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Abstract—Ancestral maximum likelihood (AML) is a method that simultaneously reconstructs a phylogenetic tree and ancestral

sequences from extant data (sequences at the leaves). The tree and ancestral sequences maximize the probability of observing the

given data under a Markov model of sequence evolution, in which branch lengths are also optimized but constrained to take the same

value on any edge across all sequence sites. AML differs from the more usual form of maximum likelihood (ML) in phylogenetics

because ML averages over all possible ancestral sequences. ML has long been known to be statistically consistent—that is, it

converges on the correct tree with probability approaching 1 as the sequence length grows. However, the statistical consistency of

AML has not been formally determined, despite informal remarks in a literature that dates back 20 years. In this short note, we prove a

general result that implies that AML is statistically inconsistent. In particular, we show that AML can “shrink” short edges in a tree,

resulting in a tree that has no internal resolution as the sequence length grows. Our results apply to any number of taxa.

Index Terms—Phylogenetic reconstruction, ancestral maximum likelihood, statistical consistency.

Ç

1 INTRODUCTION

MARKOV models of site substitution in DNA are the basis
for most methods for inferring phylogenies (evolu-

tionary trees) from aligned sequence data. The usual
approach is maximum likelihood (ML), which seeks the
tree and branch lengths that maximizes the probability of
generating the observed data under a Markov process. In
the simplest setting, one assumes that sites evolve indepen-
dently and identically and that the extant sequences (data)
label the leaves of the tree—for background on phyloge-
netics, ML, and other important reconstruction techniques
such as maximum parsimony (MP) and neighbor-joining
(NJ), see [10]. ML is computationally complicated, and even
the problem of finding the optimal branch lengths exactly
on a fixed tree has unknown complexity. In ML, one
considers all possible ancestral sequences that could have
existed within the tree and averages each such “scenario”
by its probability. An alternative is to simply consider a
single choice of ancestral sequences that has the highest
probability—this is a variant of ML that was introduced in
1987 by Barry and Hartigan [3] under the name “most
parsimonious likelihood,” which later was renamed ances-
tral maximum likelihood (AML) (see, e.g., [1]). The computa-
tional complexity of AML is slightly easier than ML, in that
given the tree and either the optimal branch lengths or the
optimal ancestral sequences, the other “unknown” (ances-

tral sequences or branch lengths) is readily determined (see,
e.g., [2] and [15]). The method can be viewed as being, in
some sense, intermediate between ML and MP, which seeks
the tree and ancestral sequences that minimizes the total
number of site substitutions required to describe the data.
Indeed, AML would select the same trees as MP if one
further constrained AML so that each edge had the same
branch length, as shown in [11].

The recent interest in AML has sprung from computa-
tional complexity considerations. First, AML provided a
route by which to show that the problem of reconstructing an
ML tree from sequences is NP-hard [1], [6]. It turned out that
the NP-hardness of ML can be established directly, without
invoking AML [17]; however, the relative computational
simplicity of AML over ML suggests that it may provide an
alternative strategy for reconstructing large trees.

Nevertheless, it is important to know whether the
desirable statistical properties of ML carry over to methods
such as AML. In particular, ML has long been known to be
statistically consistent as a way of estimating tree topologies
(see, e.g., [10] and references therein)—that is, as the
sequence length grows, the probability that ML will
reconstruct the tree that generated the sequences tends
to 1. It has also been known (since 1978) that earlier
methods such as MP can be statistically inconsistent [9].

However, the statistical consistency of AML is unclear,
since the standard Wald-style conditions required to prove
consistency (in particular, a fixed parameter space that does
not grow with the size of the data) does not apply. Thus, one
may suspect that AML might be inconsistent, and indeed,
remarks in the literature have suggested this could be the
case (see [4] and [12]). However, the absence of a sufficient
condition to prove consistency does not constitute proof of
inconsistency, and the purpose of this short note is to
formally show that AML is statistically inconsistent. More
precisely, we show that AML tends to “shrink” short edges in
a tree, and this can result in the collapse of the interior edges
(and any short pendant edges) to produce a star tree.

The results in this paper rely on probability argu-
ments, based on expansions of the entropy function, and
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combinatorial properties of minimal sets of edges that
separate each pair of leaves in a tree.

