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Abstract.—Terraces are sets of trees with precisely the same likelihood or parsimony score, which can be induced by missing
sequences in partitioned multi-locus phylogenetic data matrices. The potentially large set of trees on a terrace can be
characterized by enumeration algorithms or consensus methods that exploit the pattern of partial taxon coverage in the
data, independent of the sequence data themselves. Terraces can add ambiguity and complexity to phylogenetic inference,
particularly in settings where inference is already challenging: data sets with many taxa and relatively few loci. In this article
we present five new findings about terraces and their impacts on phylogenetic inference. First, we clarify assumptions about
partitioning scheme model parameters that are necessary for the existence of terraces. Second, we explore the dependence
of terrace size on partitioning scheme and indicate how to find the partitioning scheme associated with the largest terrace
containing a given tree. Third, we highlight the impact of terrace size on bootstrap estimates of confidence limits in clades,
and characterize the surprising result that the bootstrap proportion for a clade, as it is usually calculated, can be entirely
determined by the frequency of bipartitions on a terrace, with some bipartitions receiving high support even when incorrect.
Fourth, we dissect some effects of prior distributions of edge lengths on the computed posterior probabilities of clades on
terraces, to understand an example in which long edges “attract” each other in Bayesian inference. Fifth, we describe how
assuming relationships between edge-lengths of different loci, as an attempt to avoid terraces, can also be problematic when
taxon coverage is partial, specifically when heterotachy is present. Finally, we discuss strategies for remediation of some of
these problems. One promising approach finds a minimal set of taxa which, when deleted from the data matrix, reduces
the size of a terrace to a single tree. [Bootstrap; partitioned model; phylogenetics; posterior probability; terrace.]

Inferred phylogenetic trees with thousands to tens
of thousands of species are becoming increasingly
commonplace (Rabosky et al. 2013; Zanne et al. 2014)
and can serve at least two purposes: quantifying and
conveying the scale and breadth of biodiversity,
and providing statistical power to distinguish between
alternative models of evolution (Wiens 2011; Boettiger
et al. 2012; Chamberlain et al. 2012; Goldberg and Igic
2012; Marazzi et al. 2012; Christin et al. 2013; Davis
et al. 2013). Reconstruction of large trees entails many
challenges (Sanderson 2007; Izquierdo-Carrasco et al.
2011; Liu et al. 2012), including a recently discovered one:
“terraces” (Sanderson et al. 2011). A terrace is a region
in tree space in which all trees have precisely the same
likelihood and parsimony score, which adds ambiguity
to the “landscape” of trees (Fig. 1) and complexity to
tree inference. Although “islands” in this landscape
have been discussed for many years (Maddison 1991;
Salter 2001), terraces may have been overlooked among
the inevitable small numerical differences that arise
in computing the likelihood score on different trees,
especially in large data sets (e.g., roundoff errors, as
when (a+b)+c �=a+(b+c)). Indeed, the issue of whether
two trees have exactly the same likelihood rarely arises
in modern phylogenetic inference for this reason.

In trying to improve the efficiency of heuristic searches
in RAxML, Stamatakis and Alachiotis (2010) noted a
situation in which the likelihoods of different trees could

be precisely identical. Suppose a sequence alignment is
partitioned into two loci with separate model parameters
for each, and sequences for some taxa for each locus are
missing. For any tree T, there is an “induced subtree”
for each locus, obtained simply by pruning the taxa for
which no data are present, and the overall likelihood
is the product of the likelihoods for these subtrees.
During tree search, tree T might be rearranged to T′,
but the induced subtrees might stay the same, and
consequently the overall likelihoods of T and T′ are
identical (Fig. 2). We suggested the term “terrace” for
the set of trees emerging in this setting and exploited
a variety of results concerning subtrees and supertrees
to characterize these terraces, which in some data sets
can be quite large (Sanderson et al. 2011). In general,
trees with equal or nearly equal optimality scores
can arise for many reasons, including lack of variable
sites, homoplasy, and missing data (Wilkinson 1995). In
parsimony analysis, terraces can arise when there are
missing data irrespective of partitioning scheme, since
the latter do not influence how trees are scored.

Data may be missing for many reasons, ranging from
sampling biases inherent in studies that mine GenBank
(Driskell et al. 2004; Sanderson 2008) to more biological
causes, as in the loss of plastid genes transferred to
the nuclear genomes of some plants (Sabir et al. 2014),
or the differential expression of genes found in EST
libraries or transcriptomes (Letsch et al. 2012). Missing
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710 SYSTEMATIC BIOLOGY VOL. 64

data affect phylogenetic tree reconstruction in many
ways (Wilkinson 1995, 2003; Kearney 2002; Burleigh et al.
2009; Lemmon et al. 2009; Cho et al. 2011; Simmons
and Freudenstein 2011; Wiens and Morrill 2011; Crawley
and Hilu 2012; Simmons 2012a,b, 2014; Simmons and
Goloboff 2013, 2014; Hinchliff and Roalson 2013; Roure
et al. 2013; Siu-Ting et al. 2014), some of which depend
on the specific data that are present. However, many
properties of terraces depend only on the overall “taxon
coverage” (Fig. 2), which is just the set of taxon sets
representing taxa for which any data are present in
different elements of the data partition (Steel and
Sanderson 2010; Sanderson et al. 2010, 2011). In particular,
terraces are unproblematic, having only a single tree,
any time the taxon coverage is “decisive” (Sanderson
et al. 2010). Not surprisingly, this formalism is related
to earlier results on ambiguity arising in supertree

Likelihood score

FIGURE 1. Schematic view of terraces in a likelihood surface of
phylogenetic trees. The landscape shows two islands of trees separated
by lower scores, but present on each island are regions of precisely
equal score, terraces.

construction (cf. “groves” of phylogenetic trees: Driskell
et al. 2004; Ane et al. 2009; and the impact of “effective”
vs.“ineffective” overlap in taxon sets: Wilkinson and
Cotton 2006).

Although it can be computationally difficult to check
for decisiveness, a model of randomly distributed
missing data provides some clues about the likely
properties of large data sets (Sanderson et al. 2010).
Phylogenomic studies in which the number of loci
greatly exceeds the number of taxa (like Hejnol et al.
2009: 94 taxa × 1487 loci; Salichos and Rokas 2013:
23 taxa × 1070 loci; Zwickl et al. 2014: 11 taxa × 473
loci) have a high probability of decisiveness, but when
the number of taxa greatly exceeds the number of loci
and missing data are common (e.g., Pyron and Wiens
2011: 2871 taxa × 12 loci; Smith et al. 2009: 55,473 taxa ×
6 loci; Fabre et al. 2012: 1265 taxa × 11 loci; Rabosky et al.
2013: 7822 ray-finned fish taxa × 13 loci), the probability
is low and large terraces are likely. The resulting
increase in ambiguity poses challenges. Building on
several basic mathematical properties of terraces we
have characterized quantitatively (Sanderson et al.
2011), we extend our understanding of terraces in
several directions, examining several new properties, the
problems they induce, and strategies for overcoming
them. We show that terraces can arise under more
general conditions than we thought, and that they
can be larger than believed before. We construct
a method to identify the partitioning scheme that
produces the maximal terrace for a given tree.
Most importantly, we explore how terraces can affect
confidence assessments and conventional views on how
methods for characterizing ambiguity, such as consensus

FIGURE 2. Stands and terraces. The two-locus taxon coverage matrix is at left (where ‘0’ indicates missing data). Each locus has an associated
“label set.” For the given tree, T, two subtrees are induced by pruning taxa not in the respective label sets, denoted as T|L1 and T|L2. There
are three trees at right that display them both. This collection of trees is a stand. The taxon coverage matrix in this example is thus not decisive.
Because the parsimony scores (and likelihood scores, with an unlinked model), are identical on these three trees, the stand is also a terrace. All
trees are assumed to be rooted with the aid of an outgroup, OG.
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2015 SANDERSON ET AL.—IMPACTS OF TERRACES 711

methods or bipartition support values, can be misled
by them. Finally, we begin to extend results to the case
in which the model partitioning scheme violates the
sufficient conditions for terraces, but still generates data
sets with patterns of ambiguity related to our other
results on terraces.

BACKGROUND

Definitions
Data.—Let D be a data matrix, generally assumed
throughout to be a multiple sequence alignment, of n
taxa (“rows”) and l characters (“sites,” “columns”), and
let P be a “partitioning scheme” of the columns into m
elements or blocks, referred to colloquially throughout
as “loci,” although blocks might be something like
different sets of codon positions, etc. Let the taxon
coverage matrix, C=C(D,P), be an n×m matrix where the
ij-th element is “1” if any sequence data are present for
taxon i and locus j, and “0” if the data are entirely missing
(Fig. 2). A “0” typically occurs because the locus was not
sampled for that taxon. An entry of “1” does not imply
that the data are phylogenetically informative—merely that
they are not missing entirely. We use the phrase “partial
taxon coverage” whenever C has at least one 0 in it.

