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Abstract-We describe a new method for estimating the evolutionary tree linking a collection 
of species from their aligned four-state genetic sequences. This method, which can be adapted to 
provide a branch-and-bound algorithm, is statistically consistent provided the sequences have evolved 
according to a standard stochastic model of nucleotide mutation. Our approach exploits a recent 
grouptheoretic description of this model. 

1. INTRODUCTION 

Recently there has been a desire to apply stochastic models to the reconstruction of evolutionary 
trees from aligned genetic sequences. This has led to statistically consistent methods, such as 
maximum likelihood, being favoured over alternative, though more popular approaches, such as 
the method of maximum parsimony. One problem with maximum likelihood, however, is that it is 
computationally very difficult, and branch-and-bound algorithms are unknown. A further, more 
fundamental, problem arises in deciding whether one tree is “significantly better” than another 
on the basis of their likelihood ratios alone [l]. 

An alternative approach relies on the natural equivalence between trees whose leaves are la- 
belled by the species, and collections of pairwise compatible splits (bipartitions) of the set of 
species (see [2]). In this setting, one applies a suitable, tree-independent transformation to the 
data to obtain a measure of how well the data supports each possible split of the species set 
as being an actual split of the underlying tree. This philosophy is implicit in the recent “split 
decomposition” approach of Bandelt and Dress [3], which deals with distance data rather than 
sequences, and in the “spectral analysis” method of Hendy and Penny [4]. 

This latter procedure is confined, however, to sequences with twocharacter states. Here, we 
provide an extension to deal with the four-character states A, C, G, T which occur with nucleotide 
(DNA) sequences. Furthermore, if the sequences have evolved according to Kimura’s Sparameter 
model (see [5,6]), the transformation will be statistically consistent by singling out just the splits 
that exist in the underlying tree, as the length of the sequences becomes sufficiently large [7]. 
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A simple (and statistically consistent) method for choosing an optimal tree from the spectrum- 
a “closest tree”-is also described, generalizing the closest tree method of Hendy [8]. Unlike max- 
imum likelihood, this method shares with parsimony the property of selecting the tree(s) which 
minimizes an explicitly-representable function of the data. This, in turn, allows the development 
of a branch-and-bound algorithm. 

Our results rely on a recent application of discrete Fourier transformations to analyse proba- 
bility distributions induced by randomly colouring the edges of a tree by elements of the Kleinian 
group 2s x Zz [6,9,10]. Applications to real data will appear elsewhere (Penny, Hendy and Steel, 
in preparation). 

DEFINITIONS. 

(1) 

(2) 

(3) 

(4) 

(5) 

The 

Denote a set of n species by the label set L = {R, 1,. . . , n - l}, where R is an arbitrarily- 
selected “root” species. A colouration x of L by the Kleinian group G = Zz x Zz defines a 
pair of subsets ul, u2 of L \ {R} as follows: For i = 1,2, let zi denote the projection of G 
onto its ith component, and let 

gi = {k E L, k # R : Ti(X(k) +x(R)) = 1). 

An aligned collection of genetic sequences of length m can be regarded as an m-tuple of 
colourations of L by G, by representing the four nucleotides A, G, C, T, by the elements 
(O,O), (0, l), (l,O), (1,l) respectively, as in [6]. Th e sets of corresponding components 
of these sequences are called sites. For such an m-tuple, let ze(O = (c~,cQ)) denote 
the proportion of the colourations which correspond to the induced pair 61, u2 by the 
bijection in (I). By ordering the pairs 0, the ~0’s form a vector x having 4”-’ non- 
negative components which sum to 1. 
Let H’ denote the 2”-’ x 2”-’ symmetric matrix [(-1)~“““‘1], (u,u’ subsets of 
{l,... ,n - l}), and let H denote the Kronecker product of H’ with itself. Since H’ 
is a symmetric Hadamard matrix (see [41), H is also, so that: 

H-’ = 4l-“H. (1.1) 

