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Abstract

We investigate some discrete structural properties of evolutionary trees generated under simple null
models of speciation, such as the Yule model. These models have been used as priors in Bayesian ap-
proaches to phylogenetic analysis, and also to test hypotheses concerning the speciation process. In this
paper we describe new results for three properties of trees generated under such models. Firstly, for a
rooted tree generated by the Yule model we describe the probability distribution on the depth (number of
edges from the root) of the most recent common ancestor of a random subset of k species. Next we show
that, for trees generated under the Yule model, the approximate position of the root can be estimated from
the associated unrooted tree, even for trees with a large number of leaves. Finally, we analyse a biologically
motivated extension of the Yule model and describe its distribution on tree shapes when speciation occurs
in rapid bursts. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Phylogenetic trees are widely used in biology to represent evolutionary relationships between
species. In these trees the leaves represent extant species, and the internal vertices represent
hypothesised speciation events. There is much interest in the process of speciation, and the
extent and manner in which the distribution of phylogenetic tree shapes can be modelled by a
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random process. Several simple stochastic models of speciation have been proposed and several
investigators have aimed to test or refine such models by comparing their predictions with
published phylogenetic trees [1-9]. These models make predictions about the shape of the
phylogenetic tree connecting the extant species. These models can provide prior probabilities
for phylogenetic trees in Bayesian approaches to tree reconstruction [10-12], and they are
also used as a basis for calculating the probability of certain configurations under random
speciation [13]. These probabilities may then be useful in testing hypotheses concerning the
speciation process.

In this paper we will consider just the model’s predictions regarding the discrete underlying tree
structure, without regard to the lengths of the edges. While such an approach may neglect some
informative characteristics of the tree, the approach has two motivations — firstly, the predictions
regarding the discrete tree remain valid under a much wider class of models (they are insensitive to
underlying parameters) and, secondly, we are interested in isolating out the information that is
conveyed solely by the discrete tree shape.

In this paper we consider some properties of the Yule model, which is perhaps the simplest
stochastic model for speciation. We then define and investigate an extension of this model. We
begin by introducing some basic terminology for phylogenetic trees (Section 2). The Yule model is
then introduced, and some of its properties are described (Section 3). We then consider the
probability distribution on the number of edges separating the root of a tree from the most recent
common ancestor of a randomly selected subset of size k (Section 4). Next, a maximum likelihood
approach to edge-rooting an unrooted tree is presented, and simulation is used to show that even
for large unrooted trees the approximate location of the root can be identified with high prob-
ability (Section 5). Following this a modification of the Yule model is considered in which the rate
of speciation of a lineage is dependent on the time back to the last speciation event on that lineage
(Section 6). We show that this modified model reduces to the uniform model under the condition
of ‘explosive radiation’.

2. Terminology

Evolutionary relationships are generally represented by rooted or unrooted binary (phyloge-
netic) trees [14]. Such trees consist of uniquely labeled vertices of degree 1 called leaves and un-
labeled internal vertices of degree 3 (also, in case the tree is rooted, it contains an additional root
vertex of degree 2 — in this way every vertex can be regarded as having exactly two descendants).
We say a vertex v is a descendant of another vertex w, if w lies on the path between v and the root
vertex. Edges adjacent to a leaf are called pendant edges, while all other edges are internal. A (tree)
shape is the unlabeled tree obtained by dropping the labeling of the leaves of a binary phylogenetic
tree. For further clarification of these terms see Fig. 1.

Throughout this paper we will use 7 to denote a phylogenetic tree, and 7 to denote a tree shape.
We will frequently use the asymptotic expression f(n) ~ g(n) to denote lim, ., f(n)/g(n) = 1. As
usual, P[4] (resp. P[4|B]) denotes the probability of event A (resp. the conditional probability of
event 4 given B), and E[X] (resp. E[X|Y]) denotes the expectation of random variable X (resp. the
conditional expectation of X given Y).
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Fig. 1. Some terminology for trees: (a) a rooted binary phylogenetic tree with six leaves; (b) an unrooted binary tree
shape with six leaves.

3. The Yule model

A simple model of speciation is to assume the exchangeability condition that, at any given time,
each of the then-extant species are equally likely to give rise to one new species. The ‘rate’ of
speciation may vary with time, or with the present and past number of species. Also we may allow
extinctions (or random sampling of extant taxa) provided that a similar exchangeability criterion
applies — that is, whenever an extinction event occurs each of the then-extant species is equally
likely to go extinct. Depending on how the various parameters are set in such a model, we obtain
various probability densities over all edge-weighted trees that connect a group of extant species.
However, if we simply regard these trees as unlabeled discrete graphs without edge length (tree
shapes) then the underlying parameters and details do not affect the resulting discrete probability
distribution, provided the exchangeability criteria still apply (see Ref. [1]). This distribution on
tree shapes is often called the Yule model and it has been widely studied [3,15-17].

We can reformulate this model in the discrete setting, by evolving a (discrete) tree shape under
the following rule. We start with the rooted tree on two leaves and repeat the following procedure
until the tree has n leaves:

For the tree shape so far constructed, select a leaf randomly and uniformly, and make it the
direct ancestor of two new descendent leaves.

Alternatively, we may attach an edge added uniformly and randomly to a pendant edge at each
step. This process is illustrated in Fig. 2.

