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DISTRIBUTION OF THE SYMMETRIC DIFFERENCE METRIC
ON PHYLOGENETIC TREES*

M. A. STEEL,

Abstract. The symmetric difference metric has been useful in comparing phylogenetic trees derived from
DNA sequence data. The main result shown here is that the frequency of pairs of binary trees a given distance
apart is described by a limiting Poisson distribution, with e-/s 88 percent of all pairs maximally distant.
Asymptotic bounds on the distribution are derived, and the asymptotic mean and variance of the normalized
metric on the class ofall phylogenetic trees is also calculated. The results rely on simple combinatorial constructions
and analytic properties of appropriate generating functions.
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Introduction. The symmetric difference metric defined on phylogenetic trees is a
special case of symmetric difference metrics on sets studied in 9 ], 12 ]. The tree metric
has been useful in testing evolutionary hypotheses and in examining the methods used
to build evolutionary trees ]. An optimally efficient algorithm has been developed by
Day 4 to compute the metric, and its distribution among pairs of small trees is described
in [3] and [8].

This paper extends those results to obtain bounds on the distribution of pairs of
arbitrarily-large binary trees a given distance apart. As a result, the asymptotic distribution
is shown to be Poisson, which answers a conjecture in 8 ]. The distribution of the
normalized metric on the full class of phylogenetic trees is also examined. In particular,
the asymptotic mean ofthe normalized metric is derived, and confirms a second conjecture
in [8].

A description of the distribution in the binary case is also given in terms of a gen-
erating polynomial, the coefficients of which can be computed directly from the tree.
Some consequences of this representation are given. The properties of the metric on
binary trees make it useful for hypothesis testing involving trees derived from homologous
DNA sequences, as in 10 ]. The resulting trees may be expected to be similar and it is
useful to have a metric for which most trees are far apart.

DEFINITIONS. Let L be a set of n ->_ 2 labels. A phylogenetic tree on L is a tree with
n vertices of degree one, each labeled with a distinct element from L, and with the
remaining (internal) vertices of degree at least three, and unlabeled. For such a tree, the
n edges incident with a pendant vertex are called pendant edges, and the remaining edges
are internal.

Two phylogenetic trees on L are considered equivalent ifthere is a graph isomorphism
between them that preserves the labeling on the pendant vertices. More generally, iftwo
phylogenetic trees are graph isomorphic with their labelings suppressed, we say they are
topologically equivalent.

As in [8 ], let PT(n,f) denote the set of phylogenetic trees with n pendant
vertices and f internal edges on the label set { 1, n }. For n >- 3, let PT(n)
t3 ( PT(n, f); 0 _-< f _-< n 3 }, and BPT(n) PT(n, n 3), the set of binary philo-
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542 M.A. STEEL

genetic trees, for which each internal vertex has degree three. The following result is from
[5, p. 29].

LEMMA 1. The size ofPT(n, f is determined recursively asfollows:
IPT(n,f)I (n +f-2)IPT(n- 1,f- 1) +(f+ 1)IPT(n- 1,f)I, n >-4,

IPT(3,0) , IPT(3,f)I =0, f>0.
For n >= 3, Lemma gives BPT(n) (2n 5)tt 1.3.5 (2n 5). For con-

venience, we let b(n) (2n 5 )tt and p (n) [PT(n) 1.
The symmetric difference metric d, which Bourque 2], and Robinson and Foulds

[13] applied to phylogenetic trees, is defined on PT(n), and so on BPT(n), as follows:
For T PT(n), deletion of an internal edge e induces a two-set partition r( T, e) of
{ 1, n } corresponding to the labels on the two connected components of T with e
deleted. For T PT(n,f), T2 PT(n2,f2), and r(T, el) r(T2, e2) we call el, e2
an equivalent pair of edges. If T, T2 have exactly m equivalent pairs of edges then
d( T, T2) f + f2 2m. In particular for T, T2 BPT(n),

d( T, T2)= 2(n- 3- m).

For T PT(n) we recall from 8] the generating polynomials

P(T) P(T,x) , p m(T)xm, Q(T) Q(T,x) , qm( T)xm
m_O mO

where P m(T) (respectively, qm(T)) is the number of trees in PT(n) (respectively,
BPT(n)) at distance m from T.