1.1 Problem Statement

1.1.1 CFN Model

We define ½n� ¼ f0; . . . ; n� 1g, and we deal with the
Cavender-Farris-Neyman (CFN) model [5], [8], [14].

Definition 1 (CFN model). We are given a tree T ¼ ðV ;EÞ on
n leaves labeled ½n� and an assignment of edge probabilities
p : E ! ð0; 1=2Þ. A realization of the model is obtained as
follows: choose any vertex as a root, pick a state for the root
uniformly at random in {0, 1}, and moving away from the root,
each edge e flips the state of its ancestor with probability pe.
We denote by X the (random) state at the leaves obtained in
this manner. We write X � CFNðT;pÞ. Note that we do not
allow substitution probabilities 0 and 1=2 in order to
guarantee that the model is fully identifiable.

1.1.2 Ancestral Maximum Likelihood

We consider two equivalent formulations of the AML problem.

Definition 2 (AML version 1). The AML problem can be
stated as follows: given a set S of n binary sequences of
length k, find a tree T ¼ ðV ;EÞ on n leaves, an assignment
p : E ! ½0; 1� of edge probabilities, and an assignment of
sequences �� : V ! f0; 1gk to the vertices such that

1. the sequences at the leaves under �� are exactly the
sequences from S and

2. the quantity

LðT;p j ��Þ ¼ � log2

Y
e2E

pdee ð1� peÞ
k�de

 !
ð1Þ

is minimized, where

du;v ¼ k�u � �vk1:

Note that LðT;pj��Þ above is the log-likelihood score under the
CFN model with parameters T and p.

The second version, due to [1], is obtained by setting

pe ¼
de
k
; ð2Þ

for all e in the first version.

Definition 3 (AML version 2 [1]). The AML problem can
alternatively be stated as follows: given a set S of n binary
sequences of length k, find a treeT onn leaves and an assignment
of sequences �� : V ! f0; 1gk to the vertices such that

1. the sequences at the leaves under �� are exactly the
sequences from S and

2. the quantity

HðT j ��Þ ¼
X
e2E

H
de
k

� �

is minimized; recall that the entropy function is

HðpÞ ¼ �p log2 p� ð1� pÞ log2ð1� pÞ;

for 0 � p � 1.

Note that in Definition 2 (and implicitly in Definition 3),
we allow substitution probabilities exceeding 1=2, while
such values are excluded in our definition of the CFN model.
This is in line with a practical optimization perspective
where it may be natural to allow all values 0 � pe � 1 and
0 � de � k. However, our results are also valid when pe is
restricted between 0 and 1=2 because this constraint does not
play a major role in our proof. Moreover, we explicitly allow
values pe ¼ 0; 1 as otherwise, the infimum in (1) may not be
attained.

1.1.3 Consistency

We denote by BðkÞn the set of all data sets on n leaves, where

sequences have length k. We generally denote a particular

data set by ��, where ��ðiÞ is the sequence at leaf i 2 ½n�. For

each data set, a phylogeny estimator �ðkÞn returns a tree on

n labeled leaves. For modeling purposes, we consider a

particular type of data set: if XX ¼ fX1; X2; . . .g is a sequence

of (possibly random) characters on n leaves, then ��
ðkÞ
XX is the

data set corresponding to the first k characters.
More formally, a phylogeny estimator � ¼ fð�ðkÞn Þn;k�1g is a

collection of mappings from sequences to trees, that is

�ðkÞn : BðkÞn ! T n;

where BðkÞn is the set of all assignments of the form

BðkÞn ¼ �� j �� : ½n� ! f0; 1gk
n o

(in other words, BðkÞn is the set of all {0, 1}-data matrices

with n rows and k columns), and T n is the set of all trees

on n leaves labeled by ½n� (without edge parameters). Let

XX ¼ fX1; X2; . . .g with Xj : ½n� ! f0; 1g. For all k � 1, we

denote by �� ¼ ��ðkÞXX the data set in BðkÞn such that ð�vÞj ¼
ðXjÞv for all v 2 ½n� and j ¼ 1; . . . ; k (in other words, the

data matrix ��
ðkÞ
XX has k columns, where Xj is the

jth column).