The taxon label set for D, L, is the set of all taxon names
in D, and the label set, Lj =Lj(D,P), for block j of D is the
set of taxon names for which data are present for block j
in partitioning scheme P (i.e., the set of taxon names for
which Cij = 1) (Fig. 2).

Models.—Statistical models are used both to generate
sequence data in simulations (“generating models”) and
to calculate likelihoods based on the data (“inference
models”). Models can reflect a partitioning scheme, P ,
in various ways. Suppose the model at locus i consists
of two sets of free parameters {Mi,Ei}, where Mi is a
set of free parameters associated with the substitution
rate matrix alone, and Ei is a set of free edge-length
parameters. An edge-unlinked (EUL) model has free edge-
length parameters Ei for each locus (thus a total of km
parameters, where m is the number of loci and k is
the number of edges on the tree). This is the general
“heterotachy” model of Pagel and Meade (2008). At
the other extreme an edge-linked (EL) model has the
same edge-length parameters for all loci (so exactly k
edge length parameters). In between are partially edge-
linked (PEL) models with an intermediate number of
free parameters. For example a “proportional” model
of the form Ei ∝Ej, for all i, j is PEL. We use the term
“heterotachy” in a more general sense than Pagel and
Meade (2008) to include both EUL and PEL models,
excluding only the strictly EL model; that is, we include
any models with different edge-length parameters at
different loci.

The same scheme applies to the parameters of the
substitution matrix: so we have rate-linked (RL), rate-
unlinked (RUL), and partially rate-linked (PRL) models.
In the literature, “linked” models generally refer to

EL/RL models and unlinked models to EUL/RUL
models. MrBayes (Ronquist et al. 2012) and RAxML
(Stamatakis 2014) allow a decoupling of assumptions
about the edge parameters and the substitution rate
matrix parameters to enable EL/RUL (MrBayes) and
EUL/RL models (MrBayes and RAxML). The “siterates”
model in PAUP and GARLI (Zwickl 2006) is the
“proportional” (PEL) model above. Empirical studies
have entertained this entire range of models up to and
including the most parameter-rich EUL models (Hess
and Goldman 2011; Hedin et al. 2012; Xi et al. 2013).

Trees and subtrees.—For any tree, T, on the complete label
set L (e.g., the best maximum likelihood (ML) tree found
in a heuristic tree search based on D), the label set for
any locus, j, Lj (which may have taxa missing) induces
a subtree of T, which we write as T|Lj. Let Q(P,C,T)=
T|L1,T|L2,...,T|Lm, be the set of subtrees for this tree
that are induced by the partitioning scheme and taxon
coverage matrix—that is, T|Lj is the tree obtained from
T by removing any taxa that have data that are entirely
missing for block Lj, for each block Lj of the partition
(Fig. 2). Importantly, the subtrees induced from T in this
way are necessarily compatible with each other; which is
obviously not always true for subtrees that are actually
inferred separately for each locus.

A tree T is a resolution of some other tree, say T∗, if
T∗ can be obtained from T by collapsing one or more
edges of the tree, which transforms binary nodes to
polytomies. A tree T on label set L(T) displays another
tree T∗ on L(T∗) (with L(T∗)⊆L(T)) if T|L(T∗) is equal
to or is a resolution of T∗. Intuitively, this allows a larger
tree to display a smaller tree even if that smaller tree is
less resolved than the larger one. This extra generality
is appropriate given the usual notion of polytomies as
reflecting uncertainty (i.e., soft polytomies) rather than
multiple speciation (hard polytomies: Maddison 1989;
Semple and Steel 2003).

Decisiveness.—The taxon coverage matrix is said to be
decisive for tree T and partitioning scheme P if T is
the only tree that displays all subtrees in Q (Steel and
Sanderson 2010; Sanderson et al. 2010). In the example
in Figure 2, the taxon coverage matrix is not decisive
for T because T, T′, and T′′ all display all subtrees
in Q. Some taxon coverage matrices are decisive for
every tree, in which case we say the coverage matrix
itself is decisive (Steel and Sanderson 2010). [We define
decisiveness very differently than Goloboff (1991), who
was referring to the relative strength of character signal
in favor of topologies].

Stands.—The case of interest here is when a taxon
coverage matrix is not decisive, and thus there exists
somewhere in tree space a set of two or more trees that
display the same subtrees in Q. First, we define a new
term for this not used in our previous work on terraces.
A stand (of trees), S =S(P,C,T), is the set of all binary
phylogenetic trees on leaf set L that display every subtree
in Q(P,C,T). In the example in Figure 2, there are three
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712 SYSTEMATIC BIOLOGY VOL. 64

trees that display the subtrees inQ, including the original
T. Thus, when taxon coverage is not decisive there exist
stand(s) with more than one tree.

The concept of a “stand” of trees is related to,
but different from the concept of the “span” of a set
of phylogenetic trees, which is more relevant to the
supertree context (Semple and Steel 2003). Not only can a
span of trees be empty, or contain non-binary trees (both
of which are not possible for a “stand”) but the input for
a stand is not a set of trees, rather it is a single tree T and
a pattern of taxon coverage. Nevertheless, the notions
are related; a stand S =S(P,C,T) is precisely the set of
binary phylogenetic trees in the span of Q(P,C,T).

Terraces.—Stands and decisiveness depend only on the
coverage pattern, partitioning scheme and tree, {P,C,T};
not on the actual sequence data, D, per se. However,
under certain conditions, all trees in a stand, S, have
precisely the same optimality score with respect to D,
in which case we call the stand, S, a terrace, denoted
T (Fig. 2). In particular, when maximum parsimony
(MP) is used as the score, all trees in S have the same
score for any partitioning scheme, P , and S is always
a terrace. Partitioning in parsimony analysis is usually
aimed at discovery of different phylogenetic histories
within the same data matrix, since different “models”
are not typically defined. However, we will see below
that irrespective of any partitioning (or not) imposed by
the investigator, there exists an associated “maximal”
partition that can help to identify a maximal set of
equally optimal trees when such trees exist.

The set S is also a terrace when likelihood is the
optimality criterion if the likelihood is determined by a
model and partition, P , which is RUL/EUL (see above)
(Sanderson et al. 2011). Below we show this to be a
sufficient but not necessary condition.

Trivially, both stands and terraces can have sizes of
only one tree, but the case of interest throughout this
paper is just that setting (lack of decisiveness) in which
they have more than one element, and which thereby
adds ambiguity to phylogenetic inference.

Properties of Terraces
Because all terraces are stands, a number of results

derived for stands—based only on trees, subtrees,
and coverage patterns—are helpful for characterizing
terraces. Some of these results hold only for rooted trees,
but many problems can be effectively “rooted” as long
as there is one taxon in C that is sampled for all loci
in the partition, in which case that taxon can serve as
an “operational” root for the purposes of an algorithm.
We assume trees are rooted unless stated otherwise. The
number of trees on a stand (or terrace) can increase
exponentially with the size of the tree (Semple 2003).
Despite this, several properties of terraces make them
more tractable than they might otherwise seem, mainly
because several summary statistics can be obtained
directly without any computation involving the data
matrix, D (Sanderson et al. 2011). For example, all trees

on a terrace can be enumerated without recalculation of
optimality scores. This takes advantage of an algorithm
due to Constantinescu (1995), with a running time that
scales linearly with the size of the terrace (rather than,
say, exponentially with the size of the tree, although
in the worst case the size of the terrace can also grow
exponentially).

The trees on a terrace can also be summarized
by a strict consensus tree (Gordon 1986) or Adams
consensus tree, either of which can be constructed in
polynomial time. This last claim (that we can sidestep
the enumeration of trees on the terrace again, or any
further search using the data) is not obvious, but it holds
in general for rooted trees. In the case of strict consensus,
this was shown in Steel (1992) (using results from Aho
et al. 1981), whereas for Adams consensus, it relies on a
particularly elegant result due to (Bryant 1997) (Theorem
6.2) which states that the Adams consensus of a terrace
is equal to the so-called BUILD supertree of the induced
subtrees for each locus (i.e., the set Q(P,C,T)), and this
supertree can be computed quickly by the algorithm of
Aho et al. (1981). Note that the Adams consensus tree
displays each of those subtrees; that is, it is identical
to (or resolves) them if extraneous taxa and edges are
removed. Interpretation of Adams consensus trees in
phylogenetics is somewhat fraught, however, as clusters
do not necessarily represent clades (Wilkinson 1994).

