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Abstract
A recent paper (Manceau and Lambert in bioRxiv, 2017. https://doi.org/10.1101/
075580) developed a novel approach for describing two well-defined notions of
‘species’ based on a phylogenetic tree and a phenotypic partition. In this paper, we
explore some further combinatorial properties of this approach and describe an exten-
sion that allows an arbitrary number of phenotypic partitions to be combined with a
phylogenetic tree for these two species notions.
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1 Introduction

In biological classification, there have been numerous attempts to define notions of
‘species’, from Aristotle through to the present (De Queiroz and Donoghue 1988;
Wheeler and Meier 2000). Today, phylogenetic trees and networks provide a frame-
work for addressing this question (Baum 1992; Baum andDonoghue 1995; Rosenberg
2007); however, phylogeny alone captures only part of the concept of species. For
example, two taxa may appear as different leaves in a tree (e.g. because of genetic
differences in a neutral gene) but still be virtually identical (and perhaps even able
to interbreed to produce viable offspring in the case where the taxa are diploid) and
so would not be considered as belonging to different species. Thus, phenotypical
characters also play a role in the concept of species (Sneath 1976).

However, phenotypical characters alone are also not sufficient to delineate species,
because events such as convergent evolution can result in different species appearing to
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be quite similar. For example, two species separated by a long period of evolution may
share many morphological traits because they have evolved under similar selection
pressures (Holland et al. 2010).

If we regard species classification as the construction of a partition of a set X of taxa
(e.g. organisms, populations, etc.) into disjoint sets (‘species’), then a natural question
arises: How can one construct such a partition in a canonical way so as to satisfy
various desirable criteria by using a phylogenetic tree, and one or more phenotypic
characters? A novel approach to this question was explored recently by Manceau and
Lambert (2017), and provides the motivation and focus for this paper.

Suppose we are given a rooted binary phylogenetic tree T on a sample X of individ-
uals (or, equivalently, as a ‘hierarchy’ on X , defined shortly), together with a partition
P of X , called a phenotypic partition (such a partition is induced by a phenotypic char-
acter by grouping taxa in the same state together). The desired output is a ‘species par-
tition’ S of X that satisfies three desirable properties (defined shortly) which should be
satisfied by a classification into species, namely, heterotypy between species, homotypy
within species and monophyly of each species. Manceau and Lambert (2017) showed
that all three properties cannot generally be simultaneously satisfied; however, any pair
of them can be, in which case there are two canonical constructions of a species parti-
tion S of X . Related combinatorial notions were also considered in a somewhat differ-
ent setting in Aldous et al. (2008); see also Alexander (2013), Dress et al. (2010), Kor-
net et al. (1995) andKwok (2011) for combinatorial approaches to the species problem.

In biology, each species will typically have many associated phenotypic characters,
and while it is possible to consider a single associated phenotype (e.g. by taking the
product of the associated state spaces) such a transformation will generally lose infor-
mation (i.e. different combinations of phenotypes could lead to the same phenotype
partition). Thus, it is desirable to extend the concepts above to allow more than one
phenotypic partition, in concert with a hierarchy.

In this paper, we generalize some of the main results from Manceau and Lambert
(2017), by allowing an arbitrary number of phenotypic partitions, and by also lifting the
requirement that the input tree T be binary.We also provide a short proof of a key result
from that paper by using lattice theory, and, in the final section, establish conditions
under which phenotypic partitions can be realized by state changes (indicated by
‘marks’) on edges of the tree T .

1.1 Preliminaries

We first review some basic notions from phylogenetic combinatorics [further details
can be found in Dress et al. (2011) or Steel (2016)].

A rooted phylogenetic tree T on leaf set X is a rooted tree in which each non-leaf
vertex (including the root) is unlabelled and has at least two outgoing edges. Given
any rooted phylogenetic tree T , there is a partial order�T on the vertices of T , defined
by u �T v if u = v or if u lies on the path from the root to v. Given a rooted tree T =
(V , E) and a non-empty subset C of V , there is a (unique) vertex v for which v �T c
for all c ∈ C and which is maximal (under �T ) with respect to this property; this
vertex v is called the lowest common ancestor (lca) of C in T and is denoted lcaT (C).
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Species notions that combine phylogenetic trees and… 119

A hierarchy H is a collection of non-empty subsets of X that contains X and that
satisfies the following nesting property:

For all A, B ∈ H, A ∩ B ∈ {∅, A, B}.

If a hierarchy also has the property that the singleton {x} is an element ofH for every
x ∈ X then we say that H is a hierarchy on X .

An element of a hierarchy H is also called a cluster (it is sometimes also referred
to in the literature as a ‘clade’). Given a hierarchy on X , there is a unique rooted
phylogenetic tree T on X with the property that for each cluster there is a unique
vertex in T such that the cluster consists of the labels of exactly the leaves descending
from this vertex. In this way, hierarchies on X and rooted phylogenetic trees on leaf
set X are essentially equivalent and will be used interchangeably.

A partition of a set X is a division of X into a set of non-empty subsets, called
blocks, such that every element of X is in exactly one block. Let P(X) denote the set of
all partitions of X . A phenotypic partitionP is a partition of X , such that the blocks of
the partition correspond to the different ‘phenotypes’ of the individuals in X according
to some biological characteristics. For example, birds can have the phenotype ‘able to
fly’ or ‘not able to fly’, resulting in a phenotypic partition with two blocks.

A species partition S is a partition of X in which the blocks are called ‘species’. We
are particularly interested in species partitions that satisfy one or more of the following
three desirable properties from Manceau and Lambert (2017):

(A) Heterotypy between species. Individuals in different species are phenotypically
different. Formally, for each phenotype P ∈ P and for each species S ∈ S, either
P ⊆ S or P ∩ S = ∅.