Definition 4 (consistency). A phylogeny estimator � is said to be

(statistically) consistent if for all n, all trees T ¼ ðV ;EÞ 2 T n
and all edge probability assignments p : E ! ð0; 1=2Þ, it

holds that

�ðkÞn ��
ðkÞ
XX

� �
! T

almost surely as k! þ1, where XX ¼ fX1; X2; . . .g with

X1; X2; . . . independently generated by CFNðT;pÞ.

1.2 Main Result

Let �AML be the AML phylogeny estimator for AML version 1,
where all edges e with pe ¼ 0 have been contracted. (In
cases where several trees can produce an optimal score for
the same data set, pick one such optimal tree arbitrarily.)

Theorem 1 (branch shrinkage in AML). For all n � 3 and all
tree T ¼ ðV ;EÞ 2 T n, there is a constant � > 0, and an edge
parameter set of the form QT ¼

Q
e2E Ie (Cartesian product),

where Ie � ð0; 1=2Þ is an interval of length at least �, such
that if p 2 QT , then �AML returns a star rooted at 0 in the
limit k! þ1 on the data set XX ¼ fX1; . . .Xkg with
X1; . . . ; Xk independently generated by CFNðT;pÞ.
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The phenomenon described in Theorem 1 is illustrated in
Fig. 1. We refer to QT informally as a “shrinkage zone”:
inside QT , several edges with positive length under the true
model are entirely contracted by AML. More precisely, as
shown in Fig. 1, our main result (see Proposition 6) implies
that when the true tree has n� 1 long leaf edges and all other
edges are short, AML is guaranteed to return a star rooted at
a leaf, as the sequence length goes to infinity. Although our
results apply only to a very specific region in the parameter
space, this “shrinkage” effect—or more generally, the
systematic underestimation of branch lengths—may in fact
be common in AML. (See Section 1.3 for some “hints.”) We
leave for future work the study of the extent of this
phenomenon.

We note that our result does not imply the stronger
statement that AML is “positively misleading,” that is,
AML does not return an incorrect reconstruction in this case
since we can think of the rooted star as the correct tree T ,
where several edges are set to pe ¼ 0. Note, however, that
the solution is highly degenerate since the star can be
obtained in this way from any tree. In other words, in our
“shrinkage zone,” AML provides no information about the
internal structure of the tree even with infinitely long
sequences. Whether or not AML can actually be positively
misleading is an interesting question for future work.

1.3 Proof Sketch

The basic idea behind the proof is to consider a tree where
all branches are long. In order to obtain some intuition
about the construction, it is useful to consider first the
extreme case where all branches are of infinite length.
Clearly, then, the distribution of characters generated at the
leaves is simply the uniform distribution on f0; 1gn.

As we show in the next section (see Definition 6), it
follows from Definition 3 that in this case, the AML
problem boils down to finding a tree and a distribution of
states on the vertices with uniform marginal on the leaves
such that the expression X

e

HðZeÞ

is minimized, where Ze denotes the random variable taking
value 1 if there is a substitution on edge e and taking value 0

otherwise. One should think of this formulation simply as a
large-k limit of Definition 3.

Note that for the true generating process, we have
P ½Ze ¼ 1� ¼ 1=2 for all e 2 E and that the Zes are indepen-
dent. Note furthermore that we then haveX

e

HðZeÞ ¼ 2n� 3 ¼ # of edges:

It is natural to ask if this is the most “efficient” way to
generate the uniform distribution in terms of the quantityP

e HðZeÞ. A moment’s reflection reveals that there are in
fact better ways. In particular, it suffices to let all Zes to be
identically 0 except for n� 1 of the edges pendant at the
leaves. In other words, all internal states are taken to be
equal to that of a fixed leaf. It is easy to see that in this case,
the generated distribution is uniform, and yetX

e

HðZeÞ ¼ n� 1 < 2n� 3:

See Fig. 2 for an illustration of the four-leaf case. Using
properties of the entropy function, it is further possible to
establish that any assignment of the Zes consistent with the
uniform distribution on the leaves must satisfyX

e

HðZeÞ � n� 1:

Note that this shows a “shrinkage” for AML. While the
generating tree has infinitely long branches and, therefore,
HðZeÞ ¼ 1 for all branches, the AML tree has infinitely long
branches, and HðZeÞ ¼ 1 only for n� 1 of the branches
while all other branches have HðZeÞ ¼ 0, that is, the
branches are contracted to length 0.