Thus, for Te PT(n,f), Q(T,x) has degree n +f- 3 and is an even or odd poly-
nomial of parity equal to the numerical parity of its degree. For T PT(n), s >= 0 let
q(s, T) denote the number of binary trees having s equivalent edge pairs with T,
and let q(s, n) be the average value of b(n)-q(s, T) over BPT(n). Thus, q(s, n)
b(n) -2 ErBPT(n) q(s, T) is the probability that two trees randomly chosen from
BPT(n) have exactly s equivalent pairs of edges.

The main result (Theorem 3) shows that q(s) limn-o q(s, n) has a Poisson
distribution in s with mean -. Consequently, the probability that two randomly chosen
trees are a maximal distance apart tends asymptotically to e-l /8, answering a question
raised in 8].

We begin by noting that for T e PT (n), P(T) and Q(T) do not depend on the
labeling of T, but only on its topology. We shall frequently write these and other tree-
valued functions that are invariant under topological equivalence without specifying the
labeling of the tree. With this in mind from 8 ], we now state the following theorem.

THEOREM 1. Let e be an internal edge of T PT n ). Let T/e be the treeformed
by contracting e, and let T, T2 be the maximal subtrees of T with e as a pendant
edge. Then

P(T) xP( T/e) + (1 x2)P( TI)P(T2),

Q( T)=xa( T/e)+(1 x2) Q( T)Q( T2).

We now give a constructive description of Q( T, x). Let T e PT (n,f and let E be
a set of internal edges of T. For each edge e e E cut e in half and place new pendant
vertices on each of the two "ends" of e. In this way E defines a collection of trees Ti,
having ni pendant vertices, for 1, EI / (with T T, if E ). Clearly,
1-<i_ IEI / ni n + 21E[. Let (E) be the sequence (n, nle / l), taken in some
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DISTRIBUTION OF A TREE METRIC 543

order, and let ((E)) I-[,z;_ IEI +1 b(n,). Define r(s, T)to be the sum of (@(E))
over all sets of internal edges E, with [EI s. Finally, let

R(T) R(T,x) Z r(s, T)xs,
s>O

q(T) q(T,x) q(s, T)x
s_O

(so that q(T, x) x(n-3+f)/2Q(T, x-l/2)).
LEMMA 2. For Te PT (n), Tne PT (n, 0), we have thefollowing:
(a) q( T, x) R( T, x 1);
(b) In the notation of Theorem 1,

(i) R(T) R(T/e) + xR( TI)R( T2),
(ii) q( T) q( T/e) + (x 1)q(T)q(T2);

(c) R(T, 0) R(Tn, x) b(n).
Proof. (a) Let T BPT (n) and let E be a set of s internal edges of T. Under the

above construction, for each edge e e E, new pendant vertices vl, v2 are attached to the
ends of a bisection of e.

For 1, 2, label vi with the set of labels of those pendant vertices of T that are no
longer joined by a path to vi when e is cut. Each tree Ti (i 1, s + 1) defined by
E, thus has a natural label set Li for its pendant vertices, so that Ti BPT(L). This
process is illustrated for s 2 in Fig. by the tree J6 with two distinguished edges.

Now, let B( T, E) be the set of trees in BPT(n) equivalent to T on E and possibly
other internal edges. We construct a bijection F from B( T, E) to I-Ii BPT(L). Given
T’ B( T, E), performing the above edge splitting and labeling procedure on T’ produces
the label sets L, Ls+ 1, and hence an element ofF(T’) I-[i BPT(Li).

The inverse of F, takes (TI, T+ 1) ]-I BPT(Li) and identifies all pairs of
pendant vertices v, v labeled with sets A, A2 such that AI U A2 L, the identified
vertices then being suppressed to give a tree in B(T, E). Now, L, ni implies
[BPT(L)[ b(n), so that the bijection gives [B(T, E)[ ((E)). By the principle
of inclusion and exclusion [6] r( T, x 1) is then the (ordinary) generating function
for the number of binary trees equivalent to T on an exact number of internal edges,
thus we establish (a).

