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Abstract—We describe a simple method for generating tighter confidence intervals for the date of
divergence of two monophyletic groups of taxa. This technique exploits the variation that exists
within each of two groups that have evolved separately from a common ancestor. We illustrate
the method (plus a technique to test the molecular clock hypothesis) using sequence dissimilarity
within the orders of ratites and of tinamous (small birds from South America commonly regarded
as the closest relative to ratites). [Aligned sequences; clades; divergence times; molecular clock;

phylogeny.]

The estimation of divergence times be-
tween taxa is an important problem in
phylogenetic analysis (Gojobori et al.,
1990; Kishino and Hasegawa, 1990; Mar-
shall, 1990). Here, we address the question
of how to exploit the knowledge that two
groups are monophyletic to obtain better
estimates of sequence divergence between
the two groups and thereby to obtain bet-
ter estimates of their divergence time. The
problem is that different pairwise compar-
isons between taxa, one from each group,
cannot be treated as statistically indepen-
dent measurements because of shared his-
tory. Yet it seems equally clear that the col-
lection of all these pairwise comparisons
should provide more information about di-
vergence time than can any single com-
parison.

We describe an approach that allows for
the construction of confidence intervals for
sequence dissimilarity that are always
tighter than those obtained by single pair-
wise comparisons. This approach is valid
under standard statistical assumptions,
listed ‘here as assumptions 1 and 2. We il-
lustrate the calculations involved with a
simple example (Fig. 1) and also with an
application to 12S ribosomal RNA se-
quences within the avian orders of ratites
and of tinamous. This example demon-
strates how the addition of sequences to
each group leads to narrower confidence
intervals (Fig. 2). Our approach produces

markedly narrower confidence intervals
(than those obtained from single pairwise
comparisons) only when there is variation
in the sequences within each group. How-
ever, the full sequences (not just the de-
rived dissimilarities) must be used to ob-
tain the narrower confidence intervals on’
sequence dissimilarity.

Under two further assumptions (nos. 3,
4), it is possible to use these confidence in-
tervals for sequence dissimilarities to ob-
tain confidence intervals for the number of
substitutions separating the two groups.
Assumption 4 is closely related to the mo-
lecular clock hypothesis, which asserts that
the rate of substitution is constant in dif-
ferent lineages and through time (see
Zuckerkandl and Pauling, 1965; Kimura,
1983). To test this assumption, we used a
simple test that does not depend on the
details of a particular underlying substi-
tution model and applied it to the ratite
and tinamou sequences.

The problem we consider resembles but
is quite different from the problem consid-
ered by Rzhetsky et al. (1995), who also
sought to obtain improved estimates of
phylogenetic parameters by exploiting pri-
or knowledge that groups are monophy-
letic. Other authors (e.g., Hasegawa et al.,
1987; Gojobori et al., 1990; Kishino and
Hasegawa, 1990; Tajima, 1993; Zharkikh,
1994) have also considered (different)
questions concerned with better estimating
the time of separation between sequences.
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(a)

Taxon 1
Taxon 2
Taxon 3
Taxon 4
Taxon 5

gcttagccectaaatccaaatgettacctaagcattcegeceg
gcttagccctaaatctaaatgettacctaacgattegeccyg
gcttagccctaaatcctgatacttacctaagtatecgecca
gcttggccectaaatctagatacttacacaagtatccgecta
gcttagccctaaatcctggtgettacctaagtacccgecca

(b)

Taking A = {1, 2}; B = {3, 4, 5}, we have (with N=41),

Pattern (w) Pattern (w)
12 345 Xz Br 12 345 X Bx
oaf aoo 1 3 ool OLOLOL 27 0
oo ofo 4 2 of afo 1 3
oa fob 4 oa Bpp 3 6
oo aof 2 2 oo Bpa 1 4
of vy 1 6
(c)
1 (13 + 4x2 + 1x4 + ...)

d = 53 % 7 =0.2033

14 (1x9 + 4x4 + 1x16 + ...) 5
& '40[4><9x 41 - d2]

= s [25 x 212 — (0.20897] = 0.0027

FIGURE 1. Computal

tion described by Theorem 1. (a) A subset of the sites (N = 41) for ﬁv.e sequences. (b)