This process provides a probability distribution on rooted tree shapes and also on unrooted tree
shapes (by suppressing the root). Also if species are assigned to the leaves in random order we also
obtain probability distributions on rooted and unrooted phylogenetic trees [3].

The Yule model arises in a number of seemingly different ways. For example, in the context of
population genetics, one has the coalescent model [1,18,19]. In this model one starts with z objects,
then picks two at random to coalesce, giving n — 1 objects. This process is repeated until there is
only a single object left. If this process is reversed, starting with one object to give n objects, then it
is equivalent to the Yule model. Note that in the coalescent model there is commonly a probability
distribution for the times of coalescences, but in the Yule model we ignore this element.
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Fig. 2. The Yule model probabilities for shapes with four leaves. A shape on four leaves is formed by the splitting of
one of the pendant edges of the shape on three leaves. Each pendant edge has the same probability of splitting, so for
the shape on three leaves each pendant edge has a probability of 1/3 of splitting. The resulting symmetric shape on four
leaves has a probability of 1/3. The other two shapes on four leaves are the same (up to rotation about internal
vertices), and so the probability of this shape is 2/3.

Another closely related realisation of the Yule model is obtained as follows. Given a rooted
binary phylogenetic tree 7T, let ¥ denote the set of internal vertices of T. A ranking of T is a
function r that associates to each vertex v € ¥ of T a unique element from the set {1,2,...,|V|} in
such a way that r(v;),r(vp), ... is strictly increasing along any sequence vy, vy, ... of vertices di-
rected away from the root. Thus we might regard r as describing the order of the speciation events
that are represented by the internal vertices of 7. Observe that a phylogenetic tree having the
shape of the right-most tree in Fig. 2 has exactly two possible rankings, while for the left-most tree
there is just one possible ranking. The pair (7, ) is sometimes called a labeled history. If we now
select a labeled history (7', ) on n species uniformly and consider just 7, then this once again leads
to the Yule distribution on rooted binary phylogenetic trees. Furthermore, if we consider just the
shape of T we obtain the Yule model on rooted tree shapes.

This connection with labeled histories provides a convenient tool for describing the probability
distribution of a tree shape 7, since it is possible to count the number of labeled histories, and
rankings on a given tree. For a vertex v of a rooted binary phylogenetic tree, let 6(v) denote the
number of internal vertices (including v) that are descendants of v (¢v' is a descendant of v if the
path from v’ to the root includes v). Note that d(v) is equal to one less than the number of leaves of
the tree that are descendants of v. The following lemma has been proved before using Young
tableaux [20]; here we give another proof using poset theory.

Lemma 1. For a rooted binary phylogenetic tree with n leaves, the number of associated labeled
histories is precisely

(n—1)!
[Lei 6(v)°

where V denotes the set of internal vertices of the tree.
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Proof. If we regard the internal vertices of T as forming a partially ordered set by directing all
edges away from the root then, in the parlance of poset theory, we are counting the number of
linear extensions of this partially ordered set, which is a well-studied problem. In general, given an
m-element partially ordered set P, if we let 4, = {y € P: y > x}, then the number of linear ex-
tensions of P equals

m!
HxEP ;Lx

when the ‘Hasse diagram’ of P is a rooted tree, whose root is a minimal element in the poset [21].
In the current setting, this applies with m =n — 1 and 4, = 6(x). O

(1)

We next recall a well-known and elegant expression for the total number of labeled histories on
n species. Each labeled history on n species is generated in a unique way by the coalescent process
that starts with the n leaves and works back up to the root, repeatedly combining some pair of
species to form a new amalgamated species that represents that pair. Since there are (;) choices for
the pair to be amalgamated if there are i objects (species and amalgamated species) present, one
obtains the following result [22].

Lemma 2. The total number of labeled histories on n species is

nl(n—1)!
TR @)

For a rooted phylogenetic tree 7 let Py(T) denote the probability of generating 7" under the
Yule model. The following result was established by Brown [2] using induction. Here we provide
an alternative proof.

Proposition 1.

() =2 o)

vel

where V is the set of internal vertices of T.

Proof. Under the Yule distribution (realised via the uniform distribution on labeled histories) the
probability of generating 7 is simply number of rankings for 7 divided by the total number of
ranked binary phylogenetic trees. Now T has exactly (n — 1)!/(]],.; 6(v)) possible rankings by
Lemma 1. Dividing by the total number of ranked binary phylogenetic trees given by Lemma 2 we
obtain the result. [

We describe two further properties of the Yule model that will be useful later. Suppose we
generate a rooted phylogenetic tree under the Yule model, and randomly select (with equal
probability) one of the two subtrees incident with the root of this tree. Then the number of leaves
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in this subtree is uniformly distributed between 1 and n — 1 [13]. That is, if we let py (i) denote the
probability that the number of leaves in this subtree is exactly i, then

py(i) = (3)

fori=1,2,...,n—1.
Suppose now we let s; denote a particular species from our set of n species. Let pi (i) denote the

probability that the subtree of 7 incident with the root that contains species s; has exactly i leaves.
Then,

Lemma 3.

e 2
py(i) = 7}4(” )

fori=12...,n—1.