,.I

FIG.

{1.2},.

{I ,2,3}.

(b)

{3,4,5,6}

{4,5,6}

D
ow

nl
oa

de
d 

03
/2

8/
19

 to
 1

32
.1

81
.2

.6
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



544 M.A. STEEL

Part (b)(i) can be proved directly, or from Theorem by noting Q(T,x)=
xn- +fR(T, x-2 1). Part (b)(ii) follows from (a), while part (c) follows from the
definition ofR( T, x).

Example 1. For J6 in Fig. (a), we have

R(J6, x) b(6) + (2b(3)b(5) + b(4)2)x + 3b(3)2b(4)x2 + b(3)2x3

105+39x+9x2+x3,
q(J6, x)=R(T,x- 1)=74+24x+6x2+x,
Q(J6, x)= +6x2+24x4+74x6.

Example 2. Let Te PT(n,f). Then q(s, T) 0, for s >f, and q(f, T) 1-Iib(Oi),
where (01, Of/ 1) is the degree sequence of the internal vertices of T.

DEFINITION. For n

_
2a > 4, let Tn(a) PT(n) be a tree obtained by attaching

pairs of pendant vertices to "a" pendant vertices of a (star) tree T PT(n a, 0). The
resulting tree is unique up to topology so that q(s, Tn(a)) is well defined. We call such
trees binary semistars. The tree J6, in Fig. (a), with its central edge contracted,
is a T6(2).

To calculate q(s, T(a)), let F be the set of internal edges of Tn(a), so that
FI a, and for E

_
F, (E)consists of lEI copies ofthree and one copy ofn EI,

giving ((E) b(n EI). Thus, r(s + i, T) aCts+i)b(n s i), and so by
Lemma 2,

q(s, T(a)) (-1)i.ts+ i)cs.act / i).b(n- s- i).
iO

Rearranging terms, we obtain Lemma 3.
LEMMA 3 q(s, Tn(a)) ac ,i_o (-1) ta-)Ci.b(n s i)
DEFINITIONS. For T PT(n), n > 4, e is a binary edge of T if e is an internal edge

adjacent to a pair of adjacent pendant edges. For T PT(n), let a(T) be the number of
binary edges of T.

For T PT(n), n > 4, if e is a nonbinary internal edge of T, we say the contracted
tree T/e is a a-reduction of T. Equivalently it is a contraction for which the maximal
subtrees T, T2 both have at least four pendant vertices.

LEMMA 4. For T PT(n,f ), n > 4, a(T) a, T can be successively a-reduced to
a Tn(a) inf- a steps.

Proof. If T’ PT(n) is not a binary semistar, T’ has a subtree topologically equivalent
to either J6 in Fig. (a), or to J6 with a contracted noncentral internal edge. Since these
trees are a-reducible, T’ is also. By induction, Tcan thus be reduced to a binary semistar
Tn(a). Since the internal edges that survive under all possible a-reductions are precisely
the binary edges, we have a(T) a, the number of binary edges of Tn(a). Finally since
each a-reduction eliminates one internal edge, f- a steps are required.

Now for positive integers t, s, let f(x) be a positive, real-valued function de-
fined on integers greater than or equal to s, with the property that < x -< y implies
f(x)f(y) <- f(x 1)f(y + 1). Thus, for positive integers N, k, with N >>- kt, induction
on N for each k gives

max{ I-[ f(x)" x=N,x-t}= f(t)-’f(N-(k-1)t)
lik

Taking t

_
3,f(x) b(x), we have, for x <- y, b(x)b(y) (2x- 5)b(x 1)b(y) =<

(2y 5)b(x 1)b(y) b(x 1)b(y + 1), so that b(x) satisfies the above property.
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DISTRIBUTION OF A TREE METRIC 545

This gives the following lemma.
LEMMA 5. For positive integers

_
3, N, k;

max{ 1-[ b(xi) , xi N, xi - t} b(t)k- ’b(N- (k-1)t)
lik

Example 3. For T PT(n, f), n

_
3, s

_
O, q(s, T) <- f Csb(n s), so that

lim b n )- q s, T) _-< 2 -s/ s!.