For vector y E (R+)‘, (resp. y E Rk) define log(y) (resp. exp(y)) to be the vector 
whose ith component is log,(yi) (resp. exp(yi)) for i = 1,. . . , k. 
For x as in (2), if (Hx)i > 0 for all i, define 

7(x) = H-‘(log(Hx)), 

= 4l--“H(log(Hx)), by equation (1 .l). 
(1.2) 

vector 7(x) with components 70(x), (0 = ( ul,uz)) is called the conjugate spectrum of 
- 

the sequence data. Note that, since xx@ = 1, 
0 

C7@(X) = 0. (1.3) 

2. USING CONJUGATE SPECTRA TO 
INVERT KIMURA’S 3-PARAMETER MODEL 

The transformation defined by (1.2) is independent of any considerations involving trees, or of 
how the aligned sequences may have evolved. We now show that if the sequences have indeed 
evolved on a tree according to a standard stochastic model, then the conjugate spectrum converges 
to a vector which identifies that tree, and provides the other parameters-in the model. 

DEFINITION. A phylogenetic tree on L, is a collection T of nonempty subsets of 
L’={l,...,n-1) with the properties: 

(1) L’ E T and {i} E T, for all i E L’. 

(2) Forp, P’ ET, PIP’ E {P,P’,@}. 
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There is a well-known bijection 4 between the sets of phylogenetic trees on L and the (graph- 
theoretic) trees which have IL1 leaves labelled with distinct elements of L, and whose non-leaf 
vertices are unlabelled and of degree at least three (see [2]). Under 4, p E T corresponds to the 
edge of 4(T) which seperates the leaves whose labels are in p from the leaves whose labels are 
in L - p. The pair {p, L - p) is said to be a split of 4(T). 

Suppose that T is a phylogenetic tree on L. We assume that the nucleotides at different sites on 
the aligned sequence have evolved identically and independently from (unknown) ancestral states 
at some “ancestral point” in 4(T) -such a “point” could be a non-leaf vertex, or the midpoint of 
an edge. Then, with probability 1, ze converges (as the length of the sequences tends to infinity) 
to its expected value, denoted f 8. Note that fe is the probability of observing, at any given site, 
a leaf-colouring that induces the pair 8 = (61, us). 

To calculate fe we need a model to describe the generation of leaf colourings. Kimura’s 3- 
parameter model [5] is a continuous Markov model of nucleotide changes prescribed by three 
independent probabilities on each edge of 4(T). The changes are categorised into three types, 
the transitions, A interchanging with G (A H G) and C +, T, and two types of tmnsversions, 
A c* C, G H T and A c* T, C +, G. For the edge of 4(T) corresponding to p the expected 
numbers of these changes can be shown to be Ez, Ej and EF as defined below, when a continuous 
time Markov process is assumed. 

Evans and Speed showed [6] that under this model, if the nucleotide characters are identified 
with the elements of the Kleinian group G, then the change of z to y is a function of y - z E G. 
They identified the three types of change with (0, l), (1,O) and (1,l) respectively. We generalise 
this model with a model M in which we randomly edge colour 4(T), with pP(g) being the 
probability the edge corresponding to p is coloured g. P(p,g) = pp(g) maps T x G + [0, 11. This 
induces a leaf colouring 8, when we colour R by (O,O), and colour leaf e # R by the sum of the 
edge colours in the path in 4(T) f rom e to R. Let fe(T,P) be the probability of inducing the 
pair of subsets 0 = (61,~~) as in (1). Let 

P,= [~~/~$~/], j= [!I, A= [i y b 

and let 

rq:1 1 

1 , 
= -i log(j - 2AP,), E, = A-‘q,. 

NotethatA-‘=A-iJ( h w ere J =jjT) and P, = ij- iA_‘exp(-2AEp). 
Kimura’s model implies the following two conditions, while model M only requires Condition 1. 

CONDITION 1. qf exists for i = 1,2,3, p E T. 

CONDITION 2. Ei 2 0 for i = 1,2,3, p E T. 