Proof. Randomly select (with equal probability) one of the two subtrees of 7 incident with the
root and let 4 denote the set of species that appear as leaves in this subtree. Then,
py(i) = P[|4] =i| s € 4]. By Bayes’ theorem,

Plsi € 44| = {JP[|4] = ]

Plld] =i|s €4] = Bl e A 4)

and P[s; € 4 | |[4| =i] =i/n, P[s; € 4] = 1/2, and, by (1), P[|4| =i] = 1/(n — 1). The result now
follows. O

A further important property of the Yule model is that it satisfies the following hereditary
property. Let us generate a rooted binary tree 7 according to the Yule model, and let #, #, denote
the two subtrees of 7 incident with the root. Let S(#) denote the subset of species that label ¢,
and let S denote a fixed subset of species. Then, conditional on the event that S is the set of
species labeling the leaves of # the probability distribution on #; is also the Yule distribution.

This property follows from a particular case of the group elimination property, described by
Aldous [1].

4. Depth of a most recent common ancestor

Suppose we evolve a rooted phylogenetic tree T on n extant species under the Yule model, and
we select a random subset S of k extant species. Let X, , denote the number of edges separating the
root of T from the vertex in 7 that corresponds to the most recent common ancestor (MRCA) of
S. In this section we investigate the probability distribution of X,,; for various values of k, par-
ticularly in the limit as n becomes large. Some of the reasons why a biologist might be interested in
such questions are discussed by Sanderson [23]; the cases k = 1 and k£ = 2 are also of some in-
dependent interest as we will see.
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Note that although we will regard S as a random subset of the n species, our results would
apply even if we regard S as a fixed set of species, since we are investigating properties of S in a
tree that is generated by a model that assigns equal probability to all possible labelings of the
leaves by the n species. Also, whenever we talk about the distance between two vertices in a tree,
we are referring to the number of edges separating the two vertices (also called the graph distance).

4.1. Distance of MRCA from root

The case k = 1 corresponds to the distance of a randomly selected leaf from the root, and has
been analysed before [24,25]. In the following theorem c(n,q) denotes the unsigned Stirling
number of the first kind, which is the number of permutations on # elements that have exactly ¢
cycles [26].

Theorem 1 [24,25]. Let P!, be the probability that a randomly chosen leaf from a tree on n+ 1
leaves has distance q from the root. Under the Yule model we have

_ 2%c(n,q)

Pl (n+1)!"

Furthermore, the mean (p,) and variance (c2) of this distribution are given by

" " LS
:2 =5 i:z _._4 TH

J=

where p; = 0 and 63 = 0.

For k > 1, the asymptotic probability P[X,, = 0] has already been determined by Sanderson
[23] who showed that

. 2
We generalise this result by (i) providing an exact, closed-form expression for P[X, , = 0] and (ii)

showing that, as n becomes large, X, has a geometric distribution with parameter 2/(k + 1).

Theorem 2.
l. PX,=0=1-2/(k+1)x (n—Fk)/(n—1).
2. Fork>1, r=0, lim, . PX,,=>r]=(2/(k+1)).

Proof. By exchangeability we may assume that S consists of a fixed species s; together with £ — 1
species randomly selected from the remaining n — 1 species. Generate a tree 7' on n species under
the Yule model, and let vy, vy, ..., v, denote the vertices on path in 7 from the root to the leaf v,
labeled by s;, and let N; denote the total number of leaves of T descendant from vertex v; for
i=0,...,q. Thus, N, is a strictly decreasing sequence, with Ny =n, N, = 1.

Now, X, > r precisely if all the elements of S are descendants of v,. Provided ¢ > r, species s, is
a descendant of v,, and since the remaining k£ — 1 species in S are randomly selected from the
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remaining n — 1 species then, conditional on V,, the probability that they are all descendants of v,
is exactly

N, —1

k—1

n—1Y\

k—1
Thus, if we adopt the convention that (Z) =0 for a < b, and extend the sequence Ny, ..., N, by
setting N; = 1 for all i > ¢, then we can write,

i—1
R R R 0
k—1
Now, for j > 1,s > 0,
PN, =i | Ny = /] = ﬁ

by Lemma 3, and the hereditary property of the Yule model (described at the end of Section 3).
Consequently, using the identities

ii—1)(i—k+1)= <li>k!

> (1)~ (:41)

we obtain,

and

ELii—1) (i—k+1) 2 G—=2)---(—k)
PlXog = 7| Neoy = Z (n—1) n—k—i—l)_k-i-l(n—l)"'(n_k"‘l).

i=1

Taking » = 1, and noting that Ny = n with probability 1, we obtain the first part of the theorem.
For part two we use the identity

G=2)0U-K=0-10U-k+)=(k-1)x({=2)-(—k+1)
(arising from (¢) + (,%,) = (“}")) to write
PX,; =r| N,y =] :kil ((2:1;:::5:]1{{111))+O(”_1)'