For these sites, there are nine distinct patterns. These patterns, their frequencies, and their B values are shown,
assuming that taxa 1 and 2 lie on one side of the root and taxa 3, 4, and 5 lie on the other. (c) These patterns

are used to compute d

and the unbiased estimator s? for its variance.
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FIGURE 2. The effect of combining taxa to obtain
tighter confidence intervals for the (uncorrected) dis-
tance between two groups of taxa (e.g., 11 ratites and
four tinamous). If a single ratite (r = 1) and tinamou
(t = 1) are used, the 2 SD confidence intervals for their
sequence dissimilarity are both wide and variable. The
average interval (over all choices of one ratite and one
tinamou) (8) is [0.0795, 0.146); other choices give con-
fidence intervals ranging from [0.047, 0.103] (&) to
[0.115, 0.192] (M). As more taxa are added into the
two groups (see line 3r, 2t and line 5r, 2t), the confi-
dence intervals for the average sequence dissimilarity
between the groups become narrower and less vari-
able. When all 11 ratites are combined and all four
tinamous are combined (11r, 4t), the confidence inter-
val is [0.089, 0.137], whose width is about 70% of the
average of the widths of the confidence intervals ob-
tained by taking all single ratite and tinamou com-
parisons. The reduction in the span of the confidence
interval is a major help when testing to see whether
a particular divergence occurred, say, before or after
the Cretaceous~Tertiary boundary.

The stimulus for this work was testing
whether orders of modern birds diverged
after the Cretaceous—Tertiary boundary
(Feduccia, 1995) or before it. To test the al-
ternatives, calibration points obtained
from fossils must be used to estimate rates.
Although the major hypotheses could be
distinguished, it became clear that some
subhypotheses could not be distinguished
without a reduction in variance. The re-
duction formulae reported here should be
useful in other studies.

CONFIDENCE INTERVALS

We first obtain a tight confidence inter-
val for the average dissimilarity between
taxa from one clade and taxa from the oth-
er. We assume that (1) the two clades are
identified correctly and (2) sequence sites
evolve independently and identically
(i.i.d.) according to some stochastic model,
M. For assumption 1, we do not need to
know the phylogenetic tree connecting the
taxa within each clade, just which taxa lie

on each side of the root (thus the taxa can
be unresolved within each clade). Also, as-
sumption 2 does not compel us to assume
that all sites evolve at the same substitu-
tion rate; it allows for any distribution of
rates across sites, provided the underlying
substitution rates are assigned to the sites

by an iid. process (Steel et al, 1994;

Chang, 1996).

To convert these confidence intervals for
average interclade dissimilarities into con-
fidence intervals for the divergence time
between the two groups, a confidence in-
terval must be obtained for the number of
substitutions, K, separating taxa from one
group and taxa from the other. Two fur-
ther assumptions are required: (3) model
M has a correction function ¢ for estimat-
ing the expected number of substitutions
(K;) between two sequences i and j from
their expected dissimilarity E;, and (4) K;
takes the same value if i and j are on dif-
ferent sides of the root (a weak form of the
molecular clock hypothesis).

Models satisfying assumption 3 include
the Jukes—Cantor model and the model de-
scribed by Tajima and Nei (1982, 1984). For
example, the simple Jukes—Cantor model
has K; = &E;) = —0.75 log.(1 — 4E;/3).
Such models are easily modified to handle
a variation of rates across sites. For exam-
ple, with the Jukes—Cantor model, the log,
function is simply replaced by the func-
tional inverse of the moment generating
function of the distribution of rates across
sites (this was described explicitly for the
gamma distribution by Jin and Nei [1990]
and extends directly to more general dis-
tributions). Assumption 4 always holds
under the molecular clock hypothesis.
However, assumption 4 is a slightly more
general condition; it would also apply if
the substitution rate were constant among
the taxa on one side of the root but differ-
ent from a second substitution rate con-
stant on the other side of the root.