Terraces are reminiscent of tree islands but are
contained within them, at least for rooted trees. An
island is a region of tree space with optimality score
better than some threshold, separated from other such
regions by regions of lower score (Maddison 1991; Salter
2001). Here a “region” is a set of trees that can be
enumerated by a series of topological rearrangements
that do not leave the region. Terraces are always wholly
contained within a tree island, because all trees on a
terrace of rooted trees can be reached by a series of
nearest neighbor interchanges (NNIs) between trees of
the same optimality score (Bordewich 2003; Sanderson
et al. 2011). For unrooted trees this property does not
necessarily hold. For rooted trees, then, tree space can
be thought of as a collection of terraces (on islands), the
size of which are determined entirely by the partition
P and taxon coverage matrix C. Only the heights of the
terraces depend on the data. To the extent that a tree
“island” is a useful metaphor, it may be best to envision
it as a rough landscape covered with terraces of different
sizes and heights (Fig. 1).

NEW RESULTS ON TERRACES

Terraces Occur in Likelihood Inference under a Less
Restrictive Set of Assumptions

In our previous work, we showed that terraces can
occur in ML inference whenever the inference models
for separate loci in partition P are simultaneously EUL
and RUL (Sanderson et al. 2011). This was a sufficient
but not necessary condition. In fact, as we show now,
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2015 SANDERSON ET AL.—IMPACTS OF TERRACES 713

terraces can arise even when models are EUL and the
substitution rate matrices are the same across loci.

Proposition 1. Let S(C,P,T0) be a stand of trees containing
tree T0 for partitioning scheme, P and taxon coverage matrix,
C. For any model for computing the likelihood score that is
edge-unlinked (EUL), but where the model parameters (Mi)
are constrained to be identical across the loci (i.e., across P),
all trees in S have the same maximum likelihood score, and
hence S is a terrace.

The proof of this result is presented in the Appendix.
This finding implies that it is the lack of commonality
between edge-length parameters across loci that is
necessary for a stand of trees to be a terrace under
likelihood. Rate matrices between loci need not have
different parameter sets. Henceforth, we will refer to this
kind of ML inference with just an EUL assumption as
“ML-EUL.”

Maximum Size of Stands and Terraces
Given a partitioning scheme, P , and taxon coverage

matrix, C(P,D), we can find the stand, S containing some
tree, T0 and calculate its size. If the optimality criterion
is MP or ML-EUL, then S is also a terrace. Generally, the
presumption is that P is chosen to reflect meaningful
biological aspects of the data, such as different loci,
or disjoint sets of codon positions. Nonetheless, it is
possible that T0 is contained within a larger stand for
a different partitioning scheme P ′. In this section we
show that for any data matrix, D, and tree, T0, there
exists a partitioning scheme that corresponds to a stand
of maximal size, and the stands associated with all other
partitioning schemes will be contained within it. This
has important implications for heuristic search strategies
and for choice of partitioning schemes.

Consider any partition P ={B1,...,Bl} of the columns
of the data matrix, D (i.e., the sets Bi are disjoint subsets
of columns, which cover every column). For a given block
Bi of P , let Li =L(Bi) be the taxa that are present for at
least one column in Bi.

Now suppose we have another partition P ′ =
{B′

1,...,B
′
l′ }. We say that P ′ refines P if each block of P ′ is

a subset of some block of P (equivalently, each block of
P is either equal to a block of P ′ or is the union of two
or more blocks of P ′).

However, a refinement that includes breaking Bj into
say, K, smaller sets, B′

i1
,...,B′

iK
, should be disallowed if

any of the labels sets, L(B′
ik

), are duplicated, as otherwise
this would allow a trivial refinement of any partition into
one in which each block consists of just a single column
in the data matrix, D.

Given this restriction, there will be a unique (and
usually nontrivial) maximal partition for any data matrix,
D, that cannot be refined further, which we denote as
Pmax. This maximal permitted partition Pmax can be
built as follows. Let �={L̂1,...,L̂m}, where L̂j is the set

of taxa present in column j (note that � will generally
have size less than m, since the sets L̂j will usually not
all be different). Then Pmax = (BA :A∈�), where BA ={j :
L̂j =A}.
Proposition 2. If P ′ refines P then S(C(P,D),P,T0)⊆
S(C(P ′,D),P ′,T0); in particular, the former set is never larger
than the latter.

That is, the stand associated with P is a subset of the
stand associated with P ′.

Proof . Let L′
j =L(B′

j), the taxa present in block B′
j for

j=1,...,l′. Suppose that T is a tree in the stand of T0
relative to P . This means that T|Li =T0|Li for i=1,...,l.
Consider a block B′

j of P ′. Since P ′ refines P , B′
j is a subset

of some block of P , say block Bi, and so L′
j ⊆Li. In that

case:
T|L′

j = (T|Li)|L′
j = (T0|Li)|L′

j =T0|L′
j.

Thus, T|L′
j =T0|L′

j for each block L′
j of P ′, and so T is in

the stand of T0 relative to P ′. �

Corollay 3 For any permitted partition P we have:
|S((C(Pmax,D),T0,Pmax)|≥|S(C(P,D),T0,P)| for all P .

Proof . This follows from Proposition 2, since Pmax is
a refinement of every permitted partition of the loci. �

Thus, the largest stand containing a given tree can
be obtained by constructing the maximal partitioning
scheme described above. Under MP or ML-EUL
inference, this will also be the largest terrace containing
this tree.

For example (Fig. 3a), suppose a multiple sequence
alignment is first partitioned into two loci, PI ={I1,I2},
where Ij is the set of sites for the jth locus. This partition
induces a stand of 13 trees containing the tree, T0, shown
(Fig. 3b). However, perhaps locus I2 actually consists of
three biologically meaningful blocks: two exons and an
intron, and suppose further that the label sets for the
exons are the same but differ from that for the intron. Our
second partition is then described by PII ={II1,II2,II3},
where IIj is the set of sites for the jth locus of this
partition (Fig. 3a). Formally, PII is a refinement of PI .
The stand induced by this new three block partition, PII ,
has 23 trees (Fig. 3b). This is the MP for these data, and
23 is the size of the largest stand containing the given
tree. Also, from Proposition 2, the smaller stand of trees
is a subset of the larger.

Under MP and ML-EUL inference, these stands are
also terraces, so the largest terrace containing the
indicated tree has 23 trees on it. The sets of trees in these
terraces arising from different partitioning schemes are
the same for MP and ML-EUL inference, but there is an
interesting distinction with respect to their optimality
scores. For MP, the situation is particularly simple. For
two partitioning schemes in which PII is a refinement
of PI , the two terraces have the same parsimony score,
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a)

b)

FIGURE 3. a) A multiple sequence alignment with different partitioning schemes, which can induce terraces of different sizes containing a
given tree, T0 (on right). Missing nucleotide data are indicated by ‘?’. Two partitioning schemes are labeled I and II. Partition elements (“loci”,
“blocks”) are labeled with 1,2, and 3. Label sets for each locus are indicated in curly brackets. b) The terrace containing T0 for Partition I has 13
trees, but has 23 trees for Partition II. Partition II is a “maximal partition” (see text).

so it is reasonable to visualize the smaller terrace as
being literally imbedded in the larger one at the same
“elevation” in the landscape of tree space. Consequently,
for parsimony, when characterizing trees on a terrace
based on a particular partition, P , it is useful to check
if P is the MP, and if not, also check Pmax. The latter
will be a more accurate representation of the actual
extent of equally parsimonious trees around the given
tree.

For ML-EUL, the situation is more complex. The
likelihood scores of the trees in the terraces for
partitioning schemes PI and PII could well be different,
but all trees within either terrace will still have the
same score once a partitioning scheme is fixed. This
means changing a partitioning scheme to the maximal
partitioning scheme, for example, not only expands the
set of trees on the terrace, but potentially changes the
optimality score as well, unlike in parsimony.
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locus 1

locus 2

BP    1.0

X

A

B Y

X

A

B Y X

A,B Y

FIGURE 4. Impact of terraces on the bootstrap. True (rooted) tree
and taxon coverage as in Figure 2 except outgroup removed and taxa
A and B now contain nA leaves (present only for locus 1) and nB leaves
(present for locus 2) respectively. As nA and nB get larger the bootstrap
proportion for the incorrect bipartition at right goes to 100%.

Impact on Confidence Assessment: Bootstrap Proportions
Terraces with multiple trees are a consequence of

missing data in phylogenetic tree inference. In the next
two sections we discuss how the ambiguity terraces
reflect can alter estimates of the quality of trees. The
bootstrap (Felsenstein 1985) case is especially clear, as
we demonstrate with detailed discussion of a simple
example. For sequence data generated on trees of the
form shown in Figure 4, with the indicated pattern of
partial taxon coverage, the bootstrap proportion for an
incorrect clade approaches 100% if the number of leaves
in A and B is large. To show that this is a consequence of
the partial taxon coverage, rather than the sequence data
per se, we construct a hypothetical example in which we
can isolate the two factors from each other.