Notice that Condition 1 can be re-phrased as: 

CONDITION 1’. For p E T, and distinct nonzeto g, g’ E G, p,(g) +p+,(g’) < 3. 

It is easily checked that model M together with Conditions 1 and 2 characterise the leaf- 
colouration probability distributions which can arise under Kimura’s 3-parameter model (with 
its implicit assumption of a continuous-time process). If we drop Condition 2, we have a slightly 
more general model, which we will refer to as the generalized (Kimura %pammeter) model. 

Let C(T) = {(8,8)} U {p(‘) : p E T, i = 1,2,3} where p(l) = (p, 0)) pc2) = (0,~)) pc3) = (p, p). 

THEOREM 1. (Inversion formulae) For a leaf-colouration distribution f = f(T, P) arising under 
the generalized model, we have: 

I O, if 0 $! C(T), 

if@ = ~(~1, p E T, 

if@ = (0,0). 
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In particular, the conjugate spectra of aligned sequences provide consistent estimators (under 
the generalized model) of the underlying parameters (T and P). 

PROOF. For i = 1,2,3, let q’ be the vector obtained from {qi} by indexing the subsets p of 

L’= {I,..., n - 1). For $ = (61, ~2) let w&,, = (-l)loi”PI for i = 1,2, and let v;,~ = u~,~.w;,~. 

For i = 1,2,3, let K’ be the 4”-’ by ITI, 0 - 1 matrix with K&,, (0 = (a, a’)), p E T, defined by 
the equations: %P 

[ 1 = a (j - 2A-’ ve,p), 
vL 

Kg,, where ve,p = 

IG,p [ 1 vb,, . 

v& 

Applying the main result from [lo], it can be shown that: 

f = H-’ exp(r), where r = 2 K’(-2q’). 
i=l 

(Specifically, with P(T,Xi) defined as in [lo], let Ps(X1,X2) = P(T,Xl) n P(T,Xz), 

Pi(X1, X2) = P(T,Xi) \ P3(Xlr x2), f or i = 1,2; then the edge corresponding to p lies in 
Pi(X1, X2) iff I<;,, = 1, where 0 = (Xl n L’, X2 rl L’).) 

Now, r-0 = C (-j . E,+vQ+, 
PET 

.E,,), that is, r = C 5 ((-Ei) j+Ei vi), where vi is the vector 
pcgT i=l 

obtained from v&,, by ordering the 0. Now, 

(H-y& = . { A’ if 8 = P(‘), 
, otherwise, 

and since 7(f) = H- ’ r, the result follows. I 

If 20 is the relative frequency of colouring 0 in some observed sequences we can take x = (ze) 
as an estimate of f(T’, P’) where T’, P’ are unknown. For each T we can find P to minimize 

the Euclidean distance D(T,x) = IIy(x) - y(f(T, P))ll. A 1 c osest tree for x is a tree T which 

minimizes D(T, x). This can be found using a branch and bound search over all trees as in [ll], 
to minimize 6(T, x) (below). 

Write 70 = 7@(x), and let 7T = c 70. 
QEC(T) 

COROLLARY. (Approximation formulae) 

(1) For any tree T the values Ei which minimize D(T, x) are given by: 

+72)-:7T, c = IC(T)I = 3lTI + 1. 

(2) A closest tree for x is a tree T which minimizes 

6(T,x)=- c 7;+$, 

@EC(T) 

For this tree, 

D2(T,x) = x7; + 6(T,x). 
0 

REMARKS. 

(1) Without condition 1, P is not uniquely determined by f(T, P). 
(2) If, in part (1) of the Corollary the optimal values for Ei are negative, this suggests that 

(under the Kimura 3-parameter model) p does not correspond to an edge in the tree which 
generated the data. 

(3) Unlike the conjugate spectra considered in [4], h ere there exists 4”-’ - c pairs 0 such that 

7e(f(T, P)) = 0 f or all (T, P). This provides a useful check on the applicability of the 
model as a method for reconstructing trees. 
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