(B) Homotypy within species. Individuals in the same species are phenotypically
identical. Formally, for each phenotype P ∈ P and for each species S ∈ S,
either S ⊆ P or P ∩ S = ∅.

(M) Monophyly All species are monophyletic. Formally, each species is a cluster of
T (i.e. S ⊆ H).

For any species partition S of X satisfying property (M) for a given hierarchy H
on X , there is a corresponding hierarchy HS on S which is defined in Manceau and
Lambert (2017) by

HS := {H ∈ H : there exists some S ∈ S with S ⊆ H}. (1)

Thus, the rooted tree associated with HS is obtained from the rooted tree associated
withH by removing all clusters that lie strictly within a block of S (i.e. collapsing the
tree structure below the ‘species level’ determined by S). We will discuss an example
of this later in relation to Fig. 1.

1.2 The lattice of partitions of X

Since we want to apply combinatorial arguments, we first recall some terms from
lattice theory. Let (Y ,�) be a partially ordered set (poset) consisting of a set Y and a
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(a)

(b) (c)

Fig. 1 aAhierarchyH and aphenotypic partitionP indicatedby the states at the leaves.bThecorresponding
loose species partition Sloose and its associated hierarchyHloose c The corresponding lacy species partition
Slacy and its associated hierarchyHlacy

partial order �. Given a set A ⊆ Y with A �= ∅, we say that p ∈ Y is an upper bound
for A if a � p for all a ∈ A. The least upper bound for A (lub(A)) is an upper bound
such that for any other upper bound p one has lub(A) � p. The lower bound and
greatest lower bound (glb(A)) are defined analogously. A lattice is a partially ordered
set (Y ,�) with the property that for all non-empty subsets A of Y , lub(A) and glb(A)

exist and both are unique [for further background and details, see Bóna (2011)].
Next, we recall some important properties of the poset P(X) (of partitions of X ),

beginning with notion of refinement of partitions. Let S and S ′ be two partitions of the
set X . We say that S is finer than S ′ and S ′ is coarser than S, denoted S � S ′, if for
each S ∈ S and each S′ ∈ S ′, either S ⊆ S′ or S ∩ S′ = ∅. The relation � is a partial
order but not a linear order (i.e. two partitions S and S ′ of the set X cannot always be
compared; for example, consider S = {{a, b}, {c}, {d}} and S ′ = {{a}, {b}, {c, d}}).

It can be shown that the set of all partitions of the set X ordered by refinement
[i.e. (P(X),�)] is a lattice. In other words, the lub and the glb of any subset of P(X)

exist (Bóna 2011). We describe the glb and lub explicitly now. Given k partitions
Σ1, . . . , Σk ∈ P(X), their glb is the set of non-empty intersections of blocks each
chosen from a different partition. That is, glb(Σ1, . . . , Σk) = {⋂k

i=1 B
(i) : B(i) ∈

Σi } − {∅}. To define the lub, first define the relation ∼ by x ∼ y if there exists
i ∈ {1, . . . , k} such that {x, y} ⊆ B ∈ Σi . In other words, x ∼ y if x and y are in the
same block in at least one of the k partitions of X . Let ≈ be the transitive closure of
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the relation ∼. The lub of Σ1, . . . , Σk is then defined as the set of equivalence classes
of X under ≈. Note, that

S0 = {{x} : x ∈ X} and S1 = {X}

are the minimal and maximal elements of P(X), respectively, under the partial order
�.

2 Discussion of earlier results

In this section, we describe some of the main results of Manceau and Lambert (2017),
which we have organised into two theorems. The first theorem has a short proof, as
presented in that paper, the second theorem involved a more complicated argument,
and we present a shorter lattice-theoretic proof. From now on, H always denotes a
hierarchy of X , P always denotes a phenotypic partition, and S always denotes a
species partition.

Theorem 1 (Manceau and Lambert 2017) Given a phenotypic partition P of X and a
hierarchy H on X:

(i) S satisfies property (A) if and only if P � S, and S satisfies property (B) if and
only if S � P . In particular, if S satisfies properties (AB), then S = P .

(ii) Unless P and H satisfy P ⊆ H (i.e. each phenotype is a cluster), there is no
species partition S that satisfies all three properties (ABM).

(iii) Any two properties from (A), (B) and (M) can be satisfied by at least one species
partitionS. Specifically,S = P satisfies (AB),S1 satisfies (AM), andS0 satisfies
(BM).

Theorem 1 raises an interesting question. One can satisfy (AM) by the very coarsest
partition S1, and (BM) by the very finest partition S0. However, neither of these
is particularly relevant for biology. Rather, one would like to find a finest partition
satisfying (AM)and a coarsest partition satisfying (BM). Ideally, suchpartitions should
also be uniquely determined by those properties. Fortunately, this turns out to be the
case. A second main theorem from Manceau and Lambert (2017) is the following.

Theorem 2 (Manceau and Lambert 2017) Given P and H:

(i) There is a unique finest partition of X satisfying (AM) (heterotypy between species
and monophyly).

(ii) There is a unique coarsest partition of X satisfying (BM) (homotypywithin species
and monophyly).

Following Manceau and Lambert (2017), we will refer to the unique species parti-
tions referred to in parts (i) and (ii) of Theorem2as the loose and lacy species partitions,
respectively, and denote them as Sloose (= Sloose(H,P)) and Slacy (= Slacy(H,P)),
respectively.
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Proposition 1 (below) provides a more explicit description of the loose and lacy
species partitions. Roughly speaking, the reader can regard Sloose as the species parti-
tion that allows as many species as possible such that different species have different
phenotypes, while Slacy is the species partition that allows as few species as possible
such that each species has a single phenotype.