Assume that the true tree, T, has four taxa, X,Y,A, and
B, where X and Y are leaf taxa, but A and B are sets
of leaves with nA and nB leaves respectively. Assume a
specific tree having a bipartition given by XA|BY, as well
as the two bipartitions A|BXY and B|AXY (Fig. 4). Let
the data matrix, D, be partitioned into two blocks, D1
and D2, each of length k. To allow us to understand the
impact of terraces in isolation from the sequence data,
we make two simplifying assumptions. First, we assume
that the sequence length, k, is sufficiently large that if
there were no missing data, a bootstrap analysis of D, D1,
or D2, would each return just a single tree, T, in every
bootstrap replicate. This would imply perfect support for
T. Second, we assume that if we delete some taxa from Di,
the tree reconstructed from the remaining sequences in
Di is just the subtree of T containing the remaining taxa;
that is, taxon deletion does not affect inference for the
remaining taxa (assuming k is large enough), and, again,
each bootstrap replicate for Di would return that subtree
of T. Together these assumptions effectively remove the
impact of noise and biases due to the sequence data
proper. To make this a bit more concrete: simulations
using Seq-Gen (Rambaut and Grassly 1997) showed
that such ideal conditions were well approximated in
small trees using an “F84” substitution model with
equal base frequencies (equivalent to a Jukes–Cantor

model); random root sequence; k >5000; all edge lengths
set to 0.1 substitutions/site; and constant rates across
sites.

Now let there be partial taxon coverage, such that X
and Y are sampled for both loci, but leaves in A are
only sampled for locus 1, and leaves in B only for locus
2. Figure 4 is rooted with X but in general either X or
Y can act as an “operational root” when needed in the
following. With this taxon coverage matrix, the true tree,
T, has two induced subtrees, T|L1 and T|L2, and T is in a
stand, S, with other trees. For example, if nA =3 and nB =
3, then the stand has 107 binary trees, but importantly,
only 2 of these are consistent with the XA|BY bipartition
in the true tree, T. The remaining 105 trees conflict with
T, specifically by interleaving leaves from A with leaves
from B, such that the bipartition AB|XY is present instead
of XA|BY. Assuming bootstrapping is implemented in a
way that respects the partition boundaries (resampling
from within each locus separately), then from our two
assumptions above, each bootstrap replicate produces
the same pair of induced subtrees, so in each replicate
the tree found will be imbedded in this same stand of 107
trees. How this influences actual bootstrap proportions
reported by software depends on whether parsimony or
likelihood is used, and on technical choices about the
handling of equally optimal trees.

In parsimony inference, standard branch
rearrangement operations may be used to search
for all equally parsimonious trees in the stand for each
bootstrap replicate. This will work as long as memory
is not exhausted because all trees in a stand can be
reached by a series of NNIs, for example (Bordewich
2003; Sanderson et al. 2011). However, there are different
options for tallying results across replicates. PAUP*
(Swofford 1999) uses a “frequency within replicates”
approach (Davis et al. 2004) to obtain the boostrap
proportion of a bipartition, in which the frequency of
a bipartition in the equally optimal trees found in each
replicate is averaged across replicates. Because the same
stand of 107 trees would be found for each bootstrap
replicate, this procedure would return a bootstrap
proportion of 105/107=0.98 for the incorrect bipartition
in Figure 4. If 1−BP is regarded as a P-value for the null
hypothesis of non-monophyly (DiCiccio and Efron 1996;
Susko 2009), this significance level is greatly inflated.
An alternative and much more conservative “strict
consensus” approach would require all trees in a set
of equally optimal trees contain the bipartition for it
to be considered present in that replicate (Davis et al.
2004; Simmons and Freudenstein 2011). This procedure
would result in a bootstrap proportion of zero for the
incorrect AB|XY bipartition but would also result in
zero for the correct XA|BY bipartition, which is less
misleading but not altogether a more useful result.

Matters are different with current implementations
of likelihood inference, which typically return a single
tree. The very notion of “equality” of the likelihood
score in likelihood calculations is problematic due to the
imprecise nature of numerical optimization and floating
point imprecision. ML tree search in RAxML (Stamatakis
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TABLE 1. Scaling of terrace size and frequency of incorrect AB|XY
bipartition in Figure 4

Number of taxa Terrace size Bipartition frequency

1 3 0.3333333
2 17 0.8823529
3 107 0.9813084
4 602.6 0.996681
5 3127.571 0.9993605
10 6906214 0.9999997
15 10867704749 1
20 1.501564e+13 1
25 1.935652e+16 1

Note: Number of taxa is the number of leaf taxa in both A and B of
Figure 4.

2014) and GARLI (Zwickl 2006), for example, operates on
the implicit assumption that equally optimal trees either
do not exist or cannot be unambiguously identified
during tree search. During a search in a single bootstrap
replicate, small differences in likelihood scores arising
simply from different addition orders of the per-site log
likelihoods (depending on the compiler or number of
threads being used), therefore, may result in different
trees on the terrace being sampled. In addition, the order
in which rearrangement moves are applied may also
affect which tree on the terrace is being sampled. To the
extent that score imprecision and distinct search paths
are randomly distributed, repeated bootstrap replicates
will sample trees on the terrace with equal probability,
leading to the same bootstrap proportion of 0.98 for the
incorrect clade of Figure 4, for example.

Surprisingly, the number of trees in S, and support for
the incorrect bipartition, grows with nA and nB (Table 1).
We can show this analytically by deriving how many
rooted binary trees correctly display the subtrees T|LA
and T|LB, where we have changed notation a bit and
LA refers to the subtree having just the leaf taxa in
clade A, and likewise for B. Note that we can consider
these subtrees as rooted by operationally rooting the
entire tree with X or Y. Notice that the label sets LA
and LB are disjoint. Let n=nA +nB, and R(k)=1×3×
5×···×(2k−3) be the number of rooted binary trees for
k leaves. If nA or nB ≤3, then the number of trees on the
terrace is

2+ R(n)
R(nA)R(nB)

, (1)

a result that depends only on the two subtree sizes. The
“2” term corresponds to the two trees on the terrace
with bipartitions of XA|BY and XB|AY. The term on the
right corresponds to the set of all trees that contain the
bipartition AB|XY, and accounts for the fact that there are
possibly many ways to interleave the A and B subtrees
and still display the original two subtrees. We pause
briefly to explain why this second term equals R(n)

R(nA)R(nB)
when (say) nB ≤3. Given two rooted binary trees TA
and TB on disjoint label sets LA and LB, respectively,

let N(TA,TB) denote the number of rooted binary trees
on the total label set X =LA ∪LB that restrict to TA on
LA and TB on LB. Then regardless of whether or not
nB ≤3, the sum of N(TA,TB) over all pairs TA and TB
equals R(n), and since N(TA,TB) takes the same value
for any of the trees TA, we have the following identity
(from Constantinescu and Sankoff 1986), namely:

∑
TB

N(TA,TB)=R(n)/R(nA). (2)

Now, when nB ≤3 symmetry considerations show that
N(TA,TB) takes the same value for any of the (at most
three) trees TB, and so N(TA,TB)=R(n)/[R(nA)R(nB)].

If both A and B are larger than three leaves, the
expression depends on the topology of the subtrees (i.e.,
the entire tree), not just their sizes, an observation due to
Constantinescu and Sankoff (1986), so a more complex
calculation for Equation (1) would be necessary. On
average, however, across a uniform random sample of
subtree topologies, the mean number of trees converges
to the expression in Equation (1)—this follows from
Equation (2) upon dividing both sides by R(nB). Thus, for
certain patterns of partial taxon coverage, the bootstrap
proportion for a given clade may tend to zero or one
depending not on the data but on the number of
taxa (and possibly tree topology) and taxon coverage
pattern in specific parts of the tree. It is the interaction
of these factors that renders bootstrap proportions
somewhat oddly at the whim of tree combinatorics,
since in this case sequence data are assumed sufficient
to eliminate all errors in the reconstruction of the two
subtrees.

Impact on Confidence Assessment: Bayesian Posterior
Probabilities

Given the issues raised by terraces for MP and
ML-EUL, it is reasonable to expect some effects on
calculation of Bayesian posterior probabilities, but in
this case the impact is apparently determined by an
interaction between the taxon coverage pattern, tree
topology, and priors on edge lengths. Let us simplify
the bootstrap example by setting nA =nB =1 on the
same “true” tree, T (Fig. 4) and keep the same taxon
coverage matrix and partitioning scheme. We also use
the same simulation protocol and assume that likelihood
calculations (in Bayesian inference) are carried out with
an EUL inference model, so stands are also terraces
with respect to the likelihood score. There is then a
stand of three binary trees, all with the same maximized
likelihood (in fact, these are all possible binary trees for
four taxa).