(s + i)Proof of Example 3. By Lemma 2 (a), q(s, T) < i
_
0 C.q(s + i, T)

r(s, T). From Example 2 we may assume s -< f -< n 3, so that for a set E of s internal
edges of T, if (E) (n, ns/ 1), then Yi ni n + 2s >= 3(s + 1) >= min { ni}.s.
Thus, we can apply Lemma 5 with t= 3, N= n+ 2s, k= s+ 1, to obtain
((E)) <= b(3)Sb(n s) b(n s), and since there are f Cs possible choices
for E, r(s, T) -< f C.b(n s), which completes the proof.

THEOREM 2. For T PT(n ), s

_
O, n > 4,

b(n)-q(s, T)= b(n)-q(s, Tn(a)) + 6(s, T),

where a a(T), (s, T) < 3 (s + 1) / 2 (2n 7).
Proof. If n 5, T is a binary semistar and the theorem holds, then suppose n >- 6.

By Lemmas 2 (a) and 2 (b),

(1) q(s, T) q(s, T/e) + , q(c, T)q(13, T2)- q(a, T)q(, T2).
a+/3=s-I a+O=s

Now if T/e is a a-reduction of T, each of the two summation terms in (1) does not
exceed (s + 1)b(4)b(n 2) (since for T PT(m), q(s, T) <- b(m), and for n >= 6,
Lemma 5 applies with k 2, 4, N n + 2). Thus, by Lemma 4, b(n)-q(s, T)
b(n)-q(s, Tn(a)) + 6(s, T); a a(T), where

16(s, T) - (s + 1)(n 3 a)b(4)b(n 2)/b(n)

LEMMA 6. Let

3(s + 1)(n 3 a)/(2n 5)(2n 7)

< 3(s + 1)/2(2n 7).

ln(a) { T BPT(n) a(T) a } 1,

n > 4, and Tn(x) Ya n(a)xa, tn(s) D(Tn(x)) Ix= 1, where D denotes differentiation
with respect to x. Then, tn(s) 2-Sb(n s)n!/ (n 2s)!.

Proof. Given a set of labels L, let r2(L, k) be the collection of all sets of k disjoint
sets of size two drawn from L, and let r2(n, k) r2({ 1, n }, k). For S e
rz(n, k), let A (S)

_
BPT(n) be the set of binary trees for which any pair of pendant

vertices labeled by a pair from S have adjacent edges. IfA(n, k) Ys(n,) [A(S)1,
and An(x)= ZjA(n, k)x, then by the principle of inclusion and exclusion [6]
Tn(x) An(x 1), giving tn(s) s!A(n, s).

Let V(n, s) { T, S) T e A (S), S r2(n, s) }, and let

W(n,k)={ (T,G,H)’TeBPT(n-s),Ger2(H,s),H_ 1, ,n}, Inl =2s}.

Then A (n, s) IV(n, s) l, and we construct a bijection F from V(n, s) to W(n, s) as
follows. Given T, S) e V(n, s), let H(S) tO {X" X e S }, so that IH(S) 2s, and
S 7r2(H(S), s).
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546 M.A. STEEL

Let T(S) be the tree obtained by deleting each pair of pendant vertices (and their
pendant edges) with labels Xl, x2 in S, and relabeling the exposed internal vertex by
min { x, x2 }. Relabeling T(S) again by { 1, n s } so as to preserve the order of
labels gives a tree T’(S) BPT(n s). Let F(T, S) T’(S), S, H(S)). Then F
has the following inverse (and hence is a bijection). Given (T, G, H) e W(n, s), if
G {{x, y}, "", {x, Ys }),letL(G) { 1, ,n } Ui {max {xi, Yi }} .Given Te
BPT(n s), relabel the pendant vertices of T with L(G) so as to preserve the order of
the labels. Then, for 1, ..., s, join new pendant vertices labeled xi, and y to the
pendant vertex of T labeled min {xi, y ), and we obtain a tree T’e A(G). Thus,
F-I((T, G, H)) T’, G).

