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a b s t r a c t

The Yule (pure-birth)model is the simplest nullmodel of speciation; each lineage gives rise
to a new lineage independentlywith the same rateλ.We investigate the expected length of
an edge chosen at random from the resulting evolutionary tree. In particular, we compare
the expected length of a randomly selected edge with the expected length of a randomly
selected pendant edge.We provide some exact formulae, and showhowour results depend
slightly on whether the depth of the tree or the number of leaves is conditioned on, and
whether λ is known or is estimated using maximum likelihood.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In evolutionary biology, the simplest model of speciation assumes that, at any moment, each of the then-extant lineages
randomly gives rise to a new lineage at some constant rate (and independently of other such events). This model, and an
extension,was described by Yule [1]. It generates a rooted binary tree forwhich each edge has an associated random length—
the duration of a lineage until it speciates (i.e. gives rise to a new lineage). The Yule model is widely used in phylogenetic
analysis; often, extinction is also allowed, but in this short note, we deal only with the pure-birth model.
Although many properties of the Yule model have been extensively investigated over the years (e.g. [2–4]), in this

work we consider a question that has received less attention—namely what can one say about the expected length of an
edge selected uniformly at random from the set of pendant edges, or from all edges (pendant and interior)? This question
has a practical biological motivation: many large phylogenies used in conservation and community phylogenetics contain
numerous polytomies [5]. Expected edge lengths above such polytomies (e.g. the expected length of pendant edges, which
represent the average species ‘age’) would be a useful and unbiased substitute for the polytomy edge lengths.
We derive simple exact formulae for these quantities under two scenarios: either the number of leaves is given (but not

the depth of the tree) or the depth of the tree is given (but not the number of leaves); note that the Yule model needs to be
conditioned in some such way—otherwise the probability of a finite age or finite number of leaves is 0. We also evaluate our
formulae when the diversification rate is replaced by its maximum likelihood estimate based on the depth of the tree and
the number of leaves. We will work with expected average edge lengths (these being the same as the expected edge length
of an edge selected uniformly at random from the appropriate class of edges—pendant or interior).
Consider then a pure-birth Yule tree with diversification rate λ. The time for which a given lineage persists until it

speciates has an exponential distribution with a mean of 1
λ
. We will assume throughout that the tree starts as an initial

bifurcation—that is, initially at some time t in the past, it has two lineages each of length 0, as in [3]. If there are k lineages
present at a given moment, then the expected time until the next speciation event is also exponentially distributed, and
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with a mean of 1kλ . After time t from the initial bifurcation, we produce a binary tree; the expected number of leaves in the
tree is 2eλt .
Since 1

λ
is the expected time for which a lineage persists until it speciates, it might be expected that the expected length

of a randomly selected edge (pendant or interior) in a Yule tree would also be 1
λ
. However, we will see that the expected

value is either exactly or approximately equal to half this value, depending on what is being conditioned on. The intuitive
explanation for the 12 factor is that the conditioning effectively truncates the length of the pendant edges; moreover this
also impacts on the interior edges of the truncated tree, since conditioning on an edge being interior implies it cannot be
too long (otherwise it would be a pendant edge).

2. Expected pendant vs. interior edge lengths as a function (only) of n

In this section, we show that regardless of whenwe observe a treewith n leaves, the expected length of a random interior
edge length is 12λ . For a randomly chosen pendant edge (the length of the branch (edge) leading from a species back towhere
it first meets the rest of the tree), the expected value depends on when it is observed, but it converges to 1

2λ as n grows, and
is exactly equal to 1

2λ under a null assumption concerning the depth of the tree.
Consider growing the Yule tree from the initial bifurcation until it has n+ 1 leaves. Of course, the time (t) that this takes

is a random variable, and we will suppose in this section that t is not known. Let Pn be the expected value of the sum of the
lengths of the pendant edges of the tree on n leaves up to (just before) we first get n + 1 leaves, and let pn = Pn/n be the
expected value of the average pendant edge length. Similarly, let In be the expected sum of the lengths of the interior edges
up to (just before) we get n+ 1 leaves, and let in = In/(n− 2) be the expected value of the average interior edge length.

Theorem 1. For all n ≥ 3, in = pn = 1
2λ .

