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For the past two decades, there has been an ongoing

debate within the plylogenetics community over

whether model-based approaches for molecular sys-

tematics (such as maximum likelihood) should be

preferred over the more traditional ‘maximum parsi-

mony’ approach. A recent simulation study by Kolacz-

kowski and Thornton has brought this debate into sharp

focus. In this article, I discuss the significance of their

findings and offer a prognosis on the implications for

molecular phylogenetics. I believe that biochemistry and

model selection have an important role in developing

accurate phylogenetic approaches.
Box 1. A brief overview of phylogenetics and its terminology

A phylogenetic study usually begins with the alignment of nucleic

acid sequences – one for each species in a collection of species that

are being studied; at each site (position) in the sequence, each

species has one of four (DNA or RNA) or 20 (amino acid) states.

These site patterns convey information about the history of the

species – in particular the phylogenetic tree (branching order) of

speciation and the divergence times of different lineages. Sequences

that are identical at most sites suggest that the species they are

sampled from are closely related, and therefore close to each other
The ongoing debate concerning model-based

phylogenetics

Nucleic acid sequences carry with them information about
the evolutionary relationships of their host species, and
phylogenetics techniques try to extract this historical
‘signal’ (Box 1).

During the past twenty years, the use of stochastic
models has completely transformed the field of phyloge-
netics [1]. Maximum likelihood (ML) and, more recently,
bayesian and model-selection approaches, such as Akaike
information criterion (AIC) and bayesian information
criterion (BIC), have become the methods of choice for
most molecular studies. However, a vocal resistance to
these approaches remains, with the claim that model-
based approaches are inherently flawed owing to the
unrealistic nature of current models or the underlying
problems in determining an accurate model. Advocates of
this viewpoint often argue that maximum parsimony (MP)
provides the only sound basis for the phylogenetic analysis
of sequence data. To support their position, various
articles claim to show that ML can perform poorly
compared with MP on certain simulated data [2,3].
in the phylogenetic tree, whereas more dissimilar sequences

suggest greater evolutionary separation. However, the relationship

between evolutionary distance (distance in the tree) and sequence

dissimilarity is not linear and other complications arise: for example,

the rate of substitution can vary across the tree and across the

sequence sites. Sequence-based phylogenetic methods are usually

based either on some non-parametric optimality criteria or on an

explicit model of nucleic acid substitution. Maximum parsimony is a

non-parametric method and it seeks the tree(s) requiring the fewest

substitution events to account for the observed data. Methods based

on an explicit model of nucleic acid substitution include maximum
The findings of Kolaczkowski and Thornton

The recent article by Kolaczkowski and Thornton [4]
sheds some interesting light on this debate. Their
investigation was motivated by recent studies suggesting
that heterotachy – changes in the substitution rate of
certain sequence sites at various locations in the phyloge-
netic tree – might be an important feature of sequence
evolution [5]. To model this, they considered a simple
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scenario in which half of the sequence sites evolve under
one set of substitution rates and half evolve under another
set, on a four-taxon phylogenetic tree and according to the
simplest substitution process (i.e. the Jukes–Cantor
process). They allowed half of the sites to evolve with
elevated substitution rates on two non-adjacent terminal
branches (Figure 1a), whereas the remaining sites evolve
under a ‘mirror-image’ process – where the fast and slow
rates on the terminal branches are interchanged
(Figure 1b). When the length of the internal branch
decreases to zero most methods will favour the incorrect
phylogenetic tree that combines the non-adjacent taxa
that share their matching branch lengths (ad and bc).
Kolaczkowski and Thornton found that MP tends to
‘outperform’ ML and a bayesian approach when those
methods are used in a variety of models (using standard
models that do not include the type of model that
generated the data). Here ‘outperform’ means that MP
remains more accurate at shorter interior-branch lengths
than either ML or bayesian methods.

When Kolaczkowski and Thornton used a bayesian
analysis based on the type of model that generated the
data, they found that this bayesian Markov Chain Monte
Carlo (BMCMChetero) method was more accurate than
either MP or ML. This bayesian method allowed two
classes of sequence sites, with the sites in each class being
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likelihood (ML), bayesian methods and model selection (e.g. AIC and

BIC) approaches.
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Figure 1. Mechanisms that cause problems for certain tree-reconstruction methods.

The two opposing sets of branch lengths (a) and (b) were used in the simulation of

Kolaczkowski and Thornton [4]. (c) A change in the process which can mislead all

methods (MP, ML) that assume molecular evolution is governed by a common

process across the tree. All trees are drawn as rooted to emphasize fit and departure

from a constant substitution rate (molecular clock) at the variable sites.
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governed by the same branch length setting, but these two
settings were allowed to differ (neither the classes nor the
branch lengths were assumed a priori but were estimated
from the data). This result shows that ML approaches to
heterotachy might be promising in the future but, as the
authors note, these approaches raise certain issues. For
example, with real-world sequence data, it might be
difficult to know a priori how many site classes would be
needed to represent data accurately, and one might go to
the extreme of allowing each site to evolve under its own
particular suite of branch lengths. In this extreme case, it
is known [6] that the ML tree(s) for the Jukes–Cantor
process is exactly the same as MP tree(s), the implications
of which were recently discussed by Sober [7]. The authors
also noted other potential issues associated with complex,
highly parameterized models, in particular the compu-
tational burden of finding optimal trees. In summary,
Kolaczkowski and Thornton recommend ‘interpreting
likelihood-based inferences with the same caution that is
currently applied to maximum parsimony’.
Consequences of model mis-specification