We will describe example of these two partitions in the next section, but first we
provide a short lattice-theoretic proof of Theorem 2. This proof relies on the following
lemma.

Lemma 1 Given a non-empty subset P of partitions of X (i.e. P ⊆ P(X)) and a
hierarchy H on X, if Σ ⊆ H for each Σ ∈ P then glb(P) ⊆ H and lub(P) ⊆ H.

Proof Consider glb(P). Because Σ ⊆ H for each Σ ∈ P, and H satisfies the nesting
property of a hierarchy, if we select a block from each partition in P, then the resulting
sets B1, B2, . . . , B|P| satisfy

⋂|P|
i=1 Bi ∈ {B1, . . . , B|P|,∅}. Hence, all elements of

glb(P) are also elements of H and thus, glb(P) ⊆ H. Next consider lub(P). Because
Σ ⊆ H for all Σ ∈ P, the relation ∼ is already transitive. To see this, observe that if
two blocks B1 and B2 of two different partitions from P share at least one element,
then the nesting property of hierarchies implies that one of those blocks (B1 or B2)
contains the other block. Consequently, if x ∼ y and y ∼ z with x, y ∈ B1 and
y, z ∈ B2, then either x ∈ B2 or z ∈ B1, and thus, x ∼ z. Thus, ∼ is transitive and
so is equal to the equivalence relation ≈ whose equivalence classes are the blocks of
lub(P). Consequently, each block of the partition lub(P) is also an element of H and
thus, lub(P) ⊆ H. ��

We can now provide a short proof of Theorem 2.

Proof Let

SAM := {Σ ∈ P(X) : Σ ⊆ H,P � Σ}, and SBM := {Σ ∈ P(X) : Σ ⊆ H,Σ � P}.

Since SAM , SBM ⊆ P(X), and (P(X),�) is a lattice, glb(SAM ) and lub(SBM ) exist.
Therefore, to establish Theorem 2, it suffices to show that:

glb(SAM ) ∈ SAM and lub(SBM ) ∈ SBM , (2)

from which it follows that Sloose = glb(SAM ) and Slacy = lub(SBM ). We establish
Eq. (2) as follows. The two sets glb(SAM ) and lub(SBM ) are not empty because
S1 ∈ SAM and S0 ∈ SBM . Since all elements of SAM and of SBM satisfy property (M)
(i.e. S ⊆ H for all S ∈ SAM , SBM ), Lemma 1 implies that glb(SAM ) and lub(SBM )

satisfy property (M). Also, because elements of SAM satisfy property (A) (i.e. P � S
for all S ∈ SAM ), it follows that P is a lower bound for SAM . Since glb(SAM ) is the
greatest lower bound we know that it is coarser than all other lower bounds and, in
particular, P � glb(SAM ). Thus, glb(SAM ) satisfies property (A) as well. The proof
that lub(SBM ) satisfies property (B) is analogous. In summary, glb(SAM ) ∈ SAM and
lub(SBM ) ∈ SBM . ��
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3 Constructing the loose and lacy species partitions

We now describe an explicit and readily computable way to construct the loose and
lacy species partitions [our treatment differs in some details from the construction
proposed by Manceau and Lambert (2017)]. The process involves first constructing
subsets H1 and H2 of H. The loose and lacy species partitions are then the maximal
elements (under set inclusion) of H1 and H2 respectively. We first introduce some
additional notation. For P ∈ P , let

hP =
⋂

h∈H:P⊆h

h. (3)

Notice that P ⊆ hP ∈ H, and that hP is the unique minimal cluster inH that contains
P (it is the cluster in H that corresponds to lcaT (P) where T is the phylogenetic
X -tree associated withH). It is also possible that hP = hQ for different blocks P and
Q of P .

Next, given P and H, define the following two sets:

H1 := {hP : P ∈ P}, and H2 := {h ∈ H : ∃P ∈ P : h ⊆ P}.

Observe thatH1 andH2 are both subsets ofH; in particular,H2 is the set of clusters in
H that are contained in a block of the phenotype partitionP . The following proposition
provides an explicit description of the loose and lacy partitions; its proof is provided
in the “Appendix”.

Proposition 1 Given a phenotypic partition P of X and a hierarchy H on X,

Sloose is the set of maximal elements of H1;
Slacy is the set of maximal elements of H2.

In the phylogenetic tree T corresponding to the hierarchyH the elements inH1 are
the lowest common ancestors in T of each element in P . The loose species partition
contains, for each leaf of T , the first last common ancestor which is inH1 that lies on
the path from the root to the leaf.

The elements ofH2 correspond to the vertices of the phylogenetic tree T associated
with H for which all descended leaves have the same phenotype. The lacy species
partition contains, for each leaf of T , the first element which is in H2 that lies on the
path from the root to the leaf.

An example [based on Fig. 4 fromManceau and Lambert (2017)] is shown in Fig. 1,
for the set X = {1, 2, 3, 4, 5, 6, 7, 8, 9} together with the hierarchy H on X defined
by

H = {{x} : x ∈ X} ∪ {{2, 3}, {1, 2, 3},
{4, 5}, {6, 7}, {8, 9}, {1, 2, 3, 4, 5}, {6, 7, 8, 9}, X}
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along with the phenotypic partition P = {{1, 2, 3}, {4}, {5}, {6, 8, 9}, {7}}. In this
example,

H1 = {{1, 2, 3}, {4}, {5}, {7}, {6, 7, 8, 9}}, and so

Sloose = {{1, 2, 3}, {4}, {5}, {6, 7, 8, 9}}.