Summarizing, we have tn(s) s!A(n, s) s!lV(n, s) s!lW(n, s) l. But
W(n, s) b(n s) r2(2s, s)I "C2, and r2(2s, s) (2s)!/s!2 [1], which proves

the lemma.
Remark 1. An argument in 7] shows that

In!(n-4)!/(n-2a)!a!(a-2)!22a-2 for2=<a-<[n/2],
tin(a)

0 otherwise.

The proof relies on a recurrence for tin(a) which can be written

Tn(x) (n- 4 + nx- x)Tn_(x) + 2(x- x2)d/dxTn_(x).

An inductive argument based on this result gives an alternative proof of Lemma 6.
THEOREM 3. For n > 4, s >- O, q(s, n) k(s, n) + 6n(s), where k(s, n)

(n!/b(n)22Ss!) ,i b(n s i)2/(-2)ii!(n 2s 2i)!, I(s) < 3(s / 1)/2(2n 7).
Proof.

q(s, n)= b(n) -2 q(s, T)
T BPT (n)

b(n)-2{ a

q(s, Tn(a))ln(a)}+ 6n(S) by Theorem 2.

By Lemma 3,

, q(s Tn(a))n(a) ,{of, , (-1)i ’a sICi.b(n s i)}a_O a_O i_O

, { , aCsta-s)Cirln(a)}(-1)ib(n-s-i).
i_o a_O

Now, ,a_oaCs ta-s)Cinn(a tn(S + i)]s!i!, SO that

b(n) -2 q(s, Tn(a))n(a)= (s!)- , (-1)itn(s + i)b(n-s- i)/b(n)2i!
i_o

k(s, n) by Lemma 6, as required.

COROLLARY 1. q(s) limn-. q(s, n) e-/8/ 8s!.
Proof. The proof is obtained by Theorem 3, observing that

lim b(n- x)2n!/b(n)2(n- 2x)! 4-x and lim /in(s) 0.

COROLLARY 2. lfv( n is the expected distance between two trees in BPT( n), and
tr2(n) is the variance, then we have thefollowing:

(a) limn-. (2n 6) v(n) 0.25;
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DISTRIBUTION OF A TREE METRIC 547

(b) lim,_.o trZ(n) 0.5.
Proof. (a) v(n) ,s q(s, n)(2n 6 2s); thus,

(2n 6)- v(n) (2n 6)(1 ] q(s, n)) + 2 , sq(s, n)= 2 sq(s, n),
\ ]

since X q(s, n) I, and lim_ sq(s, n) sq(s) , by Corollary I.

(b)

tr2(n) ,q(s,n)((2n-6-2s)-v(n)) -
((2n- 6)- v(n)) 2 q(s,n)-4(2n-6- v(n)) , sq(s,n)

+ 4 sq(s, n).

Letting n -- , using (a) and noting that Zs s2q(s) 0.125 + (0.125)2, we obtain the
result.

Remark 2. Using a different type of counting argument it can be shown that
q(0, n) is monotone increasing in n, for n >_- 3. Table 4 of[ 8 ], which gives q(s, n) for
4 -< n _-< 16, further suggests that for each s > 0, q(s, n) is monotone decreasing in n.

Having found the asymptotic average value over BPT(n) ofb(n)-lq(s, T), we now
calculate its asymptotic range.

THEOREM 4.
s=0,

lim sup { b(m)-lq(s, T) }
1/4n m

_
n,T BPTtm) e- / 4Ss!, s > O,

-1/4 s 0,
lim inf { b(m)-lq(s, T) }

n m n,T BPT(m) O, S " O.

Proof. For s 0, (1) gives q(0, T)

_
q(0, Tn(a)), which together with Lemma 3

and Theorem 2 gives q(O, T) >= a(T)/(2n 5) + 6(0, T).
For each positive integer n, choose Jn e BPT (n) with a(Jn) 2. For a given n, any

two such trees are topologically equivalent and are often called caterpillar trees. Then
b(n)-q(O, Jn)