Perhaps surprisingly, however, their posterior
probabilities may not be equal. In particular, the
posterior for the incorrect bipartition (AB|XY) increases
as the lengths of the edges leading to A and B increase
(calculated in MrBayes v. 3.1.2 [Ronquist et al. 2012];
5 million generations; default burn in; Jukes–Cantor
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P(AX|BY) = 16% (true tree)
P(AB|XY) = 81% (incorrect tree)
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FIGURE 5. Impact of terraces on Bayesian posterior probabilities. True tree is on left. As terminal edge lengths for leaves A and B get longer,
the posterior probability inferred by MrBayes (v. 3.1.2: 5 million generations; default burn in) for the incorrect bipartition, AB|XY increases. True
edge lengths are indicated in substitutions/site.

model with edge length parameters “unlinked”). For
example, if the two long edges are four times the length
of the other edges in the tree, the posterior probability
is 81% for an incorrect tree (Fig. 5), whereas if the edge
lengths are all the same, the correct tree has highest
posterior probability. This is evidently not a product of
the “long branch attraction” possible under Bayesian
inference in the absence of missing data (Susko 2008;
Kolaczkowski and Thornton 2009), because if the
missing data are returned to the matrix the correct tree
has 99% posterior probability.

This phenomenon can be traced ultimately to how
Bayesian inference handles missing data. Consider the
simplest context of partial taxon coverage: with a trivial
“partition” consisting of only a single block and having
one leaf taxon, x, with missing data throughout that
block. In other words, this is a data set in which one
leaf, x, has no data at all. Consider a tree, T, with branch
lengths, containing taxon x as a leaf, and the tree, T−x
(with its inherited branch lengths) obtained by deleting
leaf x (and its incident branch) from T. If the sequence of
x consists entirely of “?”s, the parsimony and likelihood
scores of any tree, T′, obtained by attaching x to some
edge of T−x is the same. In other words, a method such
as maximum likelihood, which relies only on these scores
is unable to decide the position of x.

However, in Bayesian inference the position of x may
also be influenced by prior probabilities. In fact, we will
now show that for the usual exponentially distributed
prior on edge lengths used in phylogenetic inference,
the posterior probability for different placements of x in
the tree is determined entirely by the length of the edge
to which x attaches; if these differ, then some placements
of x in this tree will have higher posterior probabilities.
Ultimately, this will affect posterior probabilities of trees
on terraces in more complex partitioning schemes with
partial taxon coverage.

Consider data generated by a reversible Markov
process EL model on a binary phylogenetic tree T
with branch lengths assigned, and analyzed under
a Bayesian approach in which (i) all rooted binary
phylogenetic trees have the same prior probability, and
(ii) an exponential prior applies independently across
the branch lengths.

Theorem 4 Let T′ be any binary phylogenetic tree that agrees
with T up to the placement of taxon x, and consider a set of
aligned sequences of length k generated on T with fixed branch
lengths (under a standard reversible model) but thereafter
with the sequence for taxon x replaced with all “?”s (missing
data). Then under conditions (i) and (ii) above, the Bayesian
posterior probability of T′ for this data converges in probability
to l(ex)/

∑
e l(e) as the sequence length k grows. Here, l(e) is

the length of edge e in T−x, the summation is over all edges
of T−x, and ex is the edge of T−x to which x must attach to
produce the tree topology T′.

The proof of this result is presented in the Appendix.
Intuitively, the theorem says that the relative chances
of a leaf taxon having all missing data attaching to
two alternative edges of a tree are (for long sequences)
given by the ratio of the two edge lengths: the longer
edge will “attract” the taxon with missing data to a
greater extent. This result may seem like something of
a curiosity for a trivial partitioning scheme consisting
of just a single locus, and a leaf taxon with no
data, but it explains why the posterior probability
of trees on a terrace may be different even if their
likelihoods are the same. In particular, it pinpoints
the important role that edge lengths can play in
influencing subsets of the trees on a terrace to have
higher posterior probabilities, as seen in the example in
Figure 5.
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FIGURE 6. a) A simple generating model of heterotachy for two loci, GPEL. Trees labeled 1 and 2 are annotated with edge length parameters
for the two loci in the partitioning scheme. Partial taxon coverage pattern is indicated as a dotted edge for the leaf taxon having missing data. All
edge lengths are u for loci 1 and 2, except the outlier edge labeled v for locus 1. b) Likelihood scores of the best and second best trees relative to
the worst tree as a function of edge length v. Worst scoring tree is always the XY|AB tree. Inference model I assumes the same edge parameters
for both loci. Inference model II assumes edge parameters are proportional between loci. Open squares refer to relative log likelihood of AX|BY
tree to the worst scoring tree; open triangles refer to the relative log likelihood score of the BX|AY tree to the worst tree. The two best trees are
drawn in the top panel for illustration.

Extensions to Partially Linked Models Used in ML
Estimation

If the problem of terraces arises when using EUL
models for inference, perhaps it is generally better to use
EL or PEL models for inference. After all, the generating
models used in our simulations have been simpler than
EUL, so perhaps EUL models are “overparameterized.”
In this section, we discuss an example which would
suggest that in fact overparameterizing may be better
than mis-specification with a simpler inference model. In
particular a small degree of heterotachy in the generating
model can lead to a reordering of the relative ML scores
when using EL or PEL inference models, so that an
incorrect tree is favored, much as in the Bayesian case
described above. Under these conditions, EUL inference,
though overparameterized, is more conservative.

Consider the simple PEL generating model, GPEL,
having four leaves and two loci (Fig. 6a). Assume all
edges for both loci have evolved with the same rate,
u=0.1 substitutions per site, across different simulation
settings, except for a single terminal edge for one of
the loci, which has rate v, ranging from 0.1 to 1.0
substitution/site. Each locus in the partition has 5000
sites and sequences are simulated on the model tree
using Seq-Gen (Rambaut and Grassly 1997) with a
Jukes–Cantor model, as described above in the bootstrap
example. As before, the pattern of partial taxon coverage

induces a stand consisting of all three of the binary
trees possible for four taxa. Thus, with MP or ML-EUL
inference, the optimality scores of all three trees are the
same.

Now, for inference models, consider two models that
are less general than an EUL model and have fewer
parameters. Neither model therefore has the properties
described earlier that are sufficient for terraces to emerge.
Model I assumes the substitution rate matrix is the same
for both loci and the edge-length parameters are the same
for both loci (i.e., EL with five edge parameters); Model II
assumes that the substitution rate matrix is the same for
both loci but that edge lengths for all edges at the second
locus are strictly proportional to the corresponding edge
lengths for the first locus (i.e., a PEL model with five
edge parameters plus a parameter for the proportionality
constant). This allows rate variation between loci, but the
edge parameters are still highly constrained. Likelihood
calculations were carried out using PAUP* 4.0 (Model II
implemented with the “siterates” command: Swofford
1999). Under these conditions the likelihood scores for
the three possible binary trees are different for Models I
and II (Fig. 6b). In particular, if v is more than about
4u, then an incorrect tree has the highest likelihood
(Fig. 6b). In other words, use of an EL or PEL model
for inference does not just avoid the ambiguity of
the terrace phenomenon that would have been seen
using EUL inference, it is positively misleading. Under
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these conditions, using an EUL model for inference
and dealing with the resulting ambiguity might be a
preferable (if more conservative) procedure.

This case clearly involves model misspecification,
since neither of the two inference models is the model
actually generating the sequences. Interestingly, if we
“fix” the data set by filling in the missing entries with
data generated under our generating model, the correct
ranking is restored under EL or PEL inference, even
with this model misspecification. By the same token,
using a simpler EL generating model, obtained by setting
u=v in GPEL, but retaining missing data according to
the specified partial coverage pattern, also restores the
correct ranking of trees when using the EL or PEL
inference model. Thus, the re-ranking of trees we observe
in this example is not a product of either partial coverage
alone or our particular generating model alone. Both
are required, and the correct ranking of the three trees’
likelihood scores can be rescued by eliminating one or
the other.

Although these results imply strongly that ML
inference can be statistically inconsistent (i.e., converging
to the wrong tree) under the combination of missing
data and data generated by GPEL, we have not been
able to formally prove this in general. However, some
aspects of the converse are provable. For data generated
by GPEL, both parsimony and likelihood inference using
Model I (EL) are statistically consistent when there are
no missing data. The proof that parsimony will be
consistent for GPEL and the branch lengths indicated (for
any u,v) follows from a straightforward application of
Theorem 8.7.1 in Semple and Steel (2003), which shows
that parsimony is consistent for the locus 1 and 2 trees
with the indicated branch lengths (for any u and also any
v in Fig. 6). Since parsimony is a linear scoring scheme, if
it is consistent on each block of a partition it is consistent
on all the data.