In addition,

H2 = {{x} : x ∈ X} ∪ {{2, 3}, {1, 2, 3}, {8, 9}}, and so

Slacy = {{4}, {5}, {6}, {7}, {1, 2, 3}, {8, 9}}.

The corresponding induced hierarchies [given by Eq. (1)] are given by:

Hloose = Sloose ∪ {{1, 2, 3, 4, 5}, X}, and

Hlacy = Slacy ∪ {{4, 5}, {6, 7}, {1, 2, 3, 4, 5}, {6, 7, 8, 9}, X}.

4 Extending the theory to k ≥ 2 phenotypic partitions

Suppose now that one has k ≥ 2 phenotypic partitions P1, . . . ,Pk with Pi ∈ P(X)

for i = 1, . . . , k and, as before, a hierarchy H on X .
Define the sets of species partitions satisfying properties (AM), (BM) as the following:

S
(k)
AM := {Σ ∈ P(X) : Σ ⊆ H,Pi � Σ, for each i = 1, . . . , k}, and

S
(k)
BM := {Σ ∈ P(X) : Σ ⊆ H,Σ � Pi , for each i = 1, . . . , k}.

Some natural questions arise now: Is glb(S(k)
AM ) ∈ S

(k)
AM? Is lub(S(k)

BM ) ∈ S
(k)
BM? And

if so, how are these two partitions related to Sloose and Slacy? We will show that the
case k ≥ 2 can be reduced to the earlier case where k = 1.

Theorem 3 Given a hierarchy H on X and phenotypic partitions P1, . . . ,Pk of X,
let

P+ := lub(P1, . . . ,Pk) and P− := glb(P1, . . . ,Pk).

Then glb(S(k)
AM ) = Sloose(H,P+) ∈ S

(k)
AM ,

and lub(S(k)
BM ) = Slacy(H,P−) ∈ S

(k)
BM .

Proof First, we show that:

S
(k)
AM = {Σ ∈ P(X) : Σ ⊆ H,P+ � Σ}. (4)

By the definition of S
(k)
AM , it follows that Pi � Σ for all Σ ∈ S

(k)
AM and for all

i = 1, . . . , k. Furthermore, for all i = 1, . . . , k we have Pi � P+. By the definition
of the lub, there is no P ∈ P(X) with P ⊆ H and with P lying strictly between Pi
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andP+ under the refinement partial order� for all i = 1, . . . , k. Therefore, we obtain
Eq. (4). ForS(k)

BM an analogous argument applies, using glb instead of lub. Specifically:

S
(k)
BM = {Σ ∈ P(X) : Σ ⊆ H,Σ � P−}.

Now, P+ and P− are partitions of X , and for each of these two phenotypic par-
titions Eq. (2) ensures that glb(S(k)

AM ) = Sloose(H,P+) ∈ S
(k)
AM and lub(S(k)

BM ) =
Slacy(H,P−) ∈ S

(k)
BM , as claimed. ��

4.1 Combining properties for k ≥ 2 phenotypic partitions

Until now, we were looking for species partitions that are subsets of the given hier-
archy and either finer or coarser than the given phenotypic partitions, in other words,
satisfying either (AM) or (BM). We now consider the setting of k = 2 phenotypic
partitions P1 and P2 with P1 � P2. Such a situation arises when, for example, P1 is
the partition of X induced by the phenotypes of individuals in X , whileP2 is a coarser
partition of X into disjoint ‘types’, in which individuals having the same phenotype
have the same type (but a type might also allow some variation of phenotypes within
it). In this setting we can ask when is there a subset Σ ofH for which P1 � Σ � P2?
In other words, is there a species partition that satisfies (AM) for one phenotypic
partition and (BM) for a second one? The answer to this question is provided in the
following result.

Theorem 4 Given phenotypic partitions P1,P2 of X and a hierarchy H on X, there
is a subset Σ of H with P1 � Σ � P2 if and only if Sloose(H,P1) � Slacy(H,P2).

Proof (⇒) First suppose that P1 � Σ � P2 holds for some Σ ∈ P(X),Σ ⊆ H. This
implies the following:

– P1 � Σ ⊆ H, so Σ is an element of the set SAM for P1 and Sloose(H,P1) � Σ

(since Sloose is a lower bound to SAM for P1);
– H ⊇ Σ � P2, so Σ is an element of the set SBM for P2 and Σ � Slacy(H,P2)

(since Slacy is an upper bound to SBM for P2).

Consequently, Sloose(H,P1) � Slacy(H,P2), which establishes the forward implica-
tion.

(⇐) Conversely, suppose that Sloose(H,P1) � Slacy(H,P2) holds. Since

P1 � Sloose(H,P1) and Slacy(H,P2) � P2,

by the definitions of Sloose and Slacy, we have P1 � Sloose(H,P1) � Slacy(H,P2) �
P2. Moreover, Sloose(H,P1),Slacy(H,P2) ⊆ H, by definition. Therefore, by choos-
ing either Σ := Sloose(H,P1) or Σ := Slacy(H,P2), it holds that:

P1 � Sloose(H,P1) � Σ � Slacy(H,P2) � P2.

This establishes the reverse implication. ��
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If we focus on the set of all species partitions that lie between the two given phe-
notypic partitions (i.e. S := {Σ ⊆ H : P1 � Σ � P2}), then we automatically see
that Sloose(H,P1) is the finest element of S and Slacy(H,P2) is the coarsest.
We now extend this problem to k ≥ 2 phenotypic partitions. The question is: Given
phenotypic partitions P1, . . . ,Pk and an integer l with 0 ≤ l ≤ k is there a subset
Σ of H for which P1, . . . ,Pl � Σ � Pl+1, . . . ,Pk? The answer to this question is
provided as follows.