Proof. We have the following two recursions for n ≥ 3:

In = In−1 +
Pn−1
n− 1

; (1)

Pn = Pn−1 −
Pn−1
n− 1

+
2
λn
+
n− 2
λn

. (2)

Recursion (1) follows by observing that the point at which n species arises creates a new interior edge from one of the n− 1
pendant edges; hence the last term.
Recursion (2) is more complex, but it combines the following observations: As the tree grows, fromwhen it last has n−1

leaves to when it last has n leaves, one of the pendant edges is selected uniformly at random from the n− 1 pendant edges
and is destroyed, becoming the new interior edge (this is the second term on the right of (2)). The remaining n− 2 pendant
edges get longer (this is the fourth term on the right of (2)), and two more new pendant edges arise (the third term on the
right of (2)). All these edges grow for an average of 1/λn time (the expected time until the next event), since there are at
present n species, and we record the growth of the tree until (just before) the next speciation event. Note that recursion (2)
simplifies to

Pn = Pn−1

(
1−

1
n− 1

)
+
1
λ
.

This equation, combined with the initial condition P2 = 1/2λ + 1/2λ = 1/λ (since the expected time of the transition
from two to three leaves is 1/2λ), has the closed-form solution Pn = n/2λ. From this we can estimate the average expected
length of a pendant edge: pn = 1

n · Pn =
1
2λ . Using this in recursion (1), along with the initial condition I2 = 0, and the fact

that there are n− 2 interior edges, also gives us the expected length of an interior edge, in : in = 1
n−2 · In =

1
2λ . In particular,

in = pn for n ≥ 3. This completes the proof of Theorem 1. �

2.1. Remarks

Note that the identity in Theorem 1 is for the ‘late sampling’ scenario where the tree is observed just before the time of
the next speciation event. But if one has n leaves, and one records the n pendant edge lengths at the ‘earliest possible’ time,
namely when the nth species first arises (rather than just before the (n+ 1)st species appears), then the ‘correction’ for the
average expected length of a pendant edge will be 1/2λ− 1/nλ.
Notice that if one records the pendant edge exactly halfway between these two expected times, this would give

1/2λ− 1/2nλ.
However, if we observe that there are n leaves in a tree for which t is unknown and we ask for the expected time when

there were n (rather than n − 1) leaves, then this expected time is 1/nλ rather than 1/2nλ, which restores our expected
pendant edge estimate back to 1/2λ. This follows from a result of Gernhard ([6, Theorem 5.2], case µ = 0 with k = n− 1)
which was concerned, more generally, with the distribution of times between speciation events in a birth–death tree when
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Fig. 1. Speciation times in a Yule tree of depth t . The values t = t1 > t2 > t3 > · · · > t4 > t5 = 0 measure time from the present.

the age of the tree is unknown and so is assumed to have a (improper) uniform prior (see also [2]). Thus, in the case where t
is unknown, we may assume that the expected average pendant edge length is the same as for interior edges, namely 1/2λ.
Notice that in any case, the possible ‘corrections’ all converge to 0 as n increases. This simple observation that leaf edges

are the same as interior edges is behind the otherwise somewhat non-intuitive assumption made by Nee [3] that one can
posit a speciation event at the present when calculating diversification rates, and the fact that Pybus’s gamma [7] can be
estimated using all waiting times, even the most recent [8].

3. Expected average edge length in a Yule tree of given size and depth

Let TLn(t) be the (random variable) sum of the branch lengths in a Yule tree T that has depth t and n leaves, and let Ln(t)
be the expected value of TLn(t). Thus ln(t) := Ln(t)/(2n − 2) is the expected average branch length (since T has 2n − 2
branches).

Theorem 2. Conditional on n, t and λ, the expected value of TL is given by

Ln(t) = 2t +
n− 2
λ

(1− y(λt)),

where y(x) := xe−x
1−e−x is a strictly decreasing function for x ∈ (0,∞) with y(0+) = 1, y(∞) = 0.

Remarks. Notice that (by analogy with the earlier section) we can write the expected average edge length as ln(t) = 1
2λ + δ

where the ‘correction’ term δ = δ(λ, t) is given by

δ = t ·
(
1
n− 1

−
1

(2n− 2)λt
−
n− 2
2n− 2

·
y(λt)
λt

)
≈ −y(λt)/2λ

where the approximation is for n large. Notice that y(λt) → 0 as λt → ∞. Notice also that we can also write Ln(t) =
t · (2 + (n − 2)z(λt)), where z(x) := 1−y(x)

x = 1 + 1
x −

1
1−e−x . In particular, we can write Ln(t) as a function of the form

tH(λt).