The main result of the paper establishes the same kind of
phenomenon when the branches of the generating tree are
long but of finite length. It shows that in that case, the AML
tree has n� 1 long branches, and all other branches are
entirely contracted.

It may look surprising that the branches shrink to
length 0 rather than just a small—but positive—length. As
we show in the next section (see Proposition 1 and the
discussion after its proof), optimal branch lengths in AML
can only take finitely many values, even as k tends to þ1:
indeed, by a convexity argument, we prove that optimal
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branch lengths must be consistent with a fixed assignment of
ancestral states for each possible character (that is, an
assignment of internal sequences such that if the same
character appears more than once in the data, it must be
assigned the same internal states). This implies that for a
large k, the only values allowed for the optimal branch
lengths are quantities that can be expressed as sums of
character probabilities under the generating model—such
quantities are independent of k (see the discussion after
Proposition 1 for more details). As a consequence, it is not
possible for the optimal solution to assign arbitrarily small
edge lengths. The smallest positive value allowed is in fact
the smallest positive character probability—which can be
much larger than 1=k for a large k.

A more detailed analysis allows us to show which of the
branches should be contracted and to conclude that the
AML tree has a star topology (under the assumptions of our
main theorem). See also Fig. 1.

In fact, a weaker result follows immediately from the
argument above: branch length estimation in AML cannot
be consistent. To see this, consider the four-leaf example in
Fig. 3, where all leaf edges are very long, and the internal
edge is very short. For concreteness, we say that the internal
edge has a substitution probability of 1 percent. Then, since
each character appears with probability roughly 1=16, a
fixed ancestral assignment to each character can only
generate probabilities of substitution that are roughly
multiples of 1=16. Indeed, there are 24 ¼ 16 possible
character states 0000; 0001; 0010; . . . ; 1111, each appearing
with roughly uniform probability. In particular, following
our previous analysis, a small strictly positive value such as
1 percent cannot possibly be achieved by AML in this case
(assuming that the topology is correctly reconstructed).

Note finally that ML is not affected by this “shrinkage”
phenomenon as it associates the same score to all models
with the same distribution of characters at the leaves, and it
is not “constrained” to (optimal) substitution probabilities
corresponding to discrete ancestral assignments.

1.4 Organization

We begin with some preliminary remarks in Section 2. The
proof of Theorem 1 can be found in Section 3.

2 PRELIMINARIES

2.1 Solution Properties

2.1.1 Fixed Extension

Let T 2 T n. For an assignment of sequences �� 2 BðkÞn and
1 � j � k, we call � : ½n� ! f0; 1g with �u ¼ ð�uÞj for all
u 2 ½n� the jth character in ��. We write � 2 �� if there is a j
such that � is the jth character in ��. We also denote by �#

the number of characters in �� equal to �. An extension of a
character � is a mapping �� : V ! f0; 1g such that ��v ¼ �v
for all v 2 ½n�. We denote by Vð�Þ the set of all extensions of
� on T . Let f : f0; 1g½n� ! f0; 1gV�½n�. The mapping f then
defines an extension ��f for all characters � simultaneously
by setting ð��fÞv ¼ �v for all v 2 ½n� and ð��fÞv ¼ fð�Þv for all
v 2 V � ½n�. In other words, for each character �, an
extension f assigns a unique state in {0, 1} to each internal
node in V . We show next that AML is in fact equivalent to
finding such an f—which can significantly reduce the size
of the problem for a large k as the number of possible
characters is finite. For a set of n binary sequences, �� 2 BðkÞn
and a tree T ¼ ðV ;EÞ 2 T n, we denote by ���f the extension
of �� to V by applying f as above to every character in ��.

Definition 5 (AML version 3). Given a set of n binary

sequences �� 2 BðkÞn , find a tree T 2 T n and a mapping

f : f0; 1g½n� ! f0; 1gV�½n� such that the quantity

HðT j ���fÞ ¼
X
e2E

H
de
k

� �

is minimized, where

du;v ¼ ð��fÞu � ð��fÞv
�� ��

1
:

Note that in AML version 2 (see Definition 3), if the same
character appears more than once, it can be mapped to
different internal assignments. This is explicitly forbidden in
AML version 3, as justified by the next proposition.
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length 0. (a) The original generating tree. (b) This tree has the same

character distribution at the leaves, that is, uniform. Yet, the AML score

of the bottom tree is strictly smaller.