Corollary 1 There exists a Σ ⊆ H with P1, . . . ,Pl � Σ � Pl+1, . . . ,Pk for
a given integer l with 0 ≤ l ≤ k if and only if Sloose(H, lub(P1, . . . ,Pl)) �
Slacy(H, glb(Pl+1, . . . ,Pk)).

Proof (⇒) If Σ satisfies P1, . . . ,Pl � Σ � Pl+1, . . . ,Pk then

lub(P1, . . . ,Pl) � Σ � glb(Pl+1, . . . ,Pk).

If, in addition, Σ ⊆ H then Sloose(H, lub(P1, . . . ,Pl)) � Slacy(H, glb(Pl+1, . . . ,

Pk)) by Theorem 4.
(⇐) Conversely, suppose that

Sloose(H, lub(P1, . . . ,Pl)) � Slacy(H, glb(Pl+1, . . . ,Pk)).

By Theorem 4 there exists a set Σ ⊆ H with lub(P1, . . . ,Pl) � Σ �
glb(Pl+1, . . . ,Pk). Since P1, . . . ,Pk � lub(P1, . . . ,Pl) and glb(Pl+1, . . . ,Pk) �
Pl+1, . . . ,Pk it follows that

P1, . . . ,Pl � Σ � Pl+1, . . . ,Pk .

��
Note that if l = 0, the properties (AM) hold for k phenotypic partitions, while if l = k,
the properties (BM) hold for k phenotypic partitions.

5 Generating phenotypic partitions from edge-marked trees

In this final section, we return to the setting of single partitions and ask when a phe-
notypic partition of X can be realized by marking some edges of a given phylogenetic
X -tree T = (V , E), and assigning two individuals to the same phenotype if there is
no marked edge on the path between them.

This process has a clear biological interpretation: a marked edge denotes that a new
phenotype evolves to replace the existing phenotype, and it is assumed here that a
phenotype that has already appeared will not appear a second time; in other words, the
evolution of the phenotype is homoplasy-free. Therefore, we define a marking map
m : E → {0, 1} on T as follows:

m(e) =
{
1, if e ∈ E is marked;
0, otherwise.
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Fig. 2 A rooted phylogenetic
tree on which the phenotypic
partition P = {{1, 3}, {2, 4}}
cannot be realized by marking
any subset of edges

1 2 3 4

Fig. 3 A rooted phylogenetic
tree with different labeled edges
which induce the phenotypic
partition P = {{1}, {2}}. The
dashed line is marked and the
solid line is not 1 2 1 2

For x, y ∈ X we define the relation ∼m by x ∼m y if m(e) = 0 for every edge e on
the path from x to y. This induces a corresponding phenotypic partition Pm as the set
of equivalence classes of X under ∼m . Not all possible partitions of X can be realized
in this way; an example for such a case is given in Fig. 2.

In general, a partition P of X can be realized by a marking map on a given rooted
phylogenetic tree T on X if and only if that partition is ‘convex’ on T (i.e. the minimal
subtrees of T that connect the leaves in each block ofP are vertex-disjoint), for details,
see Steel (2016). In general, there can be more than one marking map that leads to the
same phenotypic partition, as Fig. 3 shows. For this reason, we define the relation �
by m � m′ if Pm = Pm′ .

There is a close connection between the property (M) for the phenotypic partition
and its realization by marking maps, as we now describe.

Proposition 2 Suppose that m is a marking map on a rooted phylogenetic tree T on
X with associated hierarchy H. Pm ⊆ H if and only if for any two distinct leaves
x, y with x ∼m y, we have m(e) = 0 for every edge e in the subtree of T with root
lcaT (x, y).

Proof For this proof, we introduce some further notation. Given a rooted phylogenetic
tree T and a vertex v of T , let subtree (T , v) denote the rooted phylogenetic tree which
has root v and contains all vertices and edges which are descendants from v in T .

(⇒) Suppose that Pm ⊆ H holds, and that x, y are distinct leaves of X with
x ∼m y. Let P be the block of Pm containing x and y. Then P ∈ H (since
Pm ⊆ H) and so m(e) = 0 for each edge in the subtree (T , lcaT (P)). Since
lcaT (P) �T lcaT ({x, y}) it follows that m(e) = 0 for every edge e in the
subtree (T , lcaT ({x, y})), as claimed.
(⇐) Suppose that Pm � H holds. Then there exists P ∈ Pm with P /∈ H. This
means that there exists a leaf x ∈ X in the subtree (T , lcaT (P)) with x /∈ P . Select
y ∈ P . Hence, there exists an edge e on the path from x to y, with m(e) = 1 and
with e present in the subtree (T , lcaT ({x, y})). ��
We now state a necessary condition, followed by a sufficient condition for a phe-

notypic partition to be realizable by a marking map on a given tree.

Proposition 3 Let P be a phenotypic partition of X and T be a rooted phylogenetic
tree on X, with corresponding hierarchy H.
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(i) If P can be realized by a marking map on T then at least one block P of P is in
H.

(ii) If P ⊆ H, then the phenotypic partition P can be realized by a marking map.