We now observe that the first term on the right-hand side of this equation is the same as the term
on the right-hand side of (5), except with i replaced by j, and a multiplicative factor of 2/(k + 1).
Consequently, by repeating this step » — 1 times we have
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PLX,,&)I’]:P[X%](Z}”NO:”]: m +O(2 X n )

as required. [
4.2. The expected distance between two leaves

The case k£ = 2 allows us to obtain an expression for the expected distance between two ran-
domly selected leaves in a rooted binary tree with n leaves generated by the Yule model. Recall
that the distance d (v, v;) between a pair of vertices vy, v, of T is being measured by the number of
edges separating them. Let v; € J denote the most recent common ancestor of i and jin the tree,
and let p denote the root of the tree. Then for leaves i, j of T,

d(i,j) = d(i,p) +d(j, p) — 2d(vy, p)
and so

Eld(i, /)] = Eld(i, p)] + E[(j, p)] — 2E[d (v, p)].
Now, E[d(i, p)] = E[d(j, p)] = u, (see Theorem 1) while E[d(v;, p)] = E[X,>] and so

Eld(i, /)] = 2p, — 2E[X,2]. (6)
By Theorem 2, lim,_, E[X,,] =2 and so if u; denotes the expected distance between two ran-
domly selected leaves, then

lim 2p, — ' ~ 4. (7)

n—oQ

Actually, it is possible to derive an exact expression for E[X,,], namely

i =2(1- )

n—

which provides an exact expression for E[d(, /)].

5. Rooting an unrooted tree

Typically, construction of an evolutionary tree for a set of species is a two stage process. In the
first stage, using biological data of some sort, an unrooted tree is constructed. In the next stage,
the unrooted tree is rooted at some point. Commonly this is done by outgroup comparison, or
using some auxiliary data (for example embryological or fossil data) [27].

However, in some circumstances an outgroup is not available, or the auxiliary data is unclear.
Furthermore, the choice of outgroup can strongly influence the accuracy of tree reconstruction
[28]. In these circumstances heuristic methods provide an alternative way to root the tree. For
example, in the midpoint method, the root is located at the point halfway between the two leaves
that are the furtherest distance apart [29,30]. In another approach the root is located at a point
where the mean distance to the species on either side is the same (for example, the program
TREECON [31] uses this method). Here we explore a third alternative, based on the structure of
the trees under the Yule model.
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Before proceeding further we introduce some terminology. For a rooted binary tree 7" the
associated unrooted binary tree 7 is obtained from 7’ by suppressing the root and identifying the
two edges incident with the root to form a single edge ¢ — we call this edge the root edge of T.
Given T and its root edge, one can easily recover the rooted tree by subdividing e — that is, by
placing a new (root) vertex at the midpoint of the root edge.

In applications, one is typically given just the unrooted tree 7" and one would like to estimate
which edge is the root edge, or at least find a small subset of edges that contains the root edge with
high probability.

5.1. Maximum likelihood estimation of the root edge

Suppose we have a stochastic model (such as the Yule model) for the generation of rooted
binary phylogenetic trees. Given an unrooted binary tree, 7, and an edge, e, let P[T, ] denote the
probability of generating the rooted binary tree obtained by subdividing edge e¢ of 7. Let
P[T] = >, P[T,e] which is the probability of generating a rooted binary tree which produces 7’
when the root is suppressed (this provides a probability distribution on unrooted binary phylo-
genetic trees). Finally, let

PI[T,e]
P[T]

Ple | T] = : (8)
Note that Pe | T] is the probability that edge e is the root edge of 7, given that 7 is the unrooted
tree obtained by suppressing the root.

For example, consider a labeled unrooted tree on four leaves (Fig. 3). The probability of this
tree (P[7]) is 1/3. For the internal edge, the probability of the corresponding labeled rooted tree is
1/9, thus the conditional probability (P[e | 7]) for the internal edge is 1/3. For the pendant edges
the probability of the corresponding labeled rooted tree is 1/18, thus the conditional probability
(Ple | T]) for each pendant edge is 1/6.

Given an unrooted binary tree 7T, the method of maximum likelihood selects as its estimate of the
root edge any edge e that maximizes Ple | 7]. We let En.x(7) denote the set of edges of T that
maximize Ple | T], and we let ey.x(7) denote any edge in En. (7). It is possible, for example when
symmetry is present, that |E..x(7)| > 1, but we will show below that, for the Yule model,
BT < 3.

B

Fig. 3. Conditional probabilities (P[e | T]) for the edges of a labeled unrooted tree on four leaves.
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5.2. Probability of locating the root edge

Suppose we generate a rooted binary tree 7’ on n leaves according to the Yule distribution, and
we let u(7") denote the unrooted binary tree obtained from 7" by suppressing the root. Let €(n)
denote the probability that a particular maximum likelihood edge (en.x) of u(7") is the root edge
of u(T"). By the law of total probability,

e(n) = Z Plemax is the root edge of T | u(T") = T|Pu(T") = T1,
T

where the summation is over all unrooted binary trees on the set of n species and, hence,

e(n) = Plemax(T) | TIP[T]. (9)

One might expect that e(n) would converge to 0 as n tends to infinity, since the number of edges
(and so possible root edges) grows without bound. Indeed we will show that Pley.,(7) | 7] can
converge to 0 for certain (‘caterpillar’) trees as the number of leaves grows.

However we will show that €(n) has a non-zero limit. This parallels similar non-zero asymptotic
behaviour for an analogous model, the Yule-Furry model, in which edges are added at random to
vertices [32]. Furthermore, although the limit €(n) is small (about 0.15) the fact that it is non-zero
suggests that one should be able to locate the root edge to within a small (edge) distance of ep.x(7)
with high probability, and this is confirmed by simulations.

