

more general notion of RAFs that are ‘generative’ (they can be built up from

simpler RAFs) and for which efficient algorithms carry over to this more gen-

eral setting. Finally, we show how classical RAF theory can be extended to

deal with ensembles of catalysts as well as the assignment of rates to reactions

according to which catalysts (or combinations of catalysts) are available.
1. Introduction
A central property of the chemistry of living systems is that they combine two

basic features: (i) the ability to survive on an ambient food source and (ii) each

biochemical reaction in the system requires only reactants and (most often) a cat-

alyst that are provided by other reactions in the system (or are present in the

food set). The notion of a self-sustaining ‘collectively autocatalytic set’ tries to

capture these basic features formally, and was pioneered by Stuart Kauffman

[1,2] who investigated a simple binary polymer model to address questions

that relate to the origin of life. The notion of a collectively autocatalytic set

was subsequently formalized more precisely as ‘reflexively autocatalytic and

food-generated’ (RAF) sets (defined shortly) and explored by others [3–5].

RAFs are related to other notions such as Rosen’s (M;R) systems [6], autop-

oietic systems [7], and ‘organizations’ in chemical organization theory [8,9]. The

application of RAFs has expanded beyond toy polymer models to analyse both

real living systems (e.g. the metabolic network of Escherichia [10]) and simple

autocatalytic networks that have been constructed in laboratory studies,

either with RNA molecules [11] or with peptides [12]. They are also believed

to have played an important role in the origin of life [13–15].

The generality of RAF theory also means that a ‘reaction’ need not refer

specifically to a chemical reaction, but to any process in which ‘items’ are com-

bined and transformed into new ‘items’, and where similar ‘items’ facilitate (or

‘catalyse’) the process without being used up in the process. This has led to

application of RAF theory to processes beyond biochemistry, including biodiver-

sity [16,17], cognitive psychology [18] and (more speculatively) economics [19].

In this paper, we show how RAF theory can be developed further to:

— provide an exact and tractable characterization of RAFs and subRAFs when

reactants involve just food molecules;
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— extend this last concept to general catalytic reaction net-

works by defining a new type of RAF (generative)

which couples realism with tractability; and

— include reaction rates into RAF theory and show that an

optimal RAF can be calculated in polynomial time.

We begin with some definitions.
ing.org/journal/rsif
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16:20180808
1.1. Catalytic reaction systems
A catalytic reaction system (CRS) consists of a set X of

‘molecule types’, a set R of ‘reactions’, an assignment C
describing which molecule types catalyse which reactions,

and a subset F of X consisting of a ‘food set’ of basic building

block molecule types freely available from the environment.

Here, a ‘reaction’ refers to a process that takes one or more

molecule types (the ‘reactants’) as input and produces one

or more molecule types as output (‘products’). C can be

viewed as a subset of X �R.

A CRS can be represented mathematically in two essen-

tially equivalent ways. The first is a directed bipartite graph

where the two types of vertices are: (i) molecule types

(some of which lie in the food set F) and (ii) reactions; this

graph also has two types of arcs: (i) from molecule types

into and out of reaction vertices, as reactants and products,

respectively, and (ii) from molecule types that act as catalysts

to reactions, representing the layer of catalysis. Figure 1

provides a simple example of a CRS represented in this way.

The second way to represent an RAF is to list the reactions

explicitly, writing each in the form

r : A����!c1, c2, ...
B,

where A denotes the set of reactants of reaction r, B the set of

products of r, and c1, c2, . . . are the possible catalysts for r. For

example, for r2 in the CRS of figure 1 we write

r1 : 10þ 0���!01100
110

to denote that r1 is catalysed by 01100.
1.1.1. Self-sustaining autocatalytic networks (RAFs, maxRAF)
Given a CRS Q ¼ (X, R, C, F), a subset R0 of R is a said to be

an RAF for Q if R0 is non-empty and satisfies the following

two conditions.

— Reflexively autocatalytic (RA): each reaction r [ R0 is cata-

lysed by at least one molecule type that is either present

in the food set or is generated by another reaction in R0.
— Food-generated (F): The reactions in R0 can be ordered so

that each reactant of each reaction in R0 is either a product

of an earlier reaction in the sequence or is present in the

food set.

In other words, an RAF is a subset of reactions that is both

self-sustaining (from the food set) and collectively autocataly-

tic. In forming an RAF from the food set, some (or all)

reactions may initially need to proceed uncatalysed (and

thereby at a lower rate) but once formed every reaction in

the RAF will be catalysed. A simple example of an RAF is

the pair of reactions fr1,r2g shown in the CRS of figure 1.