To obtain time scales, it is necessary ei-
ther to know the substitution rates or to
combine the estimated K values with esti-
mated dates for fossils (see Shields and
Wilson, 1987; Marshall, 1990; Kornegay et
al, 1993). If the substitution rates are
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known (or have been estimated to lie in
some confidence interval), confidence in-
tervals can be obtained for the dates of di-
vergence between the two groups of taxa
from a confidence interval on the K values.
For example, suppose the rate matrix of the
underlying stationary stochastic matrix is
R and f is the equilibrium frequency of nu-
cleotides (defined by fR = 0 and 3£, f, =
1), then the time T from the present to the
most recent common ancestor of the two
groups is given by

~05K
Zl f;Rii

(see Rodriguez et al., 1990). For example,
under the Jukes—Cantor model with sub-
stitution rate A\, T = K/2\. Thus, if [K,, K,]
is a 100(1 — a)% confidence interval for the
K value of the two groups, then the inter-
val [T,, T,] (where T, is determined by K;
by the above relationship) is a 100(1 — a)%
confidence interval for the time back to the
most recent common ancestor of the two
groups, T. If case \ is being estimated, per-
haps from other data, the corresponding
confidence interval for T will be wider. For
example, if [\,, \,] and [K, K,] are 100(1 —
o/2)% confidence intervals for A and K, re-
spectively, then [K,/2\,, K,/2\,] is a 100(1
— a)% confidence interval for T. A tech-
nique for describing confidence intervals
for [K,, K,] is given in the corollary to The-
orem 1.

Suppose we have two groups of aligned
sequences, A and B, and that the true phy-
logenetic tree has group A on one side of
the root and group B on the other. For a
sequence i in A and a sequence j in B, let
d; denote the normalized (Hamming) dis-
tance between i and j, i.e., the proportion
of sites where these two sequences differ.
Let d be the average value of d; over all
such choices of i and j:

1
o E dijl

ab icAjjeB

T_

d =

where a = |A|, the number of sequences in
A, and b = |B|.
Even when the sequences evolve inde-

pendently, the variance of d is not the av-
erage of the variances of the d;’s because
of the obvious lack of mdepend,ence Nev-
ertheless, one can still obtain (from the se-
quences but not from the distances alone)
a consistent and unbiased expression for
the variance of d. Let us call the assign-
ment of states at any single site a pattern.
Thus, for n aligned DNA sequences there
are 4" possible patterns (although because
the sequence length N is generally much
smaller than 4" we usually observe a small
subset of these in a given data set). For a
collection of aligned sequences, let X, de-
note the number of sites in which pattern
7 occurs, and let B, denote the number of
pairs of sequences (i, j) such that i € A, j
€ B, and i and j have different states as-
signed to them by = (for an example, see
Fig. 1). Thus, we have

1
- E 2 B‘n’x‘rrl

where x, = X,/N, the proportion of sites
where & occurs. The variance of d can be
estimated by the following result.

Theorem 1
Under assumptions 1 and 2, an unbiased
and consistent estimator for the variance of
dis
1

1
2 o= || — 2 — ]2

TN (aZbZZ B"x") il
where N is the sequence length and the
summation is over all patterns  that occur
at least once in the sequences. Further-
more, d/s is (approximately) normally dis-
tributed (with SD = 1) for N >-30.

A calculation illustrating Theorem 1 is
given in Figure 1, and a proof of this the-
orem is given in the Appendix. The state-
ment that s? is unbiased as an estimator
means that the expected value of s? is pre-
cisely the variance of d (formally, E[s?] =
Var[d]). As N (the sequence length) be-
comes large, the ratio s?/Var[d] converges
to 1 (with probability = 1) so that for suf-
ficiently long sequences s? is expected to

ive an increasingly more accurate esti-
mate of Var[d] (i.e, s* is a consistent esti-
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mator). The value of s? is less than or equal
to d(1 — d)/(N — 1), and this value is at-
tained only when all the sequences in A
are equal and all the sequences in B are
equal. Thus, variation within the sequenc-
es of each group helps to cut down the
width of the associated confidence interval
for d. :

To apply this theorem to obtain a con-
fidence interval for the expected number of
substitutions that have occurred between a
taxon in one group and a taxon in the other
(the K value), we obtain a confidence in-
terval for d (by using the theorem) and
then transform the limits of this interval by
applying a correction transformation ¢ (¢
is a monotonic function) as is summarized
in the corollary to Theorem 1. The confi-
dence interval for K will not generally be
symmetric about ¢(d) because of the non-
linearity of ¢. For distantly related se-
quences, the interval may have a very large
upper bound and so may only be useful
for providing a lower bound on K.