Fig. 3. In this example, the leaf edges are sufficiently long that the

character distribution is roughly uniform.



Proposition 1 (AML, fixed extension). There is always a

solution of AML version 1 (and 2) of the form �� ¼ ���f for some

f : f0; 1g½n� ! f0; 1gV�½n� with corresponding assignment

p : E ! ½0; 1� of edge probabilities, where

pe ¼
de
k
;

for all e with

du;v ¼ ð��fÞu � ð��fÞv
�� ��

1
:

Moreover, all optimal assignments of edge probabilities under

AML version 1 must be of the form above, for some fixed

extension.

Proof. As before, we denote the data set by ��. Let T �, p�,

and ��� be any optimal solution under AML version 1.

Note that

LðT;p j ��Þ ¼ � log2

Y
e2E

pdee ð1� peÞ
k�de

 !

¼ �
X
e2E

log2 pdee ð1� peÞ
k�de

� �
¼ � k

X
e2E

log2ð1� peÞ

�
Xk
j¼1

X
ðu;vÞ2E

11 ð�uÞj 6¼ ð�vÞj
n o

log2

pe
1� pe

;

where 11fEg ¼ 1 if E is satisfied and is 0 otherwise. We

make two observations:

1. From the third equality, we deduce that for fixed
T and p, the quantity L “decomposes linearly” in
j. Hence, it is always possible to modify ��� so as
to take the same extension for each character
appearing in the data ��, without affecting
optimality. Let f� be such a fixed extension that
is optimal under T �, p�. That is, we let ��� ¼ ���f� .

2. It was noted in [1] that the expression
pdee ð1� peÞ

k�de as a function of pe is uniquely
maximized at pe ¼ de=k. Therefore, given T � and
���f� , we deduce from the second equality that
the unique edge probability maximizer p� must
satisfy

p�e ¼
d�e
k
; ð3Þ

for all e with

d�u;v ¼ ð��f� Þu � ð��f� Þv
�� ��

1
: ð4Þ

In other words, if p� is not of this form, we get a

contradiction by strictly improving the solution

using the above solution form.

The solution sought in the statement of the proposition is

given by T �, p�, and ���f� . The second claim immediately

follows from Point 2 above. tu
The second claim of Proposition 1 says that any optimal edge

probability assignment p� must correspond to a fixed

extension f�. As we discussed informally in Section 1.3,

this has an important consequence. Assume that p� is

defined as in (3) and (4). Note that for e ¼ ðu; vÞ, we have

d�e
k
¼ k�1 ð��f� Þu � ð��f� Þv

�� ��
1

¼
X
�2��

�#

k

� �
11 ���u 6¼ ���v
� �

;

where ��� is the extension of � under ���f� . By the Law of Large

Numbers, �
#

k converges to the probability of observing the

character � under the generating model, a quantity

independent of k. Hence, for a large k (and fixed n),
d�e
k can

be written as a simple combination of character probabilities

under the true model—restricting significantly its possible

values. In particular, the smallest nonzero value allowed for

the optimal p�e is the smallest nonzero character probability

under the true model, which can be much larger than 1=k for

a large k.

2.1.2 Limit Problem

Let T ¼ ðV ;EÞ 2 T n. Assume as in Theorem 1 that we are

given a data set XX ¼ fX1; X2; . . .g with X1; X2; . . . i.i.d.

CFNðT;pÞ. Fix f : f0; 1g½n� ! f0; 1gV�½n�. Let X � CFNðT;pÞ
and denote by Y ¼ �Xf the extension of X under f . Also, let

���
ðkÞ
XX;f

be the extension of ��
ðkÞ
XX under f . By the Law of Large

Numbers, as k! þ1, the quantity HðT j���ðkÞXX;f
Þ converges

almost surely to

IHX;T ðfÞ ¼
X
e2E

HðZeÞ;

where for e ¼ ðu; vÞ, Ze is the indicator that Yu 6¼ Yv, and

HðZeÞ is the entropy of Ze, that is

HðZeÞ ¼ H IP½Yu 6¼ Yv�ð Þ:

Note that by Proposition 1, even as k! þ1, there are

only a constant number of mappings f to consider. We say

that f is IHX;T -optimal if f minimizes IHX;T ðfÞ over all

f : f0; 1g½n� ! f0; 1gV�½n�. The minimum need not be unique.