Note that in this example either r1 or r2 must first proceed

uncatalysed, but once one reaction has occurred, the system

continues with both reactions catalysed.
An alternative and equivalent way to define an RAF is as

follows. Let clR0 (F) denote the set of molecule types that are

generated by applying the following procedure until no

further molecule types can be added: start with the food set

and sequentially add to it any molecule type (from X) that

is the product of a reaction r from R0 provided that r has

all its reactants present in the set of molecule types so far con-

structed (catalysts are ignored in this step). In this way, the (F)

condition can be restated more simply as the condition that

each reactant of each reaction in R0 is present in clR0 (F). More-

over, assuming the (F) condition holds, the (RA) condition

becomes equivalent to the stronger condition that each reac-

tion r [ R0 is catalysed by at least one molecule type that is

present in clR0 (F). Thus, R0 is an RAF if and only if each of

its reactions has all its reactants and at least one catalyst

present in clR0 (F).

Two fundamental combinatorial results concerning RAFs

(from [20]) which will be applied in this paper are the

following:

— If Q has an RAF then it has a unique maximal RAF which

contains all other RAFs for Q (referred to as the maxRAF
of Q, denoted maxRAF(Q)).

— Determining whether or not Q has an RAF, and if so con-

structing maxRAF(Q) can be solved by an algorithm that

is polynomial time in the size of Q.

By contrast to the second point, finding a smallest RAF in

a CRS Q has been shown to be NP-hard [21].
1.1.2. Further autocatalytic concepts (subRAFs, irrRAFs, closure,
closed RAFs, CAFs)

We now introduce some further notions related to different

types of RAFs. The maxRAF of a CRS Q may contain one

or more subsets of reactions that are themselves RAFs for

Q, in which case we call any such subset a subRAF of the

maxRAF. An RAF R0 is said to be an irreducible RAF

(irrRAF) if it contains no proper subset of R0 that is an

RAF. In other words, removing any single reaction from an

irrRAF R0 gives a set of reactions that does not contain an

RAF for Q. Constructing an irrRAF for Q (or determining

than none exists when Q has no RAFs) can also be carried

out in polynomial time [20]; however the number of irrRAFs

can grow exponentially with the size of the CRS [22]. To illus-

trate this notion, the RAF fr1, r2g and fr3g are the only irrRAF

for the CRS in figure 1.

Given any subset R0 of reactions from R, we now define

the closure of R0 in Q, denoted R0. This is the (unique) mini-

mal subset R00 of R that contains R0 and satisfies the property

that if a reaction r from R has each of its reactants and at least

one catalyst present in the food set or as a product of a

reaction from R00 then r is in R00.
It is easily seen that the closure of any RAF is always an

RAF. We say that an RAF R0 is a closed RAF if it is equal

to its closure (i.e. R0 ¼ R0). In particular, the maxRAF is

always closed. Referring again to figure 1, the closure of the

RAF fr3g is the subRAF fr3, r4, r5g.
A minimal closed RAF for a CRS Q is a closed RAF R0 for Q

that does not contain any other closed RAF for Q as a strict

subset. Any closed irrRAF is a minimal closed RAF but a

minimal closed RAF need not be an irrRAF. Once again

figure 1 illustrates this last concept: for this CRS, the minimal
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closed RAF is the maxRAF fr3, r4, r5g but it is not an irrRAF

since it contains the RAF fr3, r4g.
Given a CRS Q ¼ (X, R, C, F), a stronger notion than an

RAF is that of a constructively autocatalytic F-generated (CAF)

set for Q (introduced in [23]). A CAF for Q is a non-empty

subset R0 of R for which the reactions in R0 can be ordered

in such a way that for each reaction r in R0, each reactant

and at least one catalyst of r is either produced by an earlier

reaction from R0 or is present in the food set. In other words,

a CAF is like an RAF with the extra requirement that no

uncatalysed reactions are required for its formation (i.e. the

catalyst needs to be already present when it is first needed).

For example, in figure 1, fr3, r4g is a CAF but fr1, r2g is not.

RAFs are not just a theoretical concept, though. They have

been constructed in the laboratory with real molecules, either

with RNA [24] or with peptides [25], and it has been shown

that the metabolic network of E. coli forms a large RAF set

[10]. This is illustrated in figure 2, where in [10] cofactors

are used as catalysts rather than enzymes. These cofactors

are either in the food set or they are produced by the

metabolic network.
2. The structure of RAFs in ‘elementary’ catalytic
reaction systems

Let CRS Q ¼ (X, R, C, F). We say that Q is elementary if it

satisfies the following condition:

— Each reaction r in R has all its reactants in F.

An elementary CRS is a very special type of CRS; how-

ever, it has arisen both in applications to real experimental

chemical systems [24,25] and in theoretical models [27]. The

CRS shown in figure 1 is not an elementary CRS, but it

becomes so if reactions r1, r2, r5 are removed (recall here

that the food set consists of monomers and dimers). It is poss-

ible to extend the definition of elementary CRS to also allow

for reversible reactions, by requiring only one side of the

reaction to contain molecule types that are exclusively from F.