_
2/(2n 5) + 6(0, J) -- 1, as n -- o, and since

b(m)-lq(O, T) <-

for all T BPT(m), lira sup { b(m)-q(O, T) } 1. A similar argument using J, gives
lim inf { b(m)-q(O, T) } 0 for s > 0. To obtain the other two results, consider the
family of binary trees, K BPT(2n), obtained by attaching pairs of pendant edges to
every pendant vertex of a caterpillar tree T J. For fixed n the trees obtained are again
topologically equivalent. An example of a K5 is given in Fig. 2. Clearly a(K,) n, so
that by Lemma 3 and Theorem 2,

b(2n)-q(s, Kn) Cs , (-1)i.tn-s)Ci.b(2n i- s)/b(2n) + 6(s, K).
i_o

Rearranging, we have

(s!)- Z (-1);(i!)-{n(n-1)’’’(n-s-i+l)
i-0

/(2(2n)- 5)... (2(2n)- 2i- 2s- 3)} + 6(s, K,).
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548 M.A. STEEL

5 6 7

FIG. 2

Now the bracketed term has s + factors in the numerator and denominator so
that as n --* oo, the bracketed term approaches 4 -s- i. Hence,

Thus,

lim b(2n)-q(s, Kn) (4Ss!)- i!
n i_0

e-/4/4s!.

lim sup ( b(m)-q(s, T) }

_
e-/4/ 4s!,

lim inf ( b(m)-q(O, T) } -< e-1/4.

We now show a lim inf { b(m)-q(O, T) }

_
e-/4 and by a similar argument, the

other inequality for lim sup can be derived, thus establishing the theorem. Let Ti
BPT n be a sequence with lim b n q O, Ti c.Thensincea(Ti)/niisbounded,
it has a convergent subsequence a(Titj))/ntj). Let limj-.oo a(Ti(j))/ni(j). Since
Ti() is a subsequence of Ti, lim-.oo b(ni(;))-q(O, Ti(;)) a. A calculation similar to
the above result on b(2n)-q(s, Kn) shows a e-/2. But for any Te BPT(n), a(T) <-
n/2, so that =< 2!. Thus a

_
e-/4, as required.

We now consider the distribution of the symmetric difference metric on PT(n).
The normalized distance between two trees T, T’ PT(n) is d( T, T’) divided by the
maximum possible distance, 2n 6. Theorem 5 shows that, asymptotically, the nor-
malized distance becomes increasingly peaked about its mean t(n), which is shown to
be less than one, confirming a conjecture in 8 ]. The symbols O and have their usual
meaning:f(n) g(n) means limn-, oof(n)/g(n) 1, andf(n) O(g(n)) meansf(n)/
g(n) is bounded as n - oo. Let p 2 In 2 1. Lemma 7 follows from similar results
in [14].

LEMMA 7.
(a) p(n)/n! p -nn-/2[(p/ 4r).
(b) p(n)-’(fzoflPT(n,f)l) no-’(1 In 2) O(1).
(c) p(n)-(Y.f_of(f 1)lPT(n,f)l)- no-z(1 -In 2) O(n).
THEOREM 5. Let u( n) and aZ(n) denote, respectively, the mean and variance of

the normalized distance between two trees in PT( n). Then, we have thefollowing:
(a) u(n) (1 In 2)/o .7943;
(b) (n)= O(n-).
Proof. A straightforward argument using Lemma 7(a) gives a constant C

such that:

(2) ifn, n
_

3, n + n2 n + 2, p(nl)p(nz)/p(n) < C/n.
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DISTRIBUTION OF A TREE METRIC 549

Let T a.. PT(n, f) and #(T) p(n)-lDP(T, X)lx=l, (D d/dx) be the expected
distance between T and trees in PT(n).

By Theorem 1,

DP( T, x)1= e( T/e, 1) + DP( T/e, x)[x=l 2P(TI, 1)P(T2, 1).

Hence,/(T) + #(T/e) 2p(n)p(n2)/p(n), where Tl . PT(nl), T PT(n2). By
contracting T to T,, a.. PT(n, 0), (2) gives

(3) #(T) f + #(T,) E(T) where 0 < E(T) < 2C f/n.