Definition 6 (expected AML). Given a random variable X

taking values in f0; 1g½n�, find a tree T ¼ ðV ;EÞ 2 T n and a

fixed extension f : f0; 1g½n� ! f0; 1gV�½n� such that the

quantity

IHX;T ðfÞ ¼
X
e2E

HðZeÞ

is minimized, where ðZeÞe2E is as above with Y ¼ �Xf .

By the previous remarks and (2), to prove Theorem 1, it

suffices to show the following.

Theorem 2 (optimal assignment). Let T 0 ¼ ðV 0; E0Þ 2 T n
and let X � CFNðT 0;pÞ. Then, there is a constant � > 0

and a set QT 0 ¼
Q

e2E0 Ie with jIej > � such that for all

p 2 QT 0 and T ¼ ðV ;EÞ 2 T n, the unique IHX;T -optimal f :

f0; 1g½n� ! f0; 1gV�½n� assigns to all internal nodes of V the

value at leaf 0 under all characters, that is

fðxÞ ¼ ðx0; . . . ; x0Þ;

for all x 2 f0; 1g½n�.
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2.2 Minimal Isolating Sets

2.2.1 Definition

In preparation for our proof of Theorem 2, we will need the
following notion, which is studied in [13].

Definition 7 (isolating set). LetT ¼ ðV ;EÞ be a tree. A subsetS

ofE is called an isolating set for T if for any two leaves u and v,

there exists an edge e 2 S on the path connecting u and v.

The following result is proved in [13].

Proposition 2 (minimal isolating set). The size of a minimal

isolating set on an n-leaf tree is n� 1.

We will also need the following proposition.

Proposition 3 (one leaf per component). Let T be a tree on
n leaves and let S be a minimal isolating set on T . Consider the
forest F obtained from T by removing all edges in S. Then,
each component of F contains exactly one leaf of T .

Proof. If a component of F contains two leaves, then these
cannot be isolated under S, a contradiction. On the
other hand, if a component T 0 of F does not contain a
leaf, then every edge adjacent to T 0 in T is in fact in S.
But then, one can remove one of these edges without
losing the isolating property of S, contradicting the
minimality of S. tu

2.2.2 Minimally Isolating f

Let T ¼ ðV ;EÞ 2 T n and f : f0; 1g½n� ! f0; 1gV�½n�. We

denote by Sf � E the set of edges e ¼ ðu; vÞ such that

there is x 2 f0; 1g½n� with fðxÞu 6¼ fðxÞv.
Definition 8 (minimally isolating f). We say that f is

minimally isolating for T if Sf is a minimal isolating set of T .

2.3 Random Cluster Parameterization

We will sometimes require a different (“random cluster”)
parameterization of the CFN model. Let T 2 T n and
p 2 ½0; 1�E . (Note that we allow pe in ½0; 1�.) We let

�e ¼ 1� 2pe;

for all e 2 E. The main property we will use is the following
well-known identity. For two leaves u and v in T , let
PathT ðu; vÞ be the set of edges on the path between u and v.

Proposition 4 (path probability). Let T ¼ ðV ;EÞ 2 T n and

p 2 ½0; 1�E . Assume that X � CFNðT;pÞ. Let u and v be two

leaves of T . Then, it is well known (see, e.g., [7]) and easily

proved by induction that

IP½Xu 6¼ Xv� ¼
1

2
1�

Y
e2PathT ðu;vÞ

�e

0
@

1
A:

3 PROOF

In this section, we prove Theorem 2 from which Theorem 1

follows. The proof has two components:

1. [Reduction to Minimal Isolating Sets] We first show
that for any random variable X 2 f0; 1g½n� close

enough to uniform and any tree T 2 T n, the IHX;T -
optimal f’s are minimally isolating for T .

2. [Rooted Star Is Optimal] Second, we show that if X
above is CFNðT 0;pÞ for some T 0 2 T n with pe 	 1=2
if e is adjacent to f1; . . . ; n� 1g and pe 	 0 otherwise,
then for all T 2 T n, the unique IHX;T -optimal f
assigns the value at 0 to all internal nodes.

Throughout, n � 1 is fixed.

3.1 Reduction to Minimal Isolating Sets

We prove the following.