In this section, we show that elementary RAFs have suffi-

cient structure to allow a very concise classification of their
RAFs, closed subRAFs, irrRAFs and ‘uninhibited’ closed

RAFs (a notion described below), something which is proble-

matic in general. We then extend this analysis to more

complicated types of RAFs in the next section.

Our analysis in this section relies heavily on some key

notions from graph theory, so we begin by recalling some

concepts from that area.
2.1. Review of graph theoretic terms
In this paper, all graphs will be finite. Given a directed graph

D ¼ (V, A), recall that a strongly connected component of D
is a maximal subset W of V with the property that for any

vertices u, v in W, there is a path from u to v and a path

from v to u.

It is a classical result that for any directed graph

D ¼ (V, A), the vertex set V can be partitioned into strongly

connected components. This, in turn, induces a directed

graph structure, called the condensation (digraph) of D, which

we will denote by D�. In this directed graph, the vertex set

is the collection of strongly connected components of D and

there is an arc (U, V ) in D� if there is an arc (u, v) in D
with u [ U and v [ V. By definition, D� is an acyclic directed

graph. Moreover, the tasks of partitioning V into strongly

connected components and constructing the graph D� can

both be carried out in polynomial time [28]. Note that the

strongly connected component containing v will consist just

of v if v is not part of a cycle (i.e. a path that returns to its

start) involving another vertex.

We now introduce some further definitions. Given a

directed graph D ¼ (V, A):

— We say that a strongly connected component S of D is a

core if either jSj ¼ 1 (say S ¼ frg), and there is an arc

from r to itself, or if jSj . 1. Note that D has a core if

and only if D has a directed cycle.

— A chordless cycle in a directed graph D ¼ (V, A) is a subset

U of vertices of D for which the induced graph DjU is a

directed cycle (here DjU ¼ (U, A0) where the arc set A0

for DjU is given by A0 ¼ f(u, v) [ A : u, v [ Ug). Note

that if jUj ¼ 1, this means that there is an arc from the

vertex in U to itself.
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— A vertex v in V is reachable from some subset S of V if there

is a directed path from some vertex in S to v. More gener-

ally, a subset U of V is reachable from S if there is some

vertex v [ U that is reachable from S.

The terminology ‘core’ follows a similar usage by Vasas

et al. [3], in which the set of vertices (molecule types) that

are reachable from a core is referred to as the ‘periphery’ of

the core.

2.2. First main result
The following theorem provides graph-theoretic characteriz-

ations of RAFs, irrRAFs, closed RAFs and minimal closed

RAFs within any elementary CRS.

Given any CRS, Q, consider the directed graph DQ with

vertex set R and with an arc (r, r0) if a product of reaction r
is a catalyst of reaction r0. In addition, for any reaction r
that has a catalyst in F, we add the arc (r, r) (i.e. a loop)

into DQ if this arc is not already present; this step is just a

formal strategy to allow the results to be stated more suc-

cinctly, and does not necessarily mean that a product of r is

an actual catalyst of r.
The proof of the following theorem can be found in the

electronic supplementary material.

Theorem 2.1. Let Q be an elementary CRS. Then:
(i) Q has an RAF if and only if DQ has a directed cycle, and
this holds if and only if DQ contains a chordless directed
cycle. The RAFs of Q correspond to the subsets R0 of R
for which the induced directed graph DQjR0 has the
property that each vertex has in-degree at least 1.

(ii) The irrRAFs of Q are the chordless cycles in DQ. The closed
irrRAFs of Q are chordless cycles from which no other
vertex of DQ is reachable. The smallest RAFs of Q are the
shortest directed cycles in DQ.

(iii) The closed RAFs of Q are the subsets of R obtained by
taking the union of any one or more cores of DQ and
adding in all the reactions in R that are reachable from
this union.

(iv) Each minimal closed RAF of Q is obtained by taking any
core C of DQ for which no other core of DQ is reachable
from C, and adding in all reactions in R that are reachable
from C.
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(v) The number of minimal closed RAFs of Q is at most the
number of cores in DQ, and thus it is bounded above by
jmaxRAF(Q)j. These can all be found and listed in
polynomial time in jQj.

(vi) The question of whether or not a given RAF for Q (e.g. the
maxRAF) contains a closed RAF as a strict subset can be
solved in polynomial time.

Figures 3–5 illustrate parts (i)–(iv) of theorem 2.1. Some

of these examples are based on reaction networks that come

from actual experimental RAF sets.

Remarks

— Parts (ii)–(vi) of theorem 2.1 hold even when Q is not

elementary, provided that Q0 ¼ (X, R0, C, F) is elementary

where R0 is the maxRAF of Q.

— Cores cannot share reactions, but it is possible for minimal

closed RAFs to do so.