Averaging/(T) over PT(n), and dividing by (2n- 6)to obtain #(n), we obtain

(4) #(n) (p(n)-’ , f IPT(n,f)l) + (#(T,,) e(n))/(Zn 6)
f

with 0 < e(n) < 2Cl.
Now the trees at distanceffrom any T,, PT(n, O) are precisely those withfintemal

edges. Thus,

(5) #(T,) p(n)- ., f IPT(n,f)I, u(n) (2#(T,,) e(n))/(Zn 6).
f0

Result (a) now follows by Lemma 7.
The variance a(n) of the normalized distance is the average value of

((d( T, T’))/(Zn-6)-u(n))z

over all pairs T, T’ PT(n). Thus,

-(n) ( k2p,(T))/P(n)(2n-6)2-#2(n)
TPT(n) k(6)

=( DP(T,x)lx=l+ , DP(T,x)lx=l)/P(n)(2n-6)z-tZ(n).TPT(n) T. PT(n)

From Theorem 1,

(7) D2p(T,x) Ix= D2p(T/e,x)Ix= + 2DP(T/e,x)Ix=

4D((P( T1,x))P( T2, x))Ix= l- 2P( TI, 1)P( T2, 1).

Now, p(n)-ID((P(Tl, x))P(T2, x)) Ix=l -< 2(2n 8)p(n)p(n2)/p(n) (where Tl
PT(n ), T2 - PT(n2)) since for T’ . PT(m, f), DP( T’, x)Ix is clearly bounded
above by (m +f- 3)p(m) =< (2m 6)p(m).

Let T a. PT(n, f). Dividing (7) by p(n), we obtain p(n)-lD2p(T, x)Ix=l
p(n)-ID2p( T/e, x)Ix= + 2/(T/e) e(T), with 0 < e(T) < e(n) O(1) by (2). Reducing
T to T, . PT(n, 0), and using (3), we have

P(n)-DP(T,x)Ix= =p(n)-DZP(T,,,X)lx=

(8) +2( ] (f’+#(T,,))-el(T))O_f’_f-I

with 0 < el(T) < el(n) O(n).
Now, D2P( T,,, x) Ix E ff(f 1) [PT(n, f) [, while the second term in (8) is
f(f- 1) + 2f(T,). Averaging (8) over PT(n), we obtain

2p(n) -l Z f(f- 1)[PT(n, f)[ + 22(T,,) e(n) with e(n) O(n).
f
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Substituting this into (6), and noting that ,reTt, DP( T, x)Ix: /p(n)(2n 6)2

#(n)/(2n 6), and 2#2(Tn)/(2n 6) 2 0.5(n) O(n-) (from (5)), we have
a2(n) 2(,ff(f- 1)[PT(n, f)l)/(2n 6) 2 0.52(n) + e3(n), with e3(n)
O(n-). The result now follows from part (a) and Lemma 7.

Remark 3. By Chebyshev’s inequality, Theorem 5 shows that for any number k,
the probability two trees in PT(n) have k or less equivalent edges tends to zero as n
becomes large. This is in contrast to the binary case for which most trees are a maximal
distance apart.

For T BPT(n) an analysis similar to the first part of Theorem 5 can be applied
to o(T)mthe expected distance between T and trees in BPT(n). Differentiating
Q(T, x) and setting x 1, we obtain o(T) o(T/e) + 2b(n)b(nE)/b(n). By
induction, v(T) o(Tn) + (n 3) 2r(1, T)/b(n), for T PT(n, 0).

NOW Q( Tn, x) b(n)xn- SO that o(T) n 3. Thus, o(T)/(2n 6)
2r(1, T)/b(n)(2n- 6). As in Example 3 r(1, T)-< (n- 3)b(n- 1), giving

o(T)/(2n 6)

_
/ (2n 5). In particular, o(T)/(2n 6) -- as n - oz.

Remark 4. The expected distance of binary trees from a given binary tree T e
BPT(n) does not characterize T (up to topological equivalence) in BPT(n). Indeed a
counting argument shows that for all integers k

_
l, there exists a positive integer n and

a set S c BPT(n) of k topologically distinct trees, on which o(T) is constant. For k 2,
this is realized for n l, with the two trees given in Fig. 3. Although o(T) does not
characterize the topology of T, it is not known whether or not Q( T, x) (equivalently,
R T, x) by Lemma 2) does.
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