Proof Part (i): Let P be a phenotypic partition that can be realized by a marking map
on T . If no edge is marked at all, then P = {X} and X ∈ H by definition. If there
exists at least one marked edge, then at least one marked edge e has no marked edge
descendant from it (i.e. there exists a block P ∈ P that consists of all descending
leaves) and so P ∈ H.
Part (ii): Suppose that P ⊆ H holds. If P = {X} then set m(e) = 0 for each edge e
of T . Otherwise, if P �= {X}, for each block P ∈ P , let eP be the edge of T that is
directed into the vertex lcaT (P). Then set m(e) = 1, if e = eP for some P ∈ P and
set m(e) = 0 otherwise. This gives a marking map that realizes P . ��

5.1 Maximummarkingmaps and the glb and the lub of multiple markings

In order to extend the study to multiple marking maps in partitions, we first require
some further notation.

Given a partition P and a rooted phylogenetic tree T we define a marking map mP
on T by:

mP (e) =
{
0, if e is on a path from x to y, x ∼ y for P, x �= y;
1, otherwise.

Recall here that x ∼ y for P means that x, y are in the same block of the partition
P . It can be checked that the partition associated with mP (i.e. Pm′ for m′ = mP ) is
equal to or refines P in the lattice of partitions of X (i.e. Pm′ ≤ P) though Pm′ need
not equal P (for example, in Fig. 2 with P = {{1, 3}, {2, 4}}, the partition associated
with mP is X = {1, 2, 3, 4}).

Notice that any marking map m for a rooted tree T = (V , E) is determined by the
set

E(m) := {e ∈ E : m(e) = 1},

consisting of the edges of T that are marked.
For a marking mapm on T , we letm be the marking mapmP in whichP is taken to

be Pm . Thus, m(e) takes the value 1, unless there is some pair x, y ∈ X with x ∼m y
for which e lies on the path connecting x and y. In particular, m is the marking map
that has the maximal number of edges assigned to state 1, while still inducing the same
partition as Pm (this is formalized in part (ii) of Lemma 2).

An example to illustrate this concept is provided in Fig. 4.

Lemma 2 Let m and m′ be marking maps on a rooted phylogenetic T on X with
associated hierarchy H.
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Fig. 4 For the marking map m described on the left, we have Pm = {{a, b}, {c}, {d}}. The associated
marking map m is shown on the right

(i) If E(m) ⊆ E(m′), then Pm′ � Pm .

(ii) m � m . Moreover, if m′ � m, then E(m′) ⊆ E(m).
(iii) Suppose that Pm ⊆ H and that e, e′ are edges of T with e′ on the path from the

root of T to e. If e ∈ E(m), then e′ ∈ E(m).

Proof The proof of parts (i) and (ii) is straightforward. For part (iii), suppose that e′
is not in E(m). Then, by definition of m, there exist leaves x, x ′ ∈ P ∈ Pm for which
the path from x to x ′ includes e′. By part (ii) of this lemma, Pm = Pm and so, by
Proposition 2, m(e′′) = 0 for every edge e′′ in the subtree of T with root lcaT (x, x ′).
However, edge e lies in this subtree, yet m(e) = 1 so e /∈ E(m). ��

Given marking maps m1, . . . ,mk on a tree T , we let m1 ∨ m2 ∨ · · · ∨ mk and
m1 ∧ m2 ∧ · · · ∧ mk be the marking maps on T defined by:

E(m1 ∨ m2 ∨ · · · ∨ mk) =
k⋃

i=1

E(mi ),

and

E(m1 ∧ m2 ∧ · · · ∧ mk) =
k⋂

i=1

E(mi ).

In words, m1 ∨m2 ∨ · · · ∨mk is the marking map that assigns 1 to all edges of T that
are marked 1 by at least one mi (1 ≤ i ≤ k), while m1 ∧m2 ∧ · · · ∧mk assigns 1 only
to the edges of T that are marked 1 by every mi (1 ≤ i ≤ k).

The following result describes the glb and lub of a collection of partitions (relevant
to Theorem 3) in the setting where each partition is derived from a marking map on a
given tree, in terms of a single marking map on that tree.

Theorem 5 Consider a rooted phylogenetic tree T = (V , E) with associated hierar-
chy H, and marking maps mi : E → {0, 1}, for i = 1, . . . , k. Then

(i) glb(Pm1 ,Pm2 , . . . ,Pmk ) = Pm1∨m2∨···∨mk .

(ii) Provided that Pmi ⊆ H for each 1, . . . , k, we also have:

lub(Pm1 ,Pm2 , . . . ,Pmk ) = Pm1∧m2∧···∧mk .
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1 2 3 4 5 6

(m1)

1 2 3 4 5 6

(m2)
Fig. 5 Left: Themarkingmapm1 (where a dashed edge e corresponds tom1(e) = 1) induces the phenotypic
partition Pm1 in which the only block of size > 1 is {2, 5}. Right: The marking map m2 (where a dashed
edge e corresponds to m2(e) = 1) induces the phenotypic partition Pm2 in which the only blocks of size
> 1 are {1, 3} and {4, 6}. Thus, the least upper bound (lub) of these two partitions contains the three blocks
{1, 3}, {2, 5}, {4, 6}. However, the marking map m1 ∧ m2 assigns 0 to all the edges of the tree shown, and
so Pm1∧m2 = X . Note that in this example, m1 = m1 and m2 = m2

Before proceeding to the proof, we note that the additional assumption (Pmi ⊆ H)
in (ii) is required, even in the special case where k = 2 and mi = mi for
i = 1, 2. An example to demonstrate this is shown in Fig. 5. In this example,
lub(Pm1 ,Pm2 , . . . ,Pmk ) is not realized by any marking map on T . Notice that
Lemma 1 and Proposition 3(ii) ensure that when Pmi ⊆ H for each 1, . . . , k, then
lub(Pm1 ,Pm2 , . . . ,Pmk ) is realized by at least some marking map on T , and Theo-
rem 5(ii) gives an explicit description of such a map. Note also, in part (ii) that we have
replaced mi by mi on the right-hand side. Without such a replacement, the identity in
(ii) does not hold, as Fig. 3 shows.