— The last sentence of part (ii) implies that the size of the

smallest RAF is equal to the length of the shortest directed

cycle in DQ and this can be found in polynomial time in

jQj (by a depth-first-search or network flow techniques).

This is in contrast to the problem of finding the size of a

smallest RAF in a general CRS, which has been shown

to be NP-hard in [21].

— An important extension of the RAF concept allows for

molecule types to inhibit reactions (as well as being able

to catalyse reactions). Here we consider the conservative

extension of the RAF concept whereby each reaction in

the system must be catalysed and, in addition, no reaction

in the RAF is inhibited (i.e. inhibition of a reaction is con-

sidered a strong property that cannot be remedied by

having other catalysts present). For a general CRS Q, it

is known that determining whether or not a CRS Q has

an RAF R0 for which no reaction is inhibited by any mol-

ecule produced by R0 is NP-hard [23]. However, for any
elementary CRS, theorem 2.1(v) provides the following

positive result.

Corollary 2.2. When inhibition is also allowed in an elementary
CRS Q, it is possible to determine in polynomial time whether Q
contains a closed RAF R0 for which no reaction of R0 is inhibited
by any molecule type produced by R0.

Proof. There is a closed RAF for Q that has no inhibition if and

only if there is a minimal closed RAF for Q that has no inhi-

bition. By part (v) of theorem 2.1, there are at most

jmaxRAF(Q)j minimal closed RAFs for an elementary CRS

Q, and these can all be checked in polynomial time to deter-

mine if any of them have the property that no reaction is

inhibited by any molecule type produced by the reactions

in the set. B
— Part (v) of theorem 2.1 raises the question of whether this

result might apply without the restriction that Q is

elementary. In other words, is the number of minimal

closed RAFs in a (general, non-elementary) CRS bounded

polynomially in the size of Q? The answer turns out to be

‘no’, and an example is described in the electronic

supplementary material.

— Another question that part (v) of theorem 2.1 suggests is the

following: does an elementary CRS always have at most a

polynomial number of closed RAFs? Again, the answer is

‘no’, and the construction to show this is much simpler

than the previous example. Consider the elementary CRS

with F ¼ f f1, . . ., fng, X ¼ F < {x1, . . . , xn}, together with

the set R of k catalysed reactions ri : fi�!
xi xi for i¼ 1, . . .,

k. This CRS has 2k 2 1 closed RAFs, one for each non-empty

subset of R.

2.3. The probability of an RAF in an elementary CRS
Given an elementary CRS Q, suppose that catalysis is

assigned randomly as follows: each molecule type catalyses

each given reaction in R with a fixed probability p, indepen-

dently across all pairs (x, r) of molecule type x and reaction r.

The probability pQ that Q has an RAF is simply the

probability that DQ has a directed cycle (by theorem 2.1(i)).

In the case where each reaction in R has just a single pro-

duct, then the asymptotic behaviour of pQ as jRj ! 1 is

equivalent to the emergence of a directed cycle in a large

random directed graph, which has been previously studied

in the random graph literature by Bollobas & Rasmussen [29].

Here we provide a simple lower bound on pQ. Let l ¼ pjRj
be the expected number of reactions that each molecule type

catalyses. The following result gives a lower bound on pQ
that depends only on l and which converges towards 1 as l

grows (the proof is in the electronic supplementary material).

Proposition 2.3. pQ � 1� (1� l=jRj)jRj � 1� e�l, where �
denotes asymptotic equality as jRj grows.

The value p required for RAFs to arise in an elementary

CRS is lower than the corresponding value of p required for

RAFs to emerge in polymer models [1]. This is because, in

the former setting, an RAF requires only a subset of reactions

that forms a directed catalytic cycle, since the F-generated
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property ‘comes for free’ in an elementary system; however,

F-generation is an additional constraint that has to be simul-

taneously satisfied in the polymer setting. Moreover, the sizes

of RAFs when they first emerge in an elementary CRS with

random catalysis are quite different from that in the polymer

setting. In the former case, small RAFs (consisting of just a

few reactions) are likely to be present (from theorem 11 of

[29]), whereas in the binary polymer small RAFs are provably

absent at catalysis rates at which RAFs first form (by theorem

4 of [21]).

2.4. Eigenvector analysis
A previous study by Jain & Krishna [27] considered the dyna-

mical aspects of an ‘autocatalytic set’ in a CRS, which is

closely related to the notion of an RAF (our graph DQ differs

from theirs in two respects: firstly the vertices here represent

reactions rather than molecule types, and we also permit

self-loops from a reaction to itself ). We now present the

analogues of these earlier dynamical findings in our setting

(and formally, with proofs).