Corollary

Under assumptions 1-3, a 100(1 — a)%
confidence interval for the K value of the
two groups is [b(d — sz,), dd + sz,)],
where s is given by the theorem and where
z, is the value beyond which the standard
normal density has area a.

An Example Using Birds

The theorem was applied to two groups
of birds based on 358 third-domain 12S
ribosomal RNA sites (the data derived
from Cooper et al. [1992] with three ad-
ditional taxa). The two groups consisted
of 11 ratites (two rheas, three kiwis, three
moas, one emu, one cassowary, one os-
trich) and four tinamous. By applying the
theorem on the assumption that the 11
ratites are on one side of the root of the
tree and the tinamous are on the other, we
obtained a confidence interval for d (d *+
2 SD) of [0.0890, 0.1366] (i.e., 0.1128 =
0.0238). Applying a Jukes—Cantor correc-
tion, the above corollary gives a confi-
dence interval for K of [0.095, 0.593].
However, if we just take individual com-
parisons of pairs (one ratite and one tin-

amou) the confidence intervals for d are
considerably wider and quite variable (see
Fig. 2). As we add more ratites and tina-
mous into the two groups, there is a
steady progression in both the variability
and the reduction of the width of the con-
fidence intervals for different selections of
taxa. These confidence intervals are for
the average dissimilarities (d) between the
two groups, not for the corrected K val-
ues.

TEST OF A MOLECULAR CLOCK

To justify this approach, it is useful to
have a test of the molecular clock hypoth-
esis (or more generally assumption 4) be-
cause this is an important assumption in
estimating divergence time. A test that
does not depend too much on the type of
substitution model being considered is de-
sirable. Goldman (1993) described a like-
lihood-based test of the molecular clock
hypothesis assuming that the sequences
evolve according to certain stochastic mod-
els. Wu and Li (1985} also described a “‘rel-
ative rates” test based on pairwise com-
parisons, but this test is also dependent on
a particular substitution model. Here, we
give a simpler test, which is valid for more
general models (although it is likely to be
less discriminatory than a likelihood test)
for three taxa. It can in principle be ex-
tended to more than three taxa, but we do
not explore this here. Our test is based on
the simple observation that for any station-
ary model (see Rodriguez et al., 1990) a
molecular clock (or more generally just as-
sumption 4) implies that the expected val-
ue of d; takes the same value for any pair
of taxa i and j that lie on opposite sides of
the root of the phylogenetic tree being con-
sidered. i

Suppose a molecular clock applies to a
collection of N sites that evolve i.i.d. Sup-
pose that the rooted tree connecting taxa i,
j, and k places i and j on the same side of
the root and k on the other side. Under a
molecular clock, the expected value of & =
dy — d; is zero. To test this hypothesis, un-
der assumptions 1 and 2, & is approxi-
mately normally distributed because 3 is a
sum of many i.i.d. random variables (one
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for each site), and so the central limit the-
orem applies. Thus, we need only estimate
the variance of 8 to perform a significance
test using a standard normal table. We can
obtain an unbiased estimate of Var[3] as
follows (proof supplied in the Appendix).

Theorem 2
Under assumptions 1 and 2, an unbiased
and consistent estimator of the variance of
O =d; —d;is
(di' - & - di'k)

2. My 7 O 7 B
5%t N_1
where d,; is the proportion of sites where
i, j, and k are in three different states. Fur-
thermore, under the molecular clock hy-
pothesis (or more generally, assumption 4),
8/s, has (approximately) a standard nor-
mal distribution for N > 30.