It is generally accepted that most models in molecular
systematics are overly simplistic, and that model mis-
specification can mislead model-based tree-reconstruction
methods. The inability of ML to resolve the correct tree in
Kolaczkowski and Thornton’s article [4] at certain par-
ameter settings is not surprising. ML can be statistically
inconsistent (fail to converge on the true tree with
increasing data) when the data are generated (by nature
or by computer simulation) according to a mechanism that
differs from those used in the likelihood analysis [8].
Inconsistency can also arise even when the true model is
used if that model is too parameter-rich, a problem known
as ‘non-identifyability’ [9]. Moreover, MP can outperform
ML even when the underlying model is correct, provided
the tree and parameters are chosen correctly (e.g. a four-
taxon tree with three long branches and two short,
adjacent terminal branches). This phenomenon has been
noted by several authors, most vocally by Siddall [2],
although some claims in that article were subsequently
refuted by Swofford et al. [10].
www.sciencedirect.com
Biochemical realism

Kolaczkowski and Thornton point out that the hypothe-
tical mixture model used in their simulation is a simplified
model; therefore, is it relevant for real sequence data? The
type of heterotachy that they described seems biologically
implausible – what possible biochemical mechanism
would suggest that the rates on the four branches between
the two classes of sites are anti-correlated in the way that
Figure 1a,b suggests? This pattern is improbable under
biochemically motivated models that describe how the
substitution process might vary across a tree. Simple
biochemical mechanisms have been discussed that can
give the same type of misleading influence – for both ML
and MP – as the artificial process described by Kolacz-
kowski and Thornton. In the classic ‘long-branch attrac-
tion’ setting [11], the two ‘long’ branches can be viewed as
the combination of a long branch (to an outlying taxon)
with a rate acceleration in one lineages or, perhaps, as two
lineages where the rate of substitution has been indepen-
dently elevated. However, there are processes that lead to
similar long-branch attraction, even when the substi-
tution rate at each variable site is constant across the tree.
Two such processes involve a change in the substitution
process on two non-adjacent edges (Figure 1c). The first
process is an increase in the GC-content of the two
lineages [12–15]. The second process is a change in the
proportion and/or distribution of variable sites in these
two lineages [16–18], presumably because of structural or
functional reasons (‘covarion-type’ models). It seems that
both of these processes occur in certain data sets, and they
might be the main cause of ‘long branch attraction’ (Peter
Lockhart personal communication).

Model fitting and the ‘elephant’ factor

Kolaczkowski and Thornton’s findings can be viewed as
supporting a likelihood approach over MP because an ML
analysis performed under the correct (two-process) model
outperforms MP. However, as the authors ask, how can
one know in advance whether this model is the correct one
to use and therefore avoid adding more categories of sites
and parameters?

Two approaches might be useful to answer this
question. First, the sequence data or biochemical infor-
mation (e.g. functional or structural properties of the
sequences or DNA-repair mechanisms) often provides
important clues to which processes were involved in
sequence evolution. For example, in coding sequences,
models that respect the greater redundancy in the third
codon position are more effective than those that treat all
sites equally. The empirical frequencies of different amino
acids at sites can also be exploited in models [19], as can
variations in the empirical base frequencies (GC-content)
between groups in the tree. In the second case, a model
that assumes a constant substitution process across the
tree is inappropriate, and a more accurate model would
incorporate compositional variation. This can lead to new
methodology (e.g. the ‘logdet’ transform) and help explain
why some data produce misleading phylogeny using
standard methods [13]. Numerous models have since
been developed to explain some of the intricacies of
sequence evolution [19–21], although comparatively little
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work has been performed on heterotachy, beyond simple
covarion-type models; therefore, Kolaczkowski and Thorn-
ton’s article will no doubt help encourage further
investigation.

The second consideration in choosing a model is a well-
developed statistical theory (model selection and model
averaging) that enables models to be compared according
to objective criteria, such as AIC or BIC. Briefly, these
approaches penalise the addition of extra parameters,
unless there is a sufficiently impressive improvement in fit
between model and data. Unlike traditional ML ratio tests
these approaches enable the comparison of any two
models, even if they are not nested [22]. Allowing
progressively more parameters always leads to an
improvement of fit between the data and the model – a
phenomenon that has become a folklore quote (from
physics): ‘with enough parameters you can fit an
elephant’. However, the extensive addition of parameters
comes at a price – the predictive power of the theory (the
information that the data can reveal about the underlying
tree) tends to be drowned out in a sea of parameter
estimation. The aim of model selection is not to find the
‘true model’ but to find a model with sufficient parameters
to capture the key features of the data, including the
historical signal.

Concluding remarks

In summary, ‘better, more realistic models’ should not
mean ‘more parameter-rich models’ – these might
‘capture’ more of reality, but only when the numerous
parameters that are required are close to their correct
values. However, the power of a given amount of data to
estimate several parameters accurately is generally low.
Modest parameter models that capture the main features
of the sequence data are more useful – learning how DNA
evolves is crucial to this task and a challenge for the
future. As Simon Tavaré used to urge us many years ago:
‘talk to the biochemists!’
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