Given an elementary CRS Q, let AQ denote the adjacency

matrix of the directed graph DQ. Thus, the rows and columns
of AQ are indexed by the reactions in R in some given order,

and the entry of AQ corresponding to the pair (r, r0) is 1 pre-

cisely if (r, r0) is an arc of DQ and is zero otherwise. By

Perron–Frobenius theory for non-negative matrices, AQ has

a non-negative real eigenvalue l of maximal modulus

(among all the eigenvalues) and if DQ is strongly connected

(i.e. AQ is irreducible), then AQ has a left (and a right) eigen-

vector with eigenvalue l whose components are all positive.

The following results are analogues of the former study

by Jain & Krishna [27] to our setting (the proof is in the

electronic supplementary material).

Proposition 2.4.

(i) If Q contains no RAF, then l ¼ 0.

(ii) If Q contains an RAF, then l � 1.

(iii) If AQ has an eigenvalue . 0 with an associated left eigenvec-
tor w, then the set of reactions r for which wr . 0 forms an
RAF for Q.

To illustrate an application of proposition 2.4, consider the

system of nine reactions from figure 3 which comes from an

experimental system [25]. In this case, l � 1 since the system

contains an RAF (cf. proposition 2.4(ii)). Regarding part (iii),

three of the eigenvalues of AQ are strictly positive, and for

the three corresponding left eigenvectors, one has strictly posi-

tive entries for the three reactions r2, r6, r8, which form the

subRAF S1 shown in figure 3. A second left eigenvector has

strictly positive entries for the reactions r1, r3, r4, r5, r7, r9,

and these form the minimal closed subRAF S2 < S3 shown

in figure 3. The third left eigenvector has strictly positive

entries for the reactions r1, r4, r7 which forms a subRAF of S2.
3. Generative RAFs
We now introduce a new notion which describes how simple

RAFs can develop into more complex ones in a progressive

way. This section will build on, and apply the results

concerning elementary CRSs, particularly theorem 2.1.



r3

r2

f1 f2 f3 f1 f2 f3

r1

(b)(a)

Figure 6. (a) This CRS is a genRAF (a generating sequence starts with the
elementary closed RAF fr1, r2g, and then adds r3). (b) A different pattern of
catalysis converts the three reactions into an RAF that is no longer a genRAF.
In both cases, the food set is F ¼ f f1, f2, f3g.
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Given a CRS Q ¼ (X, R, C, F) and a subset Y of X con-

taining F, let RjY be the subset of reactions in R that have

all their reactants in Y, and let

QjY :¼ (X, RjY, C, Y):

In other words, QjY is the CRS obtained from Q by deleting

each reaction from R that does not have all its reactants in Y,

and by expanding the food set to include all of Y.

Definition 3.1 (genRAFs). Given a CRS Q ¼ (X, R, C, F), we

say that an RAF R0 for Q is a genRAF (or generative RAF) if

there is a sequence R1, R2, . . . , Rk of subsets of R with

Rk ¼ R0 and that satisfy the following properties:

(i) R1 is the closure in Q of an RAF of QjF;

(ii) for each i . 1, Ri is the closure in Q of an RAF of QjYi

where Yi ¼ F < p(Ri�1), and where p(Ri�1) refers to all

molecule types that are produced by a reaction from Ri�1.

Thus, a genRAF is any RAF for Q that can be formed by

taking R1 to be the closure (within Q) of an RAF within the

elementary CRS QjF, and for each i . 1, adding the products

of Ri�1 to the food set F of Q and taking Ri to be the closure

(within Q) of the resulting (induced) elementary CRS. In

other words, the next closed RAF in the sequence is built

upon an enlarged food set generated by the previous closed

RAFs in the sequence and considering just those reactions

that use this enlarged food set as reactants, and then forming

the closure of this set in Q.

As an example, the CRS in figure 6a is itself a genRAF as

it has the generating sequence R1, R2 where R1 ¼ {r1, r2} and

R2 ¼ {r1, r2, r3}. This genRAF is not a CAF as r1 or r2 need to

occur uncatalysed once for the RAF to form. The CRS in

figure 6b has the same molecules and reactions as figure 6a,

but a different pattern of catalysis, making it an RAF but

not a genRAF.

The motivation for considering the notion of genRAFs is

twofold. Firstly, a genRAF can be built up from simpler

RAFs (starting with an elementary one) by generating the

required catalysts at each step (i.e. some reactions may still

need to proceed initially uncatalysed, but a catalyst for the reac-

tion will be generated by some other reaction by the end of the

same step). This avoids the possibility of long chains of reac-

tions that need to proceed uncatalysed until a catalyst for the

very first link in the chain is produced, which seems biochemi-

cally less plausible. A second motivation for considering

genRAFs is that they combine two further desirable properties:

namely an emphasis on RAFs that are closed (i.e. all reactions
that are able to proceed and for which a catalyst is available will

proceed), and genRAFs are sufficiently well-structured that

some questions can be answered in polynomial time that are

problematic for general RAFs (theorem 3.3(iv) provides an

explicit example).