To prove the same for likelihood, consider first a single
site. Notice that the locus 2 tree is obtained from the locus
1 tree by changing just one pendant branch length from
u to v. So, if z is the state at this pendant leaf (Y), x the
state at the other end (interior node) of this edge, and W
is the collective set of states at the rest of the tree, then
by the Markov property for the GPEL generating model
we have:

Pr(W,z|x)=�Pru(W,z|x)+(1−�)Prv(W,z|x), (3)

where proportion � of sites evolve on locus 1 tree (and
1−� on locus 2 tree), Prs(W,z|x) denotes the conditional
probability of leaf states W and z given that interior node
is in state x, and s is the length of the pendant edge in
question. Now, consider the tree obtained from the locus
1 tree setting the length of the pendant edge incident
with Y equal to �, where (for the Jukes–Cantor model):

exp
(

−4
3
�

)
=�exp

(
−4

3
u
)

+(1−�)exp
(

−4
3

v
)

(4)

then, from Equation (3)

Pr(W,z|x)=Pr�(W,z|x)

for all x,y,Z, and so

Pr(W,z)=Pr�(W,z).

In particular, the site pattern distribution under this
GPEL generating model matches exactly the probability
distribution of a Model I generating model in which the
length of the pendant edge incident with leaf Y is the
particular value � chosen by Eqn. (4), and the remaining
edges have length u. In other words, this GPEL generating
model produces site pattern probabilities the same as
Model I on the same topology and with an intermediate
branch length. These results are based on a single site,
but it follows by Theorem 5.1 of Chang (1996), that if
we now use ML (on sequences from the model) under
the Model I inference model this will be a statistically
consistent estimator of tree topology.

DISCUSSION

The new results on terraces presented here are relevant
to an increasingly common setting for phylogenetic
analysis in which large multi-locus data sets with
significant numbers of missing sequences are combined
with models that partition the data in various ways
during likelihood or Bayesian inference. They are
also relevant to analyses using maximum parsimony
irrespective of partitioning schemes, which remains a
computationally attractive method for analyses of very
large data sets, especially with the use of phylogenetic
placement techniques (Matsen 2015). Previously we
had shown that the terrace of equally optimal trees
surrounding any specific tree could be quite large,
although it was possible to exploit certain mathematical
results on subtrees and supertrees to help characterize
these sets of trees. In the present paper we found it useful
to define “stands” of trees and distinguish between
stands and terraces. Stands are collections of trees each
of which displays all the subtrees associated with the
separate blocks within a partitioned data set. Under
some conditions the trees in a stand can all have the same
optimality score, in which case they are called terraces,
to reflect their constant “elevation” along a vertical axis
corresponding to that score.

If the score is parsimony, a stand is always a terrace.
The first new result we described specifies sufficient
conditions under which this will also be true for
the likelihood score. We showed that the parameters
describing edge lengths in different partition blocks
must be independent (“edge-unlinked” or “EUL”).
Previously we had also assumed parameters of the
rate matrix to be unlinked (Sanderson et al. 2011).
This is sufficient but not necessary. Because practice
in current phylogenetics of multi-locus supermatrices
ranges from using completely linked models to highly
partitioned ones that unlink both rate matrices and
edge parameters, impacts of these divergent strategies

 at U
niversity of C

anterbury on D
ecem

ber 6, 2015
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


720 SYSTEMATIC BIOLOGY VOL. 64

should be assessed. Our results indicate that it is possible
for EUL models to induce potentially large terraces
around any given tree found during tree reconstruction.
This raises the question of whether this ambiguity
accurately reflects phylogenetic uncertainty or is a
product of overparameterization of the EUL model.
Overparameterization is expected to lead to higher
variance in estimates of the parameters, including tree
topology (Li et al. 2008). A deeper study of model
selection in the context of terraces may be helpful.

The second new result indicates that the stand
associated with one partitioning scheme can actually
be part of a larger stand under a refined partitioning
scheme. For parsimony, this leads to strong conclusions:
it is possible to easily identify the extent of the
largest terrace associated with any given partitioning
scheme simply by constructing the so-called maximal
partitioning scheme for the data set (a simple function of
the distribution of missing data in the matrix), and then
characterizing the terrace for that maximal partitioning
scheme. This places an upper bound on the extent of the
ambiguity associated with partial taxon coverage, and
therefore should serve as the default terrace reported
for any specific tree when parsimony is the optimality
score.

These results are fundamentally based on the
properties of stands. However, in considering the
optimality scores of the trees on a stand, it is worth
remembering that even a “maximal” terrace may be
imbedded in a yet larger collection of trees with the same
optimality score owing to homoplasy, constant sites, or
possibly other factors in the data not related to partial
taxon coverage. The maximal number of trees on a terrace
is a lower bound on total this larger number of trees. The
fact that it can be calculated sidestepping the sequence
data proper may be relevant for tree search heuristics,
which are clearly challenged by tree landscapes such as
these (Goloboff 2014). For example, rather than doing
tree rearrangements to find equally parsimonious trees,
it should be possible to enumerate them directly. These
can form “seeds” to continue searching using expensive
tree score computations.

In likelihood inference the size of a terrace is also
conditional on the partitioning scheme, but so is the
likelihood score of the trees on the terrace. The terrace
associated with the maximal partitioning scheme may
reflect a worst case with respect to ambiguity but
may or may not be close to a reasonable partitioning
scheme for the data at hand. Selection of the best
partitioning scheme is presumably guided by principles
of model selection—not the size of the resulting terrace—
but for some data sets it may be worth considering
the consequences of model selection on terrace sizes.
Moreover, although the terraces corresponding to
different partitioning schemes may have different
likelihood scores, the containment relations of the sets
of trees in stands for different partitioning schemes
may allow more efficient computational exploration of
the impact of partitioning on the overall likelihood
landscape.

The remaining new results address various aspects
of the impact of terraces on assessing tree accuracy.
The third and fourth results refer to situations in
which bootstrap proportions and Bayesian posterior
probabilities, respectively, are determined in large part
not by the information content of the sequence data but
by the pattern of partial taxon coverage. These happen
for different reasons. In bootstrapping, the trees sampled
from a terrace end up reflecting the frequencies of trees
on that terrace, which in turn reflects the pattern of taxon
coverage and tree shape. One consequence is that a clade
can be highly supported in such an analysis because
most trees on the terrace (all with equal likelihood
scores) have that clade. Wilkinson and Benton (1996,
p. 14) pointed out a similar finding for the impact of
an unstable “rogue” taxon on support values derived
from majority rule consensus frequencies. It is possible
to view this as either a “feature” or a “bug,” but either
way one might not be expecting such sensitivity to arise
from factors other than the sequence data. Simmons and
colleagues (Simmons and Freudenstein 2011; Simmons
b; Simmons and Goloboff 2014) have noted a number of
impacts of missing data generally on bootstrap estimates
and have been critical of its application in this context,
suggesting several strategies to check well supported
clades for spurious support. We suspect some but not
all of their observations in real data sets (e.g., Simmons
and Goloboff 2014) are due to issues related to terraces,
but other factors involving homoplasy and phylogenetic
signal proper are no doubt also involved.

Similarly, Bayesian inference can be influenced by
posterior probabilities differing across trees on a terrace
(despite the likelihood being the same). In this case, the
result is largely explained by the influence of priors. With
standard exponentially distributed prior probabilities on
edge lengths, the probability that a single taxon with
all its data missing will attach to a particular edge of
the tree is determined by that edge length in relation to
the length of the entire tree. In the absence of any other
information, Bayesian inference will place a taxon on the
longest edge of the tree (though not necessarily with high
probability). Again, this may be viewed as desirable or
not, but it has the downstream consequence that trees in
a stand can have very different posterior probabilities,
which are determined by a fairly opaque convolution of
the priors, edge lengths, partial coverage pattern, and
combinatorics of terraces and tree shapes.

These findings are superficially similar to the “long
branch attraction” described elsewhere for Bayesian
phylogenetic inference (Susko 2008; Kolaczkowski and
Thornton 2009) in the absence of missing data. Although
we do not yet fully understand the interaction between
factors contributing to apparent long branch attraction
artifacts in the small example we posed (Fig. 5), the effect
of missing data was much stronger than edge lengths
alone. Restoring the missing data to the matrix was
sufficient to completely remove any long-branch artifacts
in the posterior probability distribution.

A reasonable response to some of these concerns
would be to avoid the possibly overparameterized EUL
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partitioning schemes in likelihood or Bayesian inference
and use simpler and more homogeneous models for
statistical inference. Our last new results suggest reasons
to proceed carefully, however. When sequence data
are generated on a tree with even a small amount of
heterotachy between loci, an EL or PEL model is used
for inference, and there is only partial taxon coverage,
then the likelihood score for the correct tree can actually
be worse than that of an incorrect tree. Simulations
with long sequence lengths imply this is an instance of
statistical inconsistency. As stated this might seem like
simply another case in which model mis-specification
causes problems, but in this instance, it is clearly a
negative interaction between model mis-specification
and missing data, because the problem can be avoided
by supplying the missing data. If this is not possible, use
of the (overparameterized) EUL inference model at least
avoids selection of an incorrect tree, but it provides no
evidence in favor of the correct one.