For n small, €(n) can be explicitly calculated, but for larger values ¢(n) was approximated by
simulation. Simulated values were calculated by the formula

) =y 3 Plean(1) | 7] =3 3 T, (10

where 7; is a labeled unrooted binary tree on n leaves obtained by generating a rooted tree ac-
cording to the Yule process, then unrooting it, and where N is the number of trees generated.

The simulation results suggest that lim, ., e(n) ~ 0.15 (Fig. 4(a)). The five edges with the
largest conditional probabilities for a tree were always an internal edge and the four edges ad-
jacent to it. Let es(n) denote the mean value for the sum of the five largest conditional proba-
bilities for a tree. The simulations suggest that lim, ., es(n) ~ 0.58 (Fig. 4(b)). Thus, even for a
large unrooted tree, the location of the root may be narrowed down to a small cluster of five
edges, of which one is more likely than not to be the true root. Progressively extending the radius
further it appears from simulations that the limiting expected probability that the root edge is
within a given (edge) distance d from ey, (7) continues to increase towards 1. For example, when
d = 3 the limiting probability appears to be close to 0.9.

5.3. Exact asymptotic value of €(n)

In order to calculate the exact limiting value of €(n) we need some preliminary results. Given an
edge e of an unrooted phylogenetic tree, let H(e) denote the number of labeled histories associated
to the rooted tree that arises from 7 by subdividing edge e.
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Fig. 4. Simulation results for the conditional probability of edges. Two hundred unrooted trees were randomly gen-
erated for different values of n. The trees were produced by unrooting the rooted tree generated by a Yule process. The
minimum and maximum probabilities for each simulation are represented by crosses (+). (a) Estimate of the mean
probability that ey, (7) contains the true root. (b) Estimate of the mean value for the sum of the five largest conditional
probabilities for a tree.

Lemma 4. Let edge e be an internal edge of an unrooted binary phylogenetic tree T. Denote the four
subtrees of T adjacent to e by A,B,C,D, and let a,b,c,d respectively denote the number of leaves in
these trees (Fig. 5(b)). Then H(e) = H(€') for each of the four edges € incident with e precisely if
both the following two inequalities hold:

a+b > max{c,d}; c+d > max{a,b}. (11)

Furthermore, H(e) > H(€') for all € precisely if these two inequalities hold as strict inequalities.

Proof. Without loss of generality we may represent e and ¢’ as in Fig. 5(a). From Lemma 1 we
have

(n—1)!

H(e) = . 12

= e+ d DL 90 [Ty 90 TLor 90 12

If the tree is rooted at the adjacent edge ¢ the number of histories is
(n—1)!

(n =1 +d = 1) ILec 06(t) [Lep 6(0) [Trer 0(v)°

H(e) =

(13)

®\ . N
Fig. 5. Generic unrooted binary trees with subtrees 4,B,C,D,F with a,b,c,d, f leaves, respectively: (a) with three

distinguished edges; (b) with four distinguished edges; (c) a hypothetical tree with two edges e;, e, in En.(7) that are
separated by k£ > 1 edges. Cy, ..., C; denotes subtrees with ¢y, ..., c; leaves, respectively.
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Therefore, H(e) > H(€') precisely if
f=c (14)

Now let the tree F be split into two subtrees 4 and B (Fig. 5(b)). Applying (14) to the edge labeled
e, and then labeling in turn each adjacent edge as ¢/, leads to the two 4-branch inequalities. If both
of the 4-branch inequalities are strict, then H(e) is strictly larger than H(¢/). O

Lemma 5. Any two edges in En.x(T) are adjacent.

Proof. We will derive a contradiction by supposing that there exists two non-adjacent edges ey, e,
in En. (7). Under this assumption we can represent 7 as in Fig. 5(c), where k> 1, and

o, C1, - - -, i are all positive. For edge e; to be in En.(T) we must have, from Lemma 4,

at+b=zc+d+tci+- -+ (15)
Likewise for edge e, we must have

ctdza+b+cy+-+ci . (16)
Adding (15) and (16) we get

a+bt+c+dza+b+c+d+co+2(c+ - a)+a. (17)
This implies that ¢ =c¢; = --- = ¢, =0, contradicting our original supposition, thus any two

edges in E . (7) must be adjacent. [

As we are dealing with binary trees we have the following straightforward consequence of
Lemma 5.

Corollary 1. |Ey.(T)| <3. Furthermore, if both the inequalities in (11) are strict, then
|Emax(T)| = 1.

We now calculate the exact asymptotic value of ¢(n). We do this by embedding the discrete
process of rooting a tree into a continuous analogue involving ‘stick breaking’. The asymptotic
properties of this process have been previously analysed in Ref. [33]; here we are concerned only
with comparisons involving the first two breaks of the stick.

Theorem 3. Generate a rooted binary tree with n leaves randomly under the Yule model, and let T
denote the tree obtained by suppressing the root. The probability that edge emax(T) is unique and
equal to the root edge of T convergeces to the value 41n(4/3) — 1 (=0.15) as n — oc.