We will call the sequence R1, R2, . . . , Rk in the above

definition a generating sequence for R0. We now make two

observations, that are proved in the following lemma (the

proof is provided in the electronic supplementary material).

Lemma 3.2. Suppose that a genRAF R0 has generating sequence
R1, R2, . . . , Rk. Then:

(i) R0 and each set in its generating sequence is a closed RAF
for Q.

(ii) Ri # Riþ1 for all i [ f1, . . ., k 2 1g.
A natural question in the light of lemma 3.2(i) is the fol-

lowing: Is every closed RAF in a CRS generative? The

answer to this is ‘no’ in general; for example, a CRS may

have a maxRAF that requires too much ‘jumping ahead’

with catalysis (chains of initially spontaneous reactions) to

be built up in this way, as in figure 6b. Shortly (theorem

3.3), we will provide a precise, and efficiently checkable,

characterization for when a closed RAF is a genRAF.

Another instructive example is the following maxRAF

that arose in a study of the binary polymer model from [19]:

r1 : 10þ 0 �!01100
100,

r2 : 01þ 100�!0 01100,

r3 : 10þ 1�!0 101,

r4 : 11þ 10�!101
1110

and r5 : 1110þ 0�!101
11100,

where F ¼ f0, 1, 00, 01, 10, 11g. This maxRAF contains six

subRAFs, two of which are closed, namely, the full set of

all five reactions, which is not generative, and the subset

fr3, r4, r5g, which is a genRAF.

A maximal generative RAF: Given a CRS Q ¼ (X, R, C, F),

consider the following sequence (Ri, i � 1) of subsets of R.

Let Q1 :¼ QjF, let Ri ¼ maxRAF(Q1) and let R1 be the

closure of R1 in Q. For i . 1, let

Ri ¼ maxRAF(Qi), where Qi :¼ F < p(Ri�1),

and let Ri be the closure of Ri in Q.

Note that R1 may be empty even if Q has an RAF (as

figure 6b shows), in which case, Ri ¼ ; for all i � 1. However,

if R1 is non-empty, then Ri forms an increasing nested

sequence of closed RAFs for Q and so the sequence stabilizes

at some subset of reactions that we denote by R(Q). Thus,

R(Q) ¼
S

i�1Ri, and this set is identical to Rk for some

sufficiently large value of k (with k � jRj).
We can now state the main result of this section. Its proof

is provided in the electronic supplementary material.
Theorem 3.3. Suppose that Q ¼ (X, R, C, F) is a CRS.

(i) Q contains a genRAF if and only if R1 = ;, in which case
R(Q) is a genRAF for Q that contains all other genRAFs for Q.

(ii) If R0 is a closed RAF for Q then R0 is a genRAF for Q if and
only if R0 ¼ R(Q0), where Q0 ¼ (X, R0, C, F).
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(iii) The construction of R(Q) and determining whether an arbi-
trary closed RAF R0 for Q is generative can be determined
in polynomial time in jQj.

(iv) Determining whether a given closed genRAF R0 contains a
strict subset that is a closed RAF for Q can be solved in
polynomial time in jQj.
f1 f2 f3

r2r1

1 1
{r2 , r3}{r1 , r2}

{r1}

Figure 7. (a) An RAF in which the catalysis arcs have associated rates
(namely, the values 1 and 2 as indicated). The poset consisting of the
maxRAF and its three subRAFs ( partially ordered by set inclusion) is
shown by the Hasse diagram in (b). All four RAFs have w-values of 1
except for the subRAF fr2, r3g, which has a w-value of 2. This optimal

lishing.org/journal/rsif
J.R.Soc.Interf
Remarks

— If a CRS has a CAF (defined at the end of the Introduc-

tion), then the (unique) maximal CAF is generative.

However, a genRAF need not necessarily correspond to

a maximal CAF.

— Part (iv) of theorem 3.3 provides an interesting contrast to

the general RAF setting. There the question of determin-

ing whether a closed RAF (e.g. the maxRAF) in an

arbitrary CRS contains another closed RAF as a strict

subset has unknown complexity.

RAF fr2, r3g is not a generative RAF (whereas the other three RAFs are gen-
erative; indeed, fr1g and fr1, r2g are elementary). Nevertheless, once the
generative maxRAF fr1, r2, r3g has formed, fr2, r3g can then emerge as
the dominant subRAF.

ace
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4. RAFs with reaction rates
In this section, we consider a further refinement of RAF

theory, by explicitly incorporating reaction rates into the

analysis. This can allow for future more realistic uses of the

RAF theory in biological contexts, particularly in biochemis-

try, with the introduction of kinetic constants in the network

representation. Although it remains a challenge to obtain

kinetic data at a genome scale for real cells, advances have

been achieved with E. coli [30,31] and erythrocyte models

[32] and others are expected to emerge as new methodologies

will convert thermodynamic and metabolomic data to kinetic

constants [33]. The advantage of RAF theory here is that it

can be applied to networks of any size, as long as a CRS

can be drawn for the network [10].