Much further work is needed to narrow down the
precise effects of terraces on confidence estimation
and accuracy of inference. In the meantime, however,
there are options for remediation. Setting aside
the strategy of acquiring the missing sequences to
eliminate partial taxon coverage entirely, which may
be expensive or impossible depending on availability
of DNA samples, there are computationally promising
approaches. Previously we posed the “maximum
defining label set” (MDLS) problem (Sanderson et al.
2011), in which we seek the smallest number of leaf taxa
to delete from the coverage matrix such that the stand for
a given tree is reduced to a single tree. For example, in the
two-locus partitioning scheme I of Figure 3, the removal
of taxa E and F makes the taxon coverage matrix decisive,
and therefore the indicated tree is alone on a terrace of
size one (which is also true for every other tree). The cost,
of course, in this simple example, is the significant loss
of potential information about the deleted taxa.

The MDLS problem has an exact and efficient solution
for two loci, and experiments with data sets indicate
there are interesting instances in which elimination of
relatively few taxa can solve the problem, even while
leaving a significant amount of missing data. However,
there is no known exact solution for the case of three
or more loci. The good news is that simple heuristics
in the case of three or more loci can find solutions that
eliminate terraces (Sanderson et al. 2011); they just may
not be optimal (it may have been possible to do the same
thing and keep more taxa in the matrix).

It would also be interesting to explore how procedures
designed to ameliorate the impact of unstable “rogue”
taxa, characterized by having much missing data, apply
to terraces. “Safe taxonomic reduction” (Wilkinson
1995) deletes a taxon with missing data if the character
states that are present are a subset of another taxon’s,
thus reducing the size of the set of equally optimal trees
found in parsimony analysis. Solutions to our MDLS
problem do not depend on the states observed in the
data, so a better understanding of the relationship of
the two approaches might lead to a more synthetic

characterization of all factors producing equally optimal
trees.

To highlight the impacts clearly, most of our results
were in the context of sequence data sets so large that
the only error was due to partial taxon coverage. In
real data sets there is also error from the finite sample
taken from the substitution process. This translates into
a broadening of the bootstrap or posterior distribution
of trees. In addition, there may be distinct terraces
associated with each sample tree taken from these
distributions; and there may be a distinct MDLS solution
for deleting some set of taxa for each of these trees. How
do we integrate across this information to make headway
in reducing the overall impact of terraces? A simple but
conservative fix might be to replace any sampled tree
in a bootstrap replicate or an MCMC run with the strict
consensus of the stand in which that tree is imbedded.
Then any clade on that tree is present in all trees on
the terrace. This would tend to reduce the false-positive
clades uncovered in an analysis.

Another approach would be to rely on statistics other
than those based on consensus. For example, a terrace
could be characterized by the average dissimilarity
among its trees, based on a measure of distance
between trees, such as the Robinson–Foulds distance
(RF: Robinson and Foulds 1981). This could allow a
better assessment of the extent of the confidence set of
trees sampled from bootstrap replicates or the posterior
distributions, perhaps based on measures of “distance”
between terraces. One approach would be to use a
measure of distance between sets, such as the Hausdorff
distance (Yu et al. 2014). The Hausdorff distance is small
when each tree on one terrace is close (measured here by
RF distance) to some tree on the other terrace. This might
be true even if the average RF distance between trees
within a terrace is much larger. Whether this approach
ultimately proves promising or not, some means to
characterize more fully the relationships between entire
sets of trees seems to be a necessity when terraces are
commonplace.

Finally, the existence of terraces poses an immediate
practical challenge for numerical phylogenetic analysis
using maximum likelihood—how to distinguish the
termination of a heuristic search because of discovery of
a local peak in the likelihood surface from termination
due to “entrapment” on a terrace of equally optimal
trees. Because termination criteria vary and are heavily
affected by considerations like numerical precision, no
one solution may be available, but minimally it should
prove useful to canvas some space of nearby trees that
are “off-terrace” to check if their likelihood scores are
indeed lower (or at least not higher).
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APPENDIX: MATHEMATICAL PROOF OF PROPOSITION 1 AND

THEOREM 4

Proof of Proposition 1
Consider an analysis where for each locus i we are

free to select Ei-parameters, but the Mi parameters are
constrained to be identical (i.e., Mi =M for all i). Let
ϕ(T) denote the log-likelihood of tree T (having leaf set
L) for the data D= (D1,...,Dk) for the k =|P| loci. Then
assuming the loci evolve independently (conditional on
the parameter choices) we have:

ϕ(T)= sup
(M,(Ei))

k∑
i=1

logP(Di|T,M,(Ei)),

where ‘sup’ refers to supremum (i.e., maximum if it is
attained, else its limiting value) as we search over M
and the Ei parameter spaces, and where (Ei) is short for
(E1,...,Ek). Now,

P(Di|T,M,(Ei))=P(Di|(T|Li),M,Ei),

(notice that T and (Ei) on the left has been replaced by
(T|Li) and Ei on the right). Combining the above two
equations gives:

ϕ(T)= sup
(M,(Ei))

k∑
i=1

logP(Di|(T|Li),M,Ei),

and so

ϕ(T)=sup
M

k∑
i=1

sup
Ei

logP(Di|(T|Li),M,Ei). (A.1)

Now, suppose that T is a phylogenetic tree on the entire
leaf set L and that T maximizes ϕ(∗). Let T′ be any other
phylogenetic tree on leaf set L for which T|Li =T′|Li for
all i (i.e., T′ lies in the same terrace at T). Then from
Equation (A.1) we have:

ϕ(T)=sup
M

k∑
i=1

sup
Ei

logP(Di|(T|Li),M,Ei)=

sup
M

k∑
i=1

sup
Ei

logP(Di|(T′|Li),M,Ei)=ϕ(T′),

so T′ is an ML tree also. In other words, all trees on
the same terrace as T are ML trees. This completes the
proof. �

Proof of Theorem 4
We first begin by defining more formally some of the

notions mentioned earlier.

• Given any binary phylogenetic X tree T′, and any
taxon x from X, consider the tree T′−x that is
obtained from T′ by deleting leaf taxon x and its
incident edge e(x). Note that each edge of T′−x
corresponds to an edge of T′, except for the edge
e−x of T′−x which corresponds to the two edges
(e1,e2) of T′, that are incident with e(x) in T′. In this
way, if T′ comes equipped with a branch length
assignment l (so l(e) is the length of edge e), then
the induced branch length l−x function for T′−x is
thus given by:

l−x(e)=
{

l(e), if e �=e−x;
l(e1)+l′(e2), if e=e−x.

• For any data set D that consists of a sequence of k
aligned site patterns on X, and any taxon x∈X, let
D−x denote sequence of k aligned site patterns on
X−{x} obtained by deleting the sequence for x.

• Now suppose that the sequence sites in D have
evolved i.i.d. on some fixed binary phylogenetic
X−tree T with branch length assignment �, under
a reversible Markovian process. Thus the sites
in D−x evolve i.i.d. on T−x with branch length
assignment �−x.

We wish to apply a Bayesian approach to compare
different placements of the taxon x into T−x given
the censored data D−x. We assume a prior probability
distribution on the set of binary phylogenetic X-trees
with branch lengths for which:

(i) each binary tree has the same probability (i.e., the
‘PDA distribution’);

(ii) edge lengths are independent exponential random
variables.

Without loss of generality (by rescaling) we may assume
that the mean of the exponential distribution in (ii) is 1.

Suppose we have two binary phylogenetic X-trees T′
and T′′ that satisfy T′−x =T′′−x =T−x (i.e., two different
placements of leaf x in T−x). One (or neither) of these
trees might be T. We are interested in the ratio of
posterior probabilities P(T′|D−x)

P(T′′|D−x) . The following result
states that for long sequences this ratio converges
towards the ratio of the lengths of the two edges of T−x
to which the missing taxon (x) is attached. To establish
Theorem 4, we prove the following result.

Theorem 5 For data generated by a reversible Markov process
on a phylogenetic X-tree T with branch length assignment �,
consider, for any x∈X, any two phylogenetic X-trees T′ and
T′′ obtained by attaching x to edges of T−x of length l′ and l′′
respectively. Then the ratio P(T′|D−x)

P(T′′|D−x) converges in probability
to l′/l′′, as the sequence length k grows.
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Notice that Theorem 5 implies Theorem 4 since the
statistical consistency of Bayesian phylogenetics under
identifiable models implies that any tree which is
different from T−x when x is deleted has a posterior
probability that converges to zero as the sequences
length k grows (thus P(T′′|D−x) sums to one as we sum
over all binary trees T′′ that agree with T up to the
placement of x). Thus, the remainder of our argument
is tailored toward proving Theorem 5 under the same
conditions stated for Theorem 4 (in particular, conditions
(i) and (ii) in the preamble to that theorem).