Proof. Let us generate a rooted binary tree 7" on n leaves under the Yule model, and let 7,1,
denote the two rooted subtrees of 77 incident with the root. Let n; (i = 1, 2) denote the number of
leaves in #; and let n;1, n» denote the number of leaves in the two subtrees of #; incident with its
root. Thus, n; + np = n;. Let T denote the associated unrooted tree obtained from 7’ by sup-
pressing the root of 7. By Corollary 1 the probability that the edge eyax(7T) is unique and equals
the root edge of T is the probability that
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ny > maX{nzl,l’lzz} (18)
and
ny, > max{n”,nlz}. (19)

Now, by (3), n; is uniformly distributed between 1 and » — 1. Furthermore, conditional on #;, n;; is
also uniformly distributed between 1 and #; (by the hereditary property of the Yule model de-
scribed at the end of Section 3). Note that if n; < ny, then inequality (19) is trivially satisfied, while
if n, <n; inequality (18) is satisfied. Thus, we can determine the asymptotic probability that in-
equalities (18) and (19) hold by the following ‘stick-breaking’ process.

Take a unit interval, and break it randomly and uniformly at some point along its length. Let X
be a random variable representing the length of the shorter section. Take the longer section from
this first split and uniformly randomly break it again. Let Y be a random variable representing the
length of the longer section for this second split. In the present setting X will represent min{n;, n,}
and Y will represent the term on the right-hand side of inequality (18) (if #n; < ny) or inequality (19)
(if n, < my). Thus, the probability we wish to calculate in the asymptotic limit is that P(Y < X'). We
have

|]3’(Y<X)—/IP(Y<X]X—x)f(x)dx, (20)

where f(x) is the density function for X. Since X is distributed uniformly on [0,1] we have

_J2 if o<x<d,
Sx) = {0 otherwise. (21)

If X < 1/3, then Y > 1/3 and so the probability that ¥ < X is zero. If x > 1/3, then conditional
on X =x, Y is distributed uniformly on the interval [(1/2)(1 —x),1 —x]. Thus, if g.(y) is the
density function for Y conditional on the event X = x, then

2 if x€0,)], yve (1 -x),1 4]
— 1—x )21 2 ) )
&) = {0 otherwise. (22)

Consequently,

0 if x<1
P(Y<X|X =x)= x . 37
( | ) {f(l/z)“x)gx(y) dy=-3+% if x>1

Substituting (21) and (23) back into (20) we obtain
1/2

IP(Y<X):2/ [—3+ 2 ]dx:41n(‘—‘>—1,
1/3 l—x 3

which completes the proof. [

5.4. A family of trees for which Plemax(T) | T] — 0

A caterpillar tree is any unrooted binary phylogenetic tree that reduces to a path (a tree having
vertices of degree 1 or 2) once the pendant edges and leaves are deleted. The simulation results
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suggest that caterpillar trees are the trees for which Plem,(7) | 7] is smallest. For the caterpillar
tree Plemax(7) | 7] may be calculated exactly, and we show that asymptotically this probability
converges to 0.

Theorem 4. Let C, denote a caterpillar tree on n leaves. Then,

8 (n —2): n odd
"((n— '((n — I ’
Plonn(C) | ) = { 10 DM =2 4)
32{((n-2)/2)0° e
Asymptotically, as n — oo,
Plena(C) | G ~ 3 %\if 0. (25)

Proof. For the tree C, the determination of E.(C,) may easily be found using the 4-branch
inequalities of Lemma 4. For n odd there are two edges in En.(C,), located at the two edges
where there are (n — 1)/2 leaves on one side and (n + 1)/2 leaves on the other side. For n even
there is a single edge in E,,,(C,) located at the edge where there is n/2 leaves on each side. The
probability that ey, (7) is the root edge of C, is, in either case,

PIC, emax(G)]

P max Cn Cn = 26
Consider, firstly, the numerator of this equation. From Proposition 1,
2n-1 1
n odd
! —1 — /2 ((n—3)/2)!’ ’
P[Cnyemax(cn)] _ 2’:_1 (n )((nl )/ ) ((n )/ ) (27)
n even.

t(n—1){((n - 2)/2)%"
Now consider the denominator of (26). We may calculate P[C,] by summing P[C,, e] over all edges
e of C, (and using Proposition 1, together with a binomial identity). Alternatively, we can
compute P[C,] by first computing the probability of generating a tree having the caterpillar shape
¢, on n leaves — this satisfies the recursion

4
Plec,] = —lﬂj’[cn_l], where Plcs] =1, (28)

n—
since at each stage there are four possible edges that the next leaf can be attached to. We then need
to divide P|c,| by the number of phylogenetic trees on n leaves having shape ¢,, and this number is

n!/8. Using either approach to compute P[C,] we obtain
3x 42

B nl(n— 1)1

Combining the numerator and denominator terms gives (24). The second part of the theorem

follows from the asymptotic equation (1/2") (n'/’z) ~/2/(mn). O

PIC] (29)
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6. An extension of the Yule model

In the Yule model, at any time each existing species has the same probability of giving rise to a
new species, and all lineages are treated exchangeably. Here we consider a simple modification of
this model, in which the rate of speciation events on a given lineage is a function of the time back
to the last speciation event on that lineage.

