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a b s t r a c t 

A variety of evolutionary processes in biology can be viewed as settings where organisms ‘catalyse’ the 

formation of new types of organisms. One example, relevant to the origin of life, is where transient bio- 

logical colonies (e.g. prokaryotes or protocells) give rise to new colonies via lateral gene transfer. In this 

short note, we describe and analyse a simple random process which models such settings. By applying 

theory from general birth-death processes, we describe how the survival of a population under catalytic 

diversification depends on interplay of the catalysis rate and the initial population size. We also note how 

such process can also be viewed within the framework of ‘self-sustaining autocatalytic networks’. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The process of lateral gene transfer is evident today in the

pangenome size of many bacterial ‘species’ (including Escherichia

coli ) where the core genome shared by most individuals is often

very small compared with the number of genomes across sam-

pled individuals ( McInerney et al., 2017 ). In particular, gene trans-

fer can lead to new combinations of genes this can allow for new

species to form ( c.f. Papke and Gogarten (2012) ). Very early in

evolution, gene transfer events that generate new combinations of

genes were also essential in order to bridge the evolutionary gap

from the first genes to the first genomes in populations of proto-

cells ( Koonin, 2014; Koonin and Martin, 2005; Weiss et al., 2016;

Woese, 2002 ). 

In this note, we consider modelling this process (and others de-

scribed shortly) as a type of random birth-death process, in which

birth events are ‘catalysed’ by other individuals. In the setting of

early life in the presence of lateral gene transfer, an ‘individual’

refers to a colony of genetically identical protocells (a ‘species’), a

birth event refers to a ‘species’ A giving rise to an additional new

species A 

′ (with a different combination of genes) by the lateral

gene transfer of certain genes from a protocell of a third species B

into a protocell in A (this protocell then subdivides repeatedly to

form the additional colony A 

′ that is genetically different from ei-

ther A or B ). In this way, a lateral gene transfer can be viewed for-
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ally as a ‘catalyst’ for the formation of a new ‘species’ from the

xisting pool of ‘species’ (i.e. the process does not destroy species

 , much as a catalyst is not used up in a chemical reaction). A

eath event refers to a ‘species’ (i.e. a colony of protocells having

 given combination of genes) dying out. This process is illustrated

n Fig. 1 . 

Viewed as a simple stochastic model, this process is similar

o classical linear birth-death Yule processes, but with an impor-

ant difference: the birth rate per individual depends on the ex-

sting population size (the more colonies with distinct genomes

re present, the more opportunity for transfer events to form new

ombinations there are (thus, the process is stochastically differ-

nt from a standard constant birth-death model of cladogenesis).

s we describe below, the population of colonies is either certain

o die out or else it may survive and grow indefinitely with a pos-

tive probability that depends on three key parameters: the rate at

hich colonies die out, the initial number of colonies, and a func-

ion that describes the rate of lateral gene transfer. 

The model we study is also motivated by four recent papers

hich consider different biological processes involving the forma-

ion of new entities by a process of catalysis involving other extant

embers of the set. These are the study by Gatti et al. (2017) in

hich biodiversity in ecology is viewed as an autocatalytic process,

he paper by Montévil and Mossio (2015) on constraint closure in

iological organisation (viewed here as a random process in which

onstraints are treated more abstractly as ‘catalysts’), the recent

aper Zeravcic and Brenner (2017) on the emergence and exponen-

ial growth of catalytic cycles with colloidal spheres, and the mod-
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Fig. 1. An example of an catalytic branching processes, starting with three items, 

and involving four catalysation events (horizontal dashed arrows), each of which 

leads to a new items arising. For example, in lateral transfer in early life, a dashed 

arrow refer to the transfer of genes from a protocell of one colony into a protocell 

of a different colony leading to a protocell with a new combination of genes that 

can then form go on to produce a new, genetically distinct colony. There are also 

three loss (extinction or death) events. At time t , there are four extant items. 
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lling of autocatalytic networks in human cognition in Gabora and

teel (2017) . 