Proposition 5 (reduction to minimal isolating sets). There
exists " > 0 (depending on n) such that the following hold.
Let X be any random variable taking values in f0; 1g½n�
with HðXÞ � n� " and let T be any tree in T n. If f is
IHX;T -optimal, then f is minimally isolating for T .

Proof. We make a series of claims. tu
Claim 1 (reduction to uniform). For all � > 0, there exists
" ¼ "ð�Þ > 0 such that if X is a f0; 1g½n�-random variable with

HðXÞ � n� "

and f : f0; 1g½n� ! f0; 1gV�½n�, then

IHX;T ðfÞ � IHU;T ðfÞ
		 		 � �; ð5Þ

where U is the uniform distribution on f0; 1g½n�. Therefore,
it suffices to prove Proposition 5 for those f that are IHU;T -
optimal.

Proof. The entropy of f0; 1g½n�-random variables is max-
imized uniquely at HðUÞ ¼ n. The first part of the result
follows by continuity of HðXÞ and IHX;T ðfÞ in the
distribution of X.

For the second part, take a small enough � > 0 such
that for all f and f 0, we have

IHU;T ðfÞ > IHU;T ðf 0Þ¼)IHU;T ðfÞ > IHU;T ðf 0Þ þ 2�: ð6Þ

(Recall that there are only finitely many f’s for fixed n.)
Take " > 0 such that the first part holds. Then, it follows
that if f is IHX;T -optimal, then it must be IHU;T -optimal.
We argue by contradiction. Assume that there are f and
f 0 such that IHX;T ðfÞ � IHX;T ðf 0Þ, but IHU;T ðfÞ > IHU;T ðf 0Þ.
By (6), we have

IHU;T ðfÞ > IHU;T ðf 0Þ þ 2�; ð7Þ

which implies IHX;T ðfÞ > IHX;T ðf 0Þ by (5), a contra-
diction. tu

Claim 2 (minimizer). If f is IHU;T -optimal, then
IHU;T ðfÞ ¼ n� 1. Moreover, denoting Y ¼ �Uf , we have that
fY0; ðZeÞe2Eg are mutually independent.

Proof. Upper bound. We first show that there is f such that
IHU;T ðfÞ � n� 1. Let S be a minimal isolating set for T .
Define f by letting fðxÞu ¼ fðxÞv for all edges ðu; vÞ not in
S. By Proposition 3, this uniquely defines f . Letting
Y ¼ �Uf , it is immediate to check that

IHU;T ðY Þ ¼
X
e2E

HðZeÞ ¼
X
e2S

HðZeÞ � n� 1;

by Proposition 2.
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Lower bound. For any f : f0; 1g½n� ! f0; 1gV�½n� with
Y ¼ �Uf , we have

n ¼HðUÞ ¼ H ðYvÞv2½n�
n o� �

¼ H Y0; ðZeÞe2E
� �
 �

�HðY0Þ þ
X
e2E

HðZeÞ � 1þ
X
e2E

HðZeÞ;

where we have used that fðYvÞv2½n�g and fY0; ðZeÞe2Eg
are deterministic functions of each other. Furthermore,
the first inequality holds to equality if and only if
fY0; ðZeÞe2Eg are mutually independent. tu

We are ready to conclude the proof of Proposition 5. Let f
be IHU;T -optimal with Y ¼ �Uf . Let u and v be any two
leaves of T . We have by the previous claim that
ðZeÞe2PathT ðu;vÞ are mutually independent. Since Yu and Yv
are independent and uniform in {0, 1}, it must be that there
is an edge e 2 PathT ðu; vÞ with HðZeÞ ¼ 1. Indeed, define
pe ¼ IP½Ze ¼ 1� and �e ¼ 1� 2pe. Then, by Proposition 4,
we have

0 ¼ 1� 2IP½Yu 6¼ Yv� ¼
Y

e2PathT ðu;vÞ
�e;

which implies that at least one �e ¼ 0. Let S0 be the set of all
edges where HðZeÞ ¼ 1. Then, we have shown that S0 is an
isolating set. Note furthermore that if e 2 Sf , then
HðZeÞ � Hð2�nÞ > 0. From f’s optimality, we obtain

n� 1 ¼ IHU;T ðfÞ � jS0j þ jSf n S0jHð2�nÞ:

Therefore, we must have Sf ¼ S0 and jS0j ¼ n� 1, which
implies that Sf is a minimal isolating set as needed. tu

3.2 The Rooted Star Is Optimal

Let T ¼ ðV ;EÞ 2 T n and S be a minimal isolating set of T .