More precisely, we suppose that at time ¢t = 0 there is just one species, labeled sy, subject to a 2-
state Markov process on state space {1,2}. Under this process, s, is initially in state 1, and state 2
corresponds to a ‘speciation event’, that is, the replacement of the original species by two species
(either two new species, or the original species plus one new one, and we will not distinguish here
between these two possibilities). Let s(¢) denote the rate of change from state 1 to state 2 at time ¢,
we call this the speciation rate. Once a speciation event occurs (say at time A) the two species are
again assumed to be independently subject to the same Markov process, with time reset to 0 (that
is, with rate function s(¢ — A)). Continuing in this way, we obtain a probability distribution on the
trees of descent of species starting from sy up to some fixed time ¢ which we can assume (by re-
scaling s if necessary) lies in the range [0, 1].

The biological motivation for this model is that a recently evolved species, or the species that it
has split off from, are often colonising new regions or niches, and so may be more likely to give
rise to further new species (in a given short time period) than a species that has existed for a very
long time without giving rise to any new species (thus we are thinking of s being a monotone
decreasing function). It would also be interesting and useful to build extinctions into such a
model, however we do not pursue this here.

Kubo and Iwasa [6] consider a rate-varying model of speciation, however in their case, the
speciation rate is a function of (absolute) time, rather than the lineage-specific time back to the
last speciation event. Our model has more similarity to that discussed by Heard [5] who used
computer simulation rather than analytical techniques in his analysis. Our general approach,
which encompasses more than one model in a single analytical framework, is akin to that
taken by Aldous [9]. We are interested in the probability distribution that this model induces
on the tree that describes the species descendent from sy. Since we are only interested in the
‘shape’ of these speciation trees, we will mostly deal with trees in which the vertices are
unlabeled.

6.1. Terminology

In this section the following additional terminology for rooted trees is necessary.

e For n > 1, let UB(n) denote the (finite) set of unlabeled binary trees consisting of n leaves to-
gether with an additional leaf, the root leaf s, (where the root leaf is the top-most vertex),
and whose remaining internal vertices are all of degree 3 (Fig. 6(a)).

e For n > 2, let EUB(n) denote the (finite) set of edge-rooted unlabeled binary trees obtained
from UB(n) by deleting from each tree the root leaf and its incident edge. If © € UB(n), then
we will let t* denote the associated tree in EUB(n) (Fig. 6(b)).

e Fort € UB(n), let L(7) be the set of distinct trees that can be obtained by assigning the (species)
labels {1,...,n} bijectively to the n non-root leaves of t. Let LB(n) := ¢y, L(7), the set of
labeled binary trees (Fig. 6(c)).
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So 0
4 3 2 1 5
(b) (d)

(@ c)

Fig. 6. Rooted tree types. (a) An unlabeled binary tree on five leaves; T € UB(5). The root vertex is labeled so. (b) The
edge-rooted unlabeled binary tree on five leaves obtained by removing the root leaf and its incident edge; t* € EUB(5).
(c) A labeled binary tree on five leaves; © € LB(5). (d) The two subtrees, t' and 7° of the tree 7 in (a).

s
(

6.2. Formulae

For the model described above, the speciation tree at time 7 € [0, 1], 7(¢), is the unlabeled tree of
descent of the species that have evolved up to time ¢ from the root leaf so. For 0 <¢ <1 and
7 € UB(n), consider the following (absolute and conditional) probabilities

f(t,t) =P[T() =7]; p(r):=P[T(1) =1]|T(1) has n leaves|. (30)
Let A(sy) denote the time until speciation of sy, and set
S(x) = P[A(so) = x];  0a(x) :=s(x)S(x), (31)

where s(x) is, as previously, the speciation rate at moment x.
Since the speciation of s; is a time-dependent Poisson process we have, from Ref. [34],

P{A(so) > x] = exp [— /0 “s(2) di} (32)

Thus, o(x) = lims_o (P[A(sy) € (x,x + 0)])/0 and so, by the assumptions that define the model,
we have the following fundamental recursion:

F(n6) = 220 /0 = (et - x)o(x) d, (33)

where 1! and t? denote the two subtrees of T whose two vertex sets (i) intersect precisely on v and
(i1) cover all vertices of 7 except s (Fig. 6(d)) and where

5(’[) _ { 1 if ’El 75 ’L'z, (34)

0 otherwise.
Let N(z) denote the total number of species existing at time ¢ € [0, 1], and let
v(k,t) == P[N(t) = k.
For © € UB(n) we wish to calculate the conditional probability

() = B{r(1) = | N(1) =] =15, 35)
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The number v(n, 1) appearing in Eq. (35) is given by
vn, 1) = Y f(z,1).
)

t€UB(n

However, the number of terms in this summation grows exponentially with n. Thus, we also give a

simple recursion for computing the functions v(1,7),...,v(k,¢) and thereby the number v(n, 1), as
follows:
v(l,1) = S(2)

k—1

v(k,t) = /0 v(i,t —x)v(k —i,t — x)o(x) dx.

i=1
We may also wish to compute the probability of the induced edge-rooted tree. Thus, given
7 € UB(n) and its associated tree t* € EUB(n). Let

p(t") == Elirg}r PIT(1) =1 |N(1) =n; A(s) < €. (36)

The motivation for considering p(t*) is that one is frequently interested in the distribution on
edge-rooted trees, and we can simplify matters by supposing that the first speciation event hap-
pened at time 0. We have the recursion

p(r) = 2°9p(")p(7) (37)
with ', 7% as in Eq. (33).
Note that if we wish to compare the probability ratios of two trees, then we can dispense with
the function v altogether, since p(t)/p(7') = f(z,1)/f (7, 1). For i € {1,2,3}, there is just one tree
in UB(i) so we write UB(i) = {t;}. We have

f(rlyt) = S(t)a

f(t2,0) = /O S(t —x)*o(x) dx,

f(t3,1) = 2/0 S(t—x)f (12, — x)o(x) dx.