Moreover, this conveniently addresses one shortcoming

implicit in the generative RAF definition from the last

section—namely a generative RAF necessarily grows as a

monotonically increasing nested system with the length of

its associative generating sequence (lemma 3.2). However,

once a sufficiently large generative RAF is established, one

or more of its subRAFs may then become dynamically

favoured if it is more ‘efficient’ (i.e. all its reactions proceed

at higher reaction rates than the generative RAF it lies

within), as we shortly illustrate with a simple example.

Suppose that we have a CRS Q ¼ (X, R, C, F) and a func-

tion f : C! R�0 that assigns a non-negative real number to

each pair (x, r) [ C. The interpretation here is that f (x, r)

describes the rate at which reaction r proceeds when the

catalyst x is present.

Given Q and f, together with an RAF R0 for Q, let:

w(R0) ¼ min
r[R0

{ max {f(x, r) : (x, r) [ C, x [ clR0 (F)}}:

In other words, w(R0) is the rate of the slowest reaction in the

RAF R0 under the most optimal choice of catalyst for each

reaction in R0 among those catalysts that are present in clR0 (F).
Example. Figure 7 provides an example to illustrate the

notions above. In this CRS, the three reactions comprise an

RAF, with a w-value equal to 1. However there are three sub-

RAFs, and one of these (namely fr2, r3g) has a higher w-value.

However, the less optimal closed subRAF fr1, r2g is genera-

tive and likely to have formed before the optimal one;

otherwise fr2,r3g would require a chain of two reactions to
occur uncatalysed (r2 followed by r3) before the catalysts for

them become available. The closed RAF fr1, r2g may then

expand to fr1, r2, r3g before this second closed RAF is

subsequently out-competed by its subRAF fr2, r3g, since the

catalysed reactions in this subRAF run twice as fast as

the reaction r1.

Our main result in this section shows that finding an RAF

to maximize w can be achieved by an algorithm that runs in

polynomial time in the size of Q. Its proof is provided in

the electronic supplementary material.
Theorem 4.1. There is a polynomial-time algorithm to construct
an RAF with largest possible w-value from any CRS Q that con-
tains RAF. Moreover, this constructed RAF is the maximal RAF
with this w-value.

Remark. For the example in figure 7, we have the subRAFs

R1 ¼ {r1}, R2 ¼ {r2, r3} with w(R1) , w(R2). In this case,

there is a path in the poset from R1 to R2 on which w is

non-decreasing (this path goes ‘up’ then ‘down’ in

figure 7b). An interesting question might be to determine

when this holds: in other words, from a sub-optimal RAF,

can a more optimal RAF be reached by a chain of RAFs

that, at each stage, either adds certain reactions or deletes

one or more reactions, and so that the optimality score (as

measured by w) does not decrease?

4.1. Rates for ‘catalytic ensembles’
We can extend the results on rates in the previous section

to accommodate the following feature: a reaction for which a

combination of two or more molecules can act collectively as

a catalyst, and possibly at a different rate from that of an

alternative single catalyst. An example relevant to early metab-

olism would be primitive catalysts that combine metals and

other inorganic cofactors, as opposed to an evolved enzyme.

We formalize this as follows. Recall that in a CRS

Q ¼ (X, R, C, F), the set C represents the pattern of catalysis

and is a subset of X �R. Thus, (x, r) [ C means that x
catalyses reaction r. Now suppose we wish to allow a
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combination (ensemble) of one or more molecules to act as a

catalyst for a reaction. In this case, we can represent the CRS

as a quadruple Q ¼ (X, R, C, F) where C # (2X � ;)�R and

where (A, r) [ C means that the ensemble of molecules in A
acts as a (collective) catalyst for r, provided they are all present.

We refer to Q as a generalized CRS. The notions of RAF,

subRAF, CAF and so on can be generalized naturally. For

example, the RA condition for a subset R0 is that for each reac-

tion r, there is a pair (A, r) [ C where each of the molecule

types in A is in the closure of F relative to R0.
Note that an ordinary CRS can be viewed as a special

case of a generalized CRS by identifying (x, r) with the pair

(fxg, r). Note also that each reaction may have several ensem-

bles of possible catalysts, and some (or all of these) may be

just single molecule types.