Let T 0 be the tree obtained from T by contracting all edges

not in S. By Proposition 3, T 0 is an n-node tree where each

node (leaf or internal) is (uniquely) labeled by a leaf of T .

Let T 0
n be all such trees on n nodes. By Proposition 5, the

AML phylogeny estimator is among T 0
n. Note that for

T 2 T 0
n, the only possible extension is the identity f ¼ Id

since there are no unlabeled internal vertices.

Proposition 6 (rooted star is optimal). Let T ¼ ðV ;EÞ 2 T n.
Let W be the set of leaf edges of T , except the edge pendant at
leaf 0. Then, for sufficiently small ", � > 0, the following holds.
Assume that X � CFNðT;pÞ with corresponding random
cluster parameterization satisfying 0 < �e � " for all e 2W
and 1 > �e > 1� � for all e 62W . Then, among all trees
T 0 2 T 0

n, the star rooted at 0 uniquely minimizes IHX;T 0 ðIdÞ
for all sufficiently small �.

Proof. We assume that � and " are small enough so that they
satisfy

ðn� 1Þð1� �Þ2n�4 > n� 2

and

"2 < ðn� 1Þð1� �Þ2n�4 � ðn� 2Þ: ð8Þ

Let T 0 ¼ ðV 0; E0Þ 2 T 0
n and f ¼ Id with correspond-

ing variables ðY0; fZege2E0 Þ, where Y0 ¼ X0, and
Zu;v ¼ 11fXu 6¼ Xvg. Let e ¼ ðu; vÞ be an edge in T 0. In

particular, note that u and v are leaves of T . Let pu;v be
the probability that u and v disagree and let
�u;v ¼ 1� 2pu;v. We will use the following Taylor
expansion of the entropy around 1=2:

H
1� �

2

� �
¼ 1� log2 e

2

� �
�2 þOð�4Þ:

Note further that

HðZeÞ ¼ Hðpu;vÞ ¼ H
1� �u;v

2

� �
:

As " approaches 0, pu;v goes to 1=2. Therefore, by
Proposition 4, up to smaller order terms, we want to
find T 0 ¼ ðV 0; E0Þ in T 0

n that maximizes

�ðT 0Þ :¼
X

e0¼ðu;vÞ2E0

Y
e2PathT ðu;vÞ

�2
e:

If T 0 has an edge e0 between two leaves neither of which
is 0, then e0 makes a contribution of at most "4 to �ðT 0Þ
since PathT ðu; vÞ crosses two edges in W . Therefore,
by (8), we have

�ðT 0Þ � ðn� 2Þ"2 þ "4

< ðn� 1Þð1� �Þ2n�4"2;

where we have used that T 0 has exactly n� 1 edges, and
each edge e00 2 E0 makes a contribution of at most "2

since PathT ðu; vÞ contains at least one edge in W . On the
other hand, the star rooted at 0, which we denote by T �,
is the only tree in T 0

n that does not include an edge
between two leaves neither of which is 0. In that case,
we get

�ðT �Þ � ðn� 1Þð1� �Þ2ðn�2Þ"2;

where we have used that any path between 0 and
another leaf in T contains at most n� 2 edges not in W
(since jEj � 2n� 3 and jW j ¼ n� 1) and exactly one
edge in W . Taking a small enough " gives the result. tu

4 CONCLUDING REMARKS

It would be interesting to extend our results beyond the
two-state case. We note in particular that for the symmetric
r-state model, with r > 2, the equivalent formulation of the
AML problem given in Definition 3 does not apply. Indeed,
it is easy to check that instead, one needs to minimize

H0ðT j ��Þ ¼
X
e2E

H
de
k

� �
þ log2ðr� 1Þ

X
e2E

de
k
:

The second term on the right-hand side—a parsimony
“correction”—may lead to a different behavior when r > 2.

We thank Peter Ralph for sharing his recent independent
results [16] regarding the structure of the optimal solution
in the two-state case (similar to [2]), as well as a number of
simulations on four-taxon trees.
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