From Bayes’ identity we have:

P(T′|D−x)= P(D−x|T′)P(T′)
P(D−x)

. (A.2)

Now, P(T)=P(T′) (by assumption (i)), and so, from
Equation (A.2) and the analogous identity for P(T|D−x):

P(T′|D−x)
P(T|D−x)

= P(D−x|T′)
P(D−x|T)

. (A.3)

Moreover,

P(D−x|T)=
∫
�

P(D−x|T−x,l)f (l)dl (A.4)

where l is the set of branch length assignment on T−x,
and where f (l) refers to the density of the branch lengths
on T−x that is induced by independent exponential prior
branch lengths on T (� is the set of possible branch
lengths of T−x).

Similarly,

P(D−x|T′)=
∫
�

P(D−x|T′−x,l)f
′(l)dl (A.5)

where l is the branch length assignment on T′−x(=T−x),
and where f ′(l) refers to the density of the branch lengths
on T−x induced by the independent exponential priors
on T′.

Let ŝ denote the empirical frequency distribution of
site patterns on X−x, and for any assignment l of branch
lengths to T−x that is complete (i.e., l assigns a length
to every edge of T−x) let p(l) denote the vector of site
pattern probabilities generated by T−x with these branch
lengths. We then have the identity:

P(D−x|T−x,l)/
∏

i

ŝŝik
i =exp(−kdKL(ŝ||p(l)), (A.6)

where i ranges over all site patterns, and where
dKL(P||Q)=∑

i Pi log(Pi/Qi) refers to Kullback–Leibler
separation of probability distributions P and Q. Notice
that the branch lengths l are fixed (and completely
specified for T−x) in (A.6). Similarly, for any complete
assignment l of branch lengths to T−x,

P(D−x|T′−x,l)/
∏

i

ŝŝik
i =exp(−kdKL(ŝ||p(l)), (A.7)

Combining Equations (A.3), (A.4), (A.5), (A.6), and
(A.7) we obtain:

P(T′|D−x)
P(T|D−x)

=
∫
� exp(−kdKL(ŝ||p(l))f ′(l)dl∫
� exp(−kdKL(ŝ||p(l))f (l)dl

. (A.8)

Now, let Bk denote the subspace of the branch length
space � of T−x that is within (l∞) distance k−1/4 of �−x.
Then for g= f or g= f ′ we have the following convergence
in probability as k grows:

Rk :=
∫
�−Bk

exp(−kd(ŝ||p(l))g(l)dl∫
Bk

exp(−kd(ŝ||p(l))g(l)dl
p−→0. (A.9)

The proof of this last equation is given in a separate
subsection below. We apply it as follows. Notice that for
g= f or g= f ′, we have:∫

�
exp(−kd(ŝ||p(l))g(l)dl=

∫
Bk

exp(−kd(ŝ||p(l))g(l)dl

+
∫
�−Bk

exp(−kd(ŝ||p(l))g(l)dl,

and so ∫
�

exp(−kd(ŝ||p(l))g(l)dl=

(1+Rk)
∫

Bk

exp(−kd(ŝ||p(l))g(l)dl. (A.10)

Moreover, since g is continuous, and the nested sequence
of sets Bk convergences on the vector �x as k →∞ we
have: ∫

Bk
exp(−kd(ŝ||p(l))g(l)dl∫
Bk

exp(−kd(ŝ||p(l))dl
p−→g(�−x), (A.11)

as k grows. Thus, combining Equations (A.8), (A.10), and
(A.11) we obtain:

P(T′|D−x)
P(T|D−x)

p−→ f ′(�−x)
f (�−x)

. (A.12)

Now, by assumption (ii), the branch lengths in T−x are
independent exponentials (of mean 1) for all edges other
than e−x, and for this edge the branch length is the sum
of two independent exponential(s) of mean 1, which has
a gamma distribution with density f (t)= texp(−t). Thus,

f (l)=
∏

e′ �=e−x

exp(−l(e))·[l(e−x)exp(−l(e−x))]

= l(e−x)
∏

e
exp(−l(e)), (A.13)

where the last product term is over all edges of T−x.
Similarly, if e′−x is the edge of T−x(=T′−x) that x is
attached to in T′ then

f ′(l)= l(e′−x)
∏

e
exp(−l(e)). (A.14)
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From Equations (A.13) and (A.14) we have:

f ′(�−x)
f (�−x)

= �−x(e′−x)
�−x(e−x)

,

which, from (A.12), implies that for T′ and T′′ with T′−x =
T′′−x =T−x, we have:

P(T′|D−x)
P(T′′|D−x)

p−→ l′
l′′ ,

where l′ =�−x(e′−x) and l′′ =�−x(e′′−x), and where e′−x
and e′′−x are the corresponding edges of T−x that x
attaches to in T′ and T′′ respectively. This completes the
proof of Theorem 5 and thereby Theorem 4, modulo the
remaining step of establishing Equation (A.9) which we
attend to below. �

Proof of Equation (A.9)
A classic result (e.g., Wilk’s theorem) ensures that the

following convergence in distribution holds:

2kd(ŝ||p(�−x))
D−→�2

N−1

where �2
N−1 is a chi-square distribution with N−1

degrees of freedom (here N is the number of possible
site patterns). By the continuous mapping theorem, it
now follows that:

exp(−kd(ŝ||p(�−x)))
D−→W (A.15)

where W =exp(−�2
N−1) is a continuous and non-

negative random variable.
Moreover, if a sequences of branch length vectors lk

lies within (l∞) distance 1
k of �−x then we also have:

exp(−kd(ŝ||p(lk)))
D−→W. (A.16)

(For further details see Serfling (1980), esp. Section 3.5).
Next, Pinsker’s inequality (see Cover and Thomas

(2006)) gives for any l∈�:

d(ŝ||p(l))≥ 1
2
||ŝ−p(l)||21,

where ‖·||1 refers to the l1 metric. The triangle inequality
for this metric then gives:

d(ŝ||p(l))≥ 1
2

(‖p(�−x)−p(l)‖1 −‖ŝ−p(�−x)‖1)2. (A.17)

Now, for any l∈�−Bk , we have ‖l−�−x‖∞ ≥k−1/4, and
so, by Theorem 2.1(2) of (Moulton and Steel 1999) there
exists a pair of leaves i,j so that the difference in path
length between these leaves under branch lengths l and
�−x is at least 1

2 k−1/4. Since the site substitution model
is reversible, the probability that two leaves are in the
same state is a monotone decreasing function of the path
length between them (a positive mixture of exponential
functions). This in turn implies that the event that leaves
i and j are in the same state differs in probability under

the branch lengths l and �−x by an amount that is at least
k−1/4 times some constant (dependent on the model, and
�−x). In particular,

‖p(�−x)−p(l)‖1 ≥ck−1/4, for some constant c>0.
(A.18)

Also,

‖ŝ−p(�−x)‖≤k−1/3, (A.19)

with probability converging to 1 as k grows.
Consequently, by combining Equations (A.17), (A.18)
and (A.19), the following inequality holds for all
l∈�−Bk with probability converging to 1 as k grows:

exp(−kd(ŝ||p(l)))
exp(−dk1/2)

≤1,

for some constant d>0. Thus, with probability
converging to 1 as k grows:

∫
�−Bk

exp(−kd(ŝ||p(l))g(l)dl

exp(−dk1/2)
≤ lim

k→∞

∫
�−Bk

1·g(l)dl=1.

(A.20)
On the other hand, if we let B∗

k ⊂Bk be the set of branch
length vectors that lie within (l∞) distance at most 1/k
from �−x then

∫
B∗

k
exp(−kd(ŝ||p(l))g(l)dl∫

B∗
k
g(l)dl

≥sup
l∈B∗

k

{exp(−kd(ŝ||p(l))}.
(A.21)

Now, for a value C>0 that is independent to k
(but dependent on �−x), we have

∫
B∗

k
g(l)dl≥Ck−E,

where E is the number of edges of T. Also, from
Equation (A.16) supl∈B∗

k
{exp(−kd(ŝ||p(l))} converges in

distribution to the random variable W =exp(−�2
N−1)

as k grows. Thus, from Equation (A.21), the following
inequality holds with probability converging to 1 as k
grows:

∫
B∗

k
exp(−kd(ŝ||p(l))g(l)dl/Ck−E ≥W, and thus,

∫
Bk

exp(−kd(ŝ||p(l))g(l)dl

k−E ≥W, (A.22)

since B∗
k ⊂Bk and the integrand is non-negative.

Combining Equations (A.20) and (A.22) the following
inequality holds with probability converging to 1 with
increasing k:

Rk ≤ exp(−dk1/2)
Ck−E · 1

W
,

Notice that the second term on the right ( 1
W ) is a

continuous random variable, but since P(W >0)=1
and since the first term on the right converges to 0
(absolutely) as k tends to infinity, this suffices to establish
Equation (A.9).
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