Given a generalized CRS Q ¼ (X, R, C, F), we can associ-

ate an ordinary CRS Q0 ¼ (X0, R0, C0, F) to Q as follows. Let

AC :¼ {A # 2X � ; : 9r [ R : (A, r) [ C}

(so AC is the collection of catalyst ensembles in Q). For each

A [ AC, let xA be a new molecule type, and let rA be the

(formal) reaction A! xA. Now let

X0 :¼ X _< {xA : A [ AC},

R0 :¼ R _< {rA : A [ AC}

and C0 :¼ {(xA, r) : (A, r) [ C} _< {(xA, rA) : A [ AC}:

Note that C0 # X0 �R0.
In other words, Q0 is obtained from Q by replacing each

catalytic ensemble A by a new molecule type xA and

adding in the reaction rA : A! xA catalysed by xA. The

proof of the following lemma is straightforward.

Lemma 4.2. A generalized CRS Q has an RAF if and only if the
associated ordinary CRS Q0 has an RAF that contains at least one
reaction from R. Moreover, in this case, the RAFs of Q correspond
to the non-empty intersections of RAFs of Q0 with R.

Now suppose that we have a generalized CRS

Q ¼ (X, R, C, F) and a function f : C! R�0. The interpret-

ation here is that f(A, r) describes the rate at which reaction

r proceeds when the catalyst ensemble A is present.

Given an RAF R0 for Q, let:

w(R0) :¼ min
r[R0

{ max {f(A, r) : (A, r) [ C, A # clR0 (F)}}:

In other words, w(R0) is the rate of the slowest reaction in the

RAF R0 under the most optimal choice of catalyst ensemble

for each reaction in R0 among catalyst ensembles that are

subsets of clR0 (F).

Lemma 4.2 now provides the following corollary of

theorem 4.1.
Corollary 4.3. There is a polynomial-time algorithm to construct
an RAF for Q with largest possible w-value from any CRS Q
that contains an RAF. Moreover, this constructed RAF is the
maximal RAF for Q with this w-value.
5. Concluding comments
In this paper, we have considered special types of RAFs that

allow for exact yet tractable mathematical and algorithmic

analysis, and which also incorporate additional biochemical

realism (restricting the depth of uncatalysed reactions

chains in generative RAFs and allowing reaction rates).

We first considered the special setting of ‘elementary’ sys-

tems in which all reactions (or at least those present in the

maxRAF) have all their reactants present in the food set.

This allows for the structure of the collection of RAFs,

irrRAFs and closed subRAFs to be explicitly described

graph-theoretically. As a result, some problems that are com-

putationally intractable in the general CRS setting turn out to

be polynomial time for an elementary CRS. For example, one

can efficiently find the smallest RAFs in an elementary CRS,

which is an NP-hard problem in general [21]. Also, the

number of minimal closed subRAF in an elementary CRS is

linear in the size of the set of reactions (for a general CRS,

they can be exponential in number). For future work, it

may be of interest to determine if there are polynomial-time

algorithms that can answer the following questions for an

elementary CRS: (i) What is the size of the largest irrRAF?

(ii) If inhibition is allowed, then is there an RAF that has no

inhibition?

The relevance of elementary RAFs to biology is that two

experimental laboratory systems for modelling biochemistry

at the origin of life (one based on peptides [25], the other

on RNA [24]) turn out to be elementary CRSs, and our results

allow for a fast, systematic and complete combinatorial analy-

sis of the RAFs and subRAFs within these systems. This

methodology should, in turn, be applicable to more complex

systems in future studies, either for elementary systems or for

generative RAFs within a non-elementary system. The bio-

logical relevance of RAF theory is further supported by its

recent applications to E. coli metabolism [10], and to the

structure of ecological networks [16,17].

The concept of an ‘elementary’ CRS is an all-or-nothing

notion. One way to extend the results above could be to

define the notion of ‘level’, whereby a CRS has level k if the

length of the longest path from the food set to any reaction

product goes through at most k reactions (an elementary

CRS thus has level 1). We have not explored this further

here but instead, we consider the related alternative notion

of a generative RAF. Briefly, a generative RAF allows an

RAF to form by effectively enlarging its ‘food set’ with pro-

ducts of reactions, so that each step only requires catalysts

that are either present or produced by reactions in the RAF

at that stage. Although generative RAFs are more complex

than elementary ones, their close connection to elementary

RAFs (in a stratified way) allows for a more tractable analysis

than for general RAFs. Moreover, unlike elementary RAFs,

no special assumption is required on the underlying CRS;

generative RAFs are just a special type of RAF that can be

generated in a certain sequential fashion in any CRS.

In the final section, we considered the impact of rates of

RAFs (which need not be generative), and particularly the algo-

rithmic question of finding an RAF that maximizes the rates of

its slowest reaction. Not only is this problem solvable in the

size of the CRS, but it can also be extended to the slightly

more general setting of allowing ‘catalytic ensembles’. The

introduction of rates allows for the study of how a population

of different closed subRAFs might evolve over time, in which
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primitive subRAFs are replaced (out-competed) by efficient

ones that rely on new catalysts in place of more primitive ones.

We hope to explore these extensions further in future work.
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