.1. Model description 

We consider a continuous-time Markovian random process that

tarts with k ≥ 1 items at time t = 0 and proceeds as follows. At

ach given instant t , if there are X t = n items present, then each

ne of these items randomly and independently catalyses the cre-

tion of a new item from an existing (different) item at rate ϕ( n ).

ere, ϕ( n ) is assumed to be a monotone increasing function. In ad-

ition, we will assume that each item can disappear independently

rom the system (i.e. die) at a constant rate μ. An example of this

eneric process is illustrated in Fig. 1 . The assumption that ϕ is

onotone is motivated by the assumption that an item has higher

robability of forming a new lineage, if there are more items avail-

ble to act as a potential catalyst. We call such a process ( X t , t ≥ 0)

 catalytic branching process . 

This process can be described as a particular instance of a gen-

ral birth and death process (see e.g. Section 6.2 of Allen (2003) ),

here λi = iϕ(i ) and μi = iμ. Unless otherwise stated, we assume

hat ϕ( n ) is bounded above and so the monotone increasing func-

ion ϕ( n ) converges to a limit, which we will denote by K . 

Note that if we regard the splitting events formally as one type

f ‘reaction’ (with one reactant, one catalyst and two products),

nd the extinction events as another type of ‘reaction’ ( x �→∅ ) and

ake the set of k items at time 0 as a ‘food set’ of ‘molecule types’,

hen the set of splitting event reactions forms a CAF (construc-

ively autocatalytic, food-generated set), as defined in Mossel and

teel (2005) , and thereby a RAF (reflexively autocatalytic and food-

enerated set) as defined in Hordijk and Steel (2004) . In other

ords, a catalytic branching process is a special type of autocat-

lytic network as introduced in Kauffman (1986) ; 1993 ). 

. Properties of the model 

The process we have described is guaranteed to either become

xtinct (i.e. with probability 1, there is a time T for which X t = 0

or all t > T ) or to tend in size to infinity as t grows. This follows

rom a very general result of P. Jagers concerning stochastic pro-

esses that can undergo extinction (Theorem 2 of Jagers (1992) ;

ee also Steel (2015) ). 

Moreover, (i) if K ≤μ, extinction is certain and (ii) if K > μ,

here is a positive probability that the population size will grow

ndefinitely. Claims (i) and (ii) can be justified by a coupling ar-

ument based on two associated linear birth-death processes (and
he classical result that such processes are certain to become ex-

inct precisely if the birth rate is less or equal to the death rate;

ee, for example, Kendall (1948) ). Claims (i) and (ii) also fol-

ows from more explicit results concerning the extinction prob-

bility for general birth-death processes. In particular, if we let

 k = lim t→∞ 

P (X t = 0 | X 0 = k ) denote the probability that the pro-

ess eventually becomes extinct, then applying Theorem 6.2 of

llen (2003) with λi = iϕ(i ) and μi = iμ gives the following ex-

licit description for q k : 

 k = 

∑ ∞ 

i = k μ
i 
∏ i 

j=1 ϕ( j) −1 

1 + 

∑ ∞ 

i =1 μ
i 
∏ i 

j=1 ϕ( j) −1 
. 

From this, it can be shown that for K > μ, the survival proba-

ility p k = 1 − q k converges to 1 at an exponential rate with k . The

ollowing result makes this a little more precise. 

roposition 1. For a catalytic branching process starting with k ≥ 1

tems at time 0 and with μ < K(= lim n →∞ 

ϕ(n )) , the probability p k 
hat the process grows indefinitely (rather than becoming extinct) sat-

sfies the inequality: 

p k ≥ 1 −
(

μ

ϕ(� ) 

)k −� 

, 

here � is any value for which ϕ( � ) > μ and k ≥ � . 