Proof of Theorem 5 Part (i): First, we consider the case k = 2 of just two marking
maps m1 and m2 on T . Since E(mi ) ⊆ E(m1 ∨ m2), for i = 1, 2, Lemma 2(i) gives
Pm1∨m2 � Pmi for i = 1, 2, and therefore:

Pm1∨m2 � glb(Pm1 ,Pm2).

To replace � with equality it remains to show that glb(Pm1 ,Pm2) � Pm1∨m2 , which
means that if S ∈ glb(Pm1 ,Pm2) and S′ ∈ Pm1∨m2 with S ∩ S′ �= ∅ then S ⊆ S′.
Recall (Sect. 1.2) that S is a block of the glb of two given partitions in the poset P(X)

precisely if S is the (non-empty) intersection of a block from the first partition with a
block from the second. Thus, we may suppose that S = β1 ∩ β2 where β1 ∈ Pm1 and
β2 ∈ Pm2 . Since S ∩ S′ �= ∅ select x ∈ S ∩ S′. Then S′ is the set of leaves of T whose
path to x does not cross an edge marked 1 by either m1 or m2 (or both). On the other
hand, βi is the set of leaves of T whose path to x does not cross an edge marked 1 by
mi . Thus, if y ∈ β1 ∩ β2 = S, then y ∈ S′, and so S ⊆ S′ as claimed.

The casewhere k > 2 now follows by the associativity of∨ on the lattice (P(X),�).
We have

glb(Pm1,Pm2 , . . . ,Pmk ) = glb(Pm1 , glb(Pm2 , . . . ,Pmk )),
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and so part (i) follows by induction, from the case where k = 2. This establishes part
(i) of Theorem 5.

Part (ii): Again, we first consider the case of k = 2 marking mapsm1 andm2 on T .
Note that E(m1∧m2) ⊆ E(mi ) for i = 1, 2. So Lemma 2 givesPmi = Pmi � Pm1∧m2

for i = 1, 2 and therefore:

lub(Pm1 ,Pm2) � Pm1∧m2 .

To replace�with equality it remains to show thatPm1∧m2 � lub(Pm1 ,Pm2), which
means that if S ∈ Pm1∧m2 and S′ ∈ lub(Pm1 ,Pm2) with S ∩ S′ �= ∅ then S ⊆ S′.
To this end, suppose that x ∈ S ∩ S′ and that x ∼m1∧m2 y. We will establish the
following:

Claim 1 Given Pm1 ,Pm2 ⊆ H, if x ∼m1∧m2 y, then either x ∼m1 y or x ∼m2 y (or
both) holds.

It follows from Claim 1 that x ≈ y (where ≈ is the equivalence relation in the
definition of lub from Sect. 1.2) and so y ∈ S′ ∈ lub(Pm1 ,Pm2), as required to show
that Pm1∧m2 � lub(Pm1,Pm2), and thereby to establish part (ii) in the case k = 2.

Thus, for the k = 2 case, it remains to prove Claim 1. We do this by assuming that
Claim 1 is false, and derive a contradiction. Now, if Claim 1 is false, then the path
from x to y crosses at least one edge e1 with m1(e1) = 1 and at least one edge e2
with m2(e2) = 1, and there is no edge e on this path with m1(e) = m2(e) = 1 (since
x ∼m1∧m2 y).

Let v = lcaT ({x, y}) and let vx (respectively, vy) be vertex adjacent to v that is
on the path from v to x (respectively, to y). By Lemma 2(iii), it follows that the edge
e = (v, vx ) has mi (e) = 1 and m j (e) = 0, while the edge e′ = (v, vy) has mi (e) = 0
and m j (e) = 1, where {i, j} = {1, 2}. Without loss of generality, we may assume
that i = 1 and j = 2. The condition that m2(e) = 0 then implies (by the definition of
m2) that e lies on a path connecting two leaves of T (which lie in the same block of
Pm2 = Pm2 ) and every edge in that path has m2 value equal to zero. One of these two
leaves is in the subtree of T below vx , the other leaf x ′ must also lie below v since the
edge e′′ of T that ends in v has m1(e′′) = m2(e′′) = 1 by Lemma 2(iii). Moreover,
x ′ cannot lie in the subtree with root vy (since the path would then cross e′ which has
m2(e′) = 1), nor can it be in the subtree with root vx (since the path from x ′ to x
has to cross e). Thus, x ′ must lie in a third pendant subtree that attaches below v, as
indicated in Fig. 6.

But then Proposition 2 implies thatPm2 = Pm2 is not a subset ofH, since x ∼m2 x ′
but m2 is not zero on every edge in the subtree (T , lcaT ({x, x ′})) since this subtree
included the edge e′ for which m2(e′) = 1. This contradiction establishes Claim 1,
and thereby the proof in the case where k = 2.