For the (only) two trees 7,3 and 15, in UB(4), as shown in Fig. 7, we have

So So

Fig. 7. The two tree shapes on four leaves (7,3 and 7).
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f(t13,1) :2/0 S(t —x)f (13, —x)o(x) dx

and

f(122,1) /f‘fz,t—x o(x) dx.

Thus we can obtain an explicit expression for the ratio of the probabilities of 75, and 1, 3, and even
simpler formulae for corresponding rooted trees, by a further application of Egs. (33) and (37).
This is summarized in Theorem 5.

Theorem 5. Under the rate varying speciation model the tree shapes on four leaves satisfy

p(r20) _ Jo Uy S —x = 5)%0(s) ds}a(x) dx
p(t13) 4f (1 —x)o {f S(1 —x—s)o {flxY (1 —x—s—r) c(r)dr} ds} dx’

p(53,) _ {Jy U = x)0(x) dx}’ .
13) 481 [} S(1—x)a(){[f, " S(1 —x —r)’a(r) dr} dx

6.3. Two classes of models

1. The simplest model has s(x) =s > 0, constant. This gives the Yule model as described in
Section 3. In this case, o(x) =se™™ and N(¢) models a pure birth process, so v(k,t) =
e(1 —e")*"". Under this model, p(t,,) = p(t3,) = 1/3, and, more generally, by Proposition 1,
p(t) =p(r*) = 22O ], (i — 1)"% where d;(t) denotes the number of internal vertices of t which
have exactly i descendant leaves, and u(7) is the number of unbalanced internal vertices of t — that
1s, internal vertices for which the two descendant subtrees are not identical.

2. The models of a second class are those which satisfy the condition

s(x) =0 for x > e,

which we will call ‘explosive radiation’ models. In these models, unless a species has undergone a
speciation event within the last e time interval, it will never do so. Thus, in these models, speci-
ation events would tend to be clustered close together. We now analyse this model, and show that,
provided epsilon is sufficiently small, then this model is precisely that induced by a uniform dis-
tribution on leaf-labeled trees.

Under the uniform model, on rooted trees, a tree is selected uniformly from LB(n), and then it is
viewed as an unlabeled tree T € UB(n). The probability of the tree shape 7 is calculated as
Punie(t) = |L(7)|/|LB(n)|, where L(t) ={T € LB(n) : T is a leaf-labeling of t}. Fortunately, the
numerator and denominator of this ratio can both be evaluated exactly, and so we get an explicit
formula for pur(t) as follows. We have |L(t)| = n!27%(), where b(7) is the number of balanced
internal vertices of t — that is, internal vertices for which the two descendant subtrees are identical.
Now, from Ref. [35],
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(2n —2)!

Therefore, under the uniform model on rooted trees,
L@ _ (2m-2\"
punif( ) ’LB( )‘ n—1 2 ) (39)

where u(t) is the number of unbalanced internal vertices (and so b(t) + u(t) =n — 1).

Theorem 6. Under an explosive radiation model, with e < 1/n, the probability distribution on trees is
precisely that induced by the uniform model. That is,

p(t) = punic(t) VT € UB(n).

Proof. We use induction on n to establish the following:
CLAIM :if T € UB( ), then f(1,¢) = c¢(n)2"® for t > ne,

where ¢(n) = e Jo ) e ot )yt
The claim clearly holds for n=1, smce in this case, if ¢ > ¢,

F0) = S(t) = ¢ oD 4 = o Jrs0

Now suppose the result holds for n =k > 1, and let t € UB(k + 1). Then, from Eq. (33) and the
fact that s(x) is 0 for x > ¢, we have, for 7 > e,

— 2 /ef(rl,t C0)f (= x)olx) d.
0

Fori = 1,2, let k; denote the number of leaves of ¢’ (thus, k1 + k» =k + 1). If t > (k + 1)e, and x <
€, we have t —x > ke > ke (since ky,k; <k). Thus we may apply the induction hypothesis to
f(t',t —x) and f(z%,¢ — x) over the range of integration and deduce that, for ¢ > (k + 1),

F(n1) = 200 / (k)2 (k)25 (x) dx = 2Oy (k) / o(x) dx = 2Ok + 1)
0 0

by the definition of the function c.

By Eq. (35), p(t) = f(z,1)/v(n, 1) and therefore, since € < 1/n, we can apply the above claim to
deduce that p(t) = ¢*(n)2"® for a function ¢* that depends only on n and perhaps the function s.
However, it is easy to show that ¢* does not depend on s at all, and that it must equal

cT(n) = n(z”j)*l, since we have, from (39)

Z 2u Z pumf Z Z 2” (40)

t€UB(n t€UB(n 1€UB(n) t€UB(n)

and thus ¢(n) = ¢*(n) = 1/ 3 () 2“7 Hence, p(t) = puit(7), as claimed. O
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