roof. Suppose that k > � , where ϕ(� ) = λ > μ. Let us first con-

ider a linear birth-death process Y t , starting with k individuals at

ime 0 and with birth and death rates λ and μ respectively (i.e.

n the setting of general birth-death models, λi = iλ, μi = iμ). Let

 k , � be the probability of the event E (k ) 
� 

that Y t ≥ � for all t ≥ 0. Now

onsider the discrete-time random walk W r ( r = 0 , 1 , 2 , 3 . . . ) on

he set 0 , 1 , 2 , . . . , that starts at W 0 = k − � ≥ 1 , and which records

he changing values of Y t − �, but which treats 0 as an absorbing

tate. W r is then a simple random random walk for which a step to

he right at any point i ≥ 1 occurs with probability p = λ/ (λ + μ) ,

hereas a step to the left at point i ≥ 1 occurs with probability

 − p = μ/ (λ + μ) . It is now a classic result from the Markov chain

heory of simple random walks (namely the (unlimited) ‘Gambler’s

uin’ problem) that the probability of never hitting zero, given

hat one starts from position i ≥ 1, is given by 1 − (μ/λ) i . Taking

 = k − � gives: 

p k,� = 1 −
(

μ

ϕ(� ) 

)k −� 

. 

We now apply a coupling argument for the original random

atalytic process X t . Note that X t can be realised as the process

btained from Y t by randomly and independently (i) disallowing

with a certain probability) birth events in Y t when there are fewer

han � individuals, and (ii) introducing (with a certain probability)

dditional birth events in Y t when Y t becomes larger than � . Now,

onditional on E (k ) 
� 

, the disallowing events of Type (i) do not oc-

ur, and the additional events of Type (ii) only serve to increase

he size of X t . Thus the probability that X t is at least equal to � for

ll t ≥ 0 is bounded below by P (E (k ) 
� 

) , and this probability is given

y the expression above for p k , � . �

Remarks 

• Proposition 1 makes explicit how the survival and growth of bi-

ological populations of protocell colonies (having different com-

binations of genes) evolving under a simple catalysation pro-

cess (involving lateral gene transfer) depends on the interplay

between a sufficiently high lateral gene transfer rate and the

size of the initial population k . Notice, in particular, that the

role of k in the survival probability of the process is more deli-

cate than for a classic linear birth-death model with parameters

λ = K and μ. In the latter case, when K > μ, the convergence of
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the survival probability to 1 as k (the founding population size)

grows is described exactly by an expression of the form 1 − q k 

for all values of k . However, for a catalytic branching process

with K > μ, the survival probability may still be close to zero

for large values of k , when ϕ is a slowly converging function to

its limit, and ϕ( k ) < μ. 

A further difference between a catalytic branching process and

a linear birth-death process (with rates λ and μ) is that the lat-

ter process survives with a probability tending to 1 as λ/ μ→ ∞
and this holds even when the founding population has size

1. By contrast, for a catalytic branching process, the probabil-

ity that the process survives depends on the interaction of the

initial population size and the small n behaviour of ϕ( n ) even

though the ratio K / μ might be arbitrarily large. 

• When the process X t survives, its expected size grows at a rate

that is (at least) exponential in t . That is, E [ X t | X t > 0] ≥ e γ t for

some γ > 0. If M = M(t) = E [ X t ] denotes the expected size of

the population at time t in a catalytic branching process X t ,

Jensen’s inequality (applied using the convex function x �→ x ϕ( x ))

gives the following differential inequality for M , which holds for

all t ≥ 0: 

dM 

dt 
≥ M(ϕ(M) − μ) . 

This inequality ensures that if K(= lim n →∞ 

ϕ(n )) > μ, then we

can select a value 0 < γ < K for which exponential growth oc-

curs. Moreover, if lim n →∞ 

ϕ(n ) = ∞ , the population may un-

dergo explosive growth (i.e. reach infinite size in a finite time

with positive probability, depending on the rate at which ϕ
grows ( Allen, 2003 )). 
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