The case where k > 2 now follows by the associativity of∧ on the lattice (P(X),�)

and the fact that (mi ) = mi . We have

lub(Pm1,Pm2 , . . . ,Pmk ) = lub(Pm1 , lub(Pm2 , . . . ,Pmk )),
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Fig. 6 For the two leaves x, y for
which x ∼m1 ∧m2 y the edge e
incident with v = lcaT ({x, y})
has m1(e) = 1 and m2(e) = 0
while the edge e′ has m1(e

′) = 0
and m2(e

′) = 1 (each edge
above v has an m1 and m2 value
equal to 1). Every edge on the
path from v to x , and on the path
from v to x ′ has m2 value equal
to 0, and so x ∼m2 x ′

and so part (ii) follows by induction, from the case where k = 2. This establishes part
(ii) of Theorem 5. ��

Concluding comments

Our purpose in this paper was twofold. First, we have represented some of the main
results of Manceau and Lambert (2017) within the framework of lattice theory, which
has allowed for more concise proofs, and elucidated the key combinatorial principles.
Second, we have extended these results to the more general setting of k ≥ 2 pheno-
typic partitions, and we have also explored the combinatorial aspects of representing
phenotypic partitions by marking maps.

An interesting project for future development could be to investigate the loose and
lacy species partitions arising when the phenotypic character(s) evolve on a tree T
with leaf set X , and H is the hierarchy associated with T . The evolution of pheno-
typic characters on T is typically modelled by discrete-state, continuous-timeMarkov
processes that are already widely used in molecular phylogenetics (Felsenstein 2004).
Finite state Markov models can lead to homoplasy (convergent or reverse changes),
while infinite state models always produce homoplasy-free character states at the
leaves. Under either model, the character states at the leaves then induce a phenotypic
partition of X , and the stochastic properties of the loose and lacy species partition
could then be studied.

A first step would be to simply calculate the probability that the loose and lacy par-
titions species coincide (i.e. a species partition satisfying all three properties (ABM),
or, equivalently, each phenotype corresponds to a cluster of H). It would also be of
interest to predict the distribution of block sizes in species partitions, a topic that
has long been of interest to biologists, dating back to Yule (1925) [see, for example,
Scotland and Sanderson (2004)].

Finally, the definition and computation of loose and lacy species partitions based on
phylogenetic networks (rather than phylogenetic trees) could be a further interesting
direction for future work.
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Appendix: Proof of Proposition 1

Let S̃loose be the set ofmaximal elements ofH1 and let S̃lacy be set ofmaximal elements
of H2. We show that S̃loose = Sloose and S̃lacy = Slacy, by establishing the following
properties:

(i) S̃loose and S̃lacy are partitions of X ,
(ii) S̃loose satisfies (AM) and S̃lacy satisfies (BM),
(iii) S̃loose is the finest partition of X that satisfies (AM) and S̃lacy is the coarsest

partition of X that satisfies (BM).

Proof Part (i):

1. Proof that S̃loose is a partition of X .
Suppose that x ∈ X . Since P is a partition of X , there is a set P ∈ P with
x ∈ P , so x ∈ hP [where hP is as in Eq. (3)]. Thus, x is contained in at least one
maximal element of H1 (and so in some set of S̃loose). Moreover, two different
maximal elements of H1, say h and h′, have empty intersection. For otherwise,
since h, h′ ∈ H, the nesting property of hierarchies implies that either h � h′ or
h′

� h which is impossible if both sets are maximal.
2. Proof that S̃lacy is a partition of X .

Suppose that x ∈ X . Then x ∈ P for some set P ∈ P , and since h = {x} ∈ H,
and h ∈ P ,H2 has a maximal set h′ containing x , so x ∈ h′ ∈ H2. Moreover, two
different maximal elements ofH2 have empty intersection, for the same reason as
holds forH1.

Part (ii):

1. Proof that S̃loose satisfies (AM):
For any h ∈ S̃loose we have h = hP for some P ∈ P . Suppose that Q ∈ P has
Q ∩ h �= ∅. Then hQ ∩ hP �= ∅ and so hQ ⊆ hP or hP ⊆ hQ (since hQ and hP

are both elements of a hierarchy). The maximality condition in the definition of
S̃loose applied to h = hP now ensures that hQ ⊆ hP , so Q ⊆ hQ ⊆ hP = h and
so property (A) holds for S̃loose; moreover, since h ∈ H, property (M) holds also.

2. Proof that S̃lacy satisfies (BM):
For any h ∈ S̃lacy there is a set P ∈ P with h ⊆ P . For any Q ∈ P with Q �= P
we must have Q ∩ h = ∅, since otherwise P ∩ Q �= ∅. Thus, property (B) holds
for S̃loose; moreover, since h ∈ H, property (M) holds also.

Part (iii):

1. Proof that S̃loose is the finest species partition satisfying (AM):
This means for P � W � S̃loose withW ⊆ H it holds that W = S̃loose.
Suppose this is not the case (we will derive a contradiction). Then there must
exist a set hP ∈ S̃loose for which hP is the disjoint union of k ≥ 2 non-empty
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sets h1, h2, . . . , hk in W . Since P � W , if P ∩ hi �= ∅ we have P ⊆ hi and so
hP ⊆ hi , which implies that hP = hi . Thus, P can intersect at most one of the sets
hi , and so it must intersect exactly one set, say h1, since the union of h1, . . . , hk
is hP which contains P . But this implies that each of the remaining k − 1 sets is
empty (since the union is disjoint), contradicting the requirement that the sets hi
are non-empty.

2. Proof that S̃lacy is the coarsest species partition satisfying (BM):
This means for S̃lacy � V � P with V ⊆ H it holds that V = S̃lacy.
Suppose this is not the case (we will derive a contradiction). Then there must
exist some element h ∈ V and some element h′ ∈ S̃lacy with h′

� h. Let P be
an element of P with h ⊆ P (such an element must exist since h ∈ V � P).
Then h and h′ are both elements ofH2 (since they are both elements ofH and are
contained within P) and since h′ ∈ S̃lacy is a maximal element of H2 we cannot
have h′

� h, which provides the required contradiction. ��
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