As a simple application, we examined
data from two ratites, ostrich and Megalap-
teryx (an extinct moa), which have 27 site
differences between them, and from a
crested tinamou, which has 41 and 37 site
differences from the two ratites, respec-
tively. There is just one site where all three
taxa have different states, and because N
= 358, we have d; = 1/358, & = 4/358,
and d; = 27/358. Thus, s, = 0.01425, giv-
ing 8/s, = 0.784, so this test does not reject
the molecular clock hypothesis for these
three taxa (the probability of obtaining a
deviation of at least 0.784 under a standard
normal distribution is not particularly
small; standard normal tables give the val-
ue as 0.43).

CONCLUSION

We have described a general approach
to estimating sequence dissimilarity that
exploits knowledge of monophyly to ob-
tain narrower (and therefore more infor-
mative) confidence intervals than those
obtained by single pairwise comparisons.
Applying this approach to bird sequenc-
es, the combination of several sequences
for two monophyletic groups can lead to
a considerable reduction in the width of
confidence intervals (Fig. 2). Tighter con-
fidence intervals for sequence dissimilar-
ity lead to narrower confidence intervals

on the divergence time between the two
groups, providing that a molecular clock
holds. We have presented and applied a
new and simple test of the molecular
clock that does not depend on the fine de-
tail of a particular model for its validity.
The formulae reported here should be
useful in other studies. The approach pre-
sented here could be extended to models
that violate assumption 3, i.e., models for
which the K value for two sequences de-
pends on more than just their dissimilar-
ity score. '
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APPENDIX
PROOFS OF THEOREMS

Suppose the random vector [X]] has a multinomial
distribution with parameters N and [f], and let

x; = %, Y = Z ox;.
Then
S=—1_ (2 ax; — YZ)
N-1\4%
is an unbiased estimator for Var[Y], i.e.,
E[S] = Var[Y]. 1)
Furthermore,

S/ Var[Y] converges to 1
in probability (as N — ). 2)

To derive Equation 1, apply the indentity

E[xx] = ff(l - ) + Ry,

where R;; = 0if i # j, and R; = f,/N (see Wilks, 1962),

to obtain

Var[Y] = 3 ae,Covlx, x]
=12a?f~- S af)
Nl \&F T
ElS] = 5|2 o - EaaE[xxJ]

N
NS oh - (Sas
N T
again by the above identity. This establishes Equation
1. The formula just given for Var[Y] also gives Equa-
tion 2 because we have that [x] — [f] in probability

(as N — ). We apply these results to prove the two
theorems as follows.

)

Theorem 1
We have
=2 8,(, j)xn,

where

1 if i and j are assigned

3. j) = [ different states by w

0 otherwise.

Now,

2 dii=

icAjjeB

> 280 ),

2| 2 8.0 —EB,.,,

= |ieAsjeB

Thus,
1
= E E,,: BaXn

and by the i.i.d. assumption, [X,] has a multinomial
distribution, so we obtain Theorem 1 by Equation 1
by letting i range over the patterns and setting o, =
B./ab. Consistency follows from Equation 2, and the
central limit theorem (Wilks, 1962) implies that 4 has
an (approximately) normal distribution.

Theorem 2

Partition the sequence sites into five classes, C,,
C,, ..., C;, by considering the patterns on sequences
i, j, and k as follows:

C,: i, j, and k are in the same state;
C,: i and j are in the same state,

k is in a different state;
C,: i and k are in the same state,

jis in a different state;
C,: j and k are in the same state,

i is in a different state;
C,: i, j, and k are in three different states.

Let ¢; = |[C|/N. Thus, ¢; = dy, and ¢, + ¢, + ¢, + ¢,
+ ¢; = 1. Now,
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di=c; +co ¢
dy=c¢c,tec, +cs
dy=c+c+c

and because
= 3 =

mw(x)Em(y)
(for x, y € {i, j, k}) we have
8= 2 hx,
where
1 ifweC,
N.=40 ifwme CCUGC UG
-1 ifme C,
Note that

2 Nx,=cto=d;—c=d; — dy
=

Thus,
Hence,
Els?]=E ——14—(2 A2, — 32)]
N - 1\7 ~
= Var[3]

by Equation 1, as claimed. Consistency now follows
from Equation 2, and the central limit theorem (Wilks,
1962) implies that 8 has an (approximately) normal
distribution.

o

o