Proof of Theorem 2. Let t2, . . . , tn−1 be the (decreasing) times of the speciation events after an initial bifurcation at time
t = t1 in the past—this follows the notation of [4], but we use n here for the number of leaves, not s, and we write t for t1
(see Fig. 1 for an example with n = 5). The density of this vector τ = (t2, . . . , tn−1) conditional on t, λ and n is given by
Eq. (3) of [4] in the special case where ρ = 1, µ = 0 (and so in the notation of that paper p1(t) = e−λt and νt1 = 1− e

−λt )
and is given as follows:

f (τ|n, t, λ) =

(n− 2)!λn−2 exp

(
−λ

n−1∑
j=2
tj

)
(1− e−λt)n−2

. (3)

Note that this is also consistent with Eq. (5) of [3]. Now,

Ln(t) = E[TLn(t)] =
∫
Ω

(
2t +

n−1∑
j=2

tj

)
· f (τ|n, t, λ)dτ, (4)

since TLn(t) = (2t +
∑n−1
j=2 tj), and where integration is over the set Ω of all vectors τ = (t2, . . . , tn−1) for which

t ≥ t1 ≥ t2 ≥ · · · ≥ tn−1 ≥ 0. Now we can split up (4) as follows:

Ln(t) = 2t +
∫
Ω

(
n−1∑
j=2

tj

)
· f (τ|n, t, λ)dτ. (5)
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From (3), the second term on the right-hand side of (5) is

(n− 2)!λn−2

(1− e−λt)n−2
·

∫
Ω

(
n−1∑
j=2

tj

)
· exp

(
−λ

n−1∑
j=2

tj

)
dτ. (6)

Now we can exploit the fact that the term inside the integral sign of (6) can be written as(
n−1∑
j=2

tj

)
· exp

(
−λ

n−1∑
j=2

tj

)
= −

d
dλ
exp

(
−λ

n−1∑
j=2

tj

)
, (7)

and so, applying the Leibniz integral rule, the expression in (6) can be written as

(n− 2)!λn−2

(1− e−λt)n−2
·

(
−
d
dλ

∫
Ω

exp

(
−λ

n−1∑
j=2

tj

)
dτ

)
.

Now, ∫
Ω

exp

(
−λ

n−1∑
j=2

tj

)
dτ =

(1− e−λt)n−2

(n− 2)!λn−2
(8)

(by applying
∫
Ω
f (τ|n, t, λ)dτ = 1 to (3)). Thus, combining (6), (7) and (8) into (5) gives

Ln(t) = 2t +
λn−2

(1− e−λt)n−2
·

(
−
d
dλ
(1− e−λt)n−2

λn−2

)
,

and the result now follows by routine calculus. �

3.1. Estimation of λ from n, t

Given (just) n and t , the maximum likelihood estimate of λ, which we denote λML, is given by

λML = ln
(n
2

)/
t. (9)

Note that 2 divides n in this formula since we initially start with two species, and after time t , we observe n extant species.
Eq. (9) can be formally verified by differentiating Eq. (4) in [3] with respect to λ, and solving for λ in the resulting expression.
With this in hand, we can now state a consequence of Theorem 2.

Corollary 3. If we take λ = λML in the expression for E[TL] given by Theorem 2, then

Ln(t) =
(n− 2)t
ln
( n
2

) and λML =
n− 2
Ln(t)

.

Proof. We have y(λMLt) = y(ln
( n
2

)
) =

2 ln(n/2)
(n−2) . Thus,

Ln(t) = 2t +
n− 2
λML
·

(
1−

2 ln(n/2)
(n− 2)

)
= 2t +

(n− 2)t
ln
( n
2

) − 2t = (n− 2)t
ln
( n
2

) ,
where the second equality uses (9). This gives Part (i); Part (ii) is an immediate consequence, again using (9). �

3.2. Remarks

Notice that Corollary 3(i) implies that for λ = λML, we can express ln(t) in the familiar form of 12λ plus a ‘correction term’
that vanishes as n grows. More precisely, for λ = λML, we have

ln(t) =
1
2λ

(
1−

1
n− 1

)
≈
1
2λ
.

Nee [3] shows that, given a tree with branch lengths (and thereby n, t and the actual value of TL), the maximum likelihood
estimator of λ, which he denotes as λ̂, is given by Eq. (6) of [3] as

λ̂ =
n− 2
TL

.

Comparing this with Corollary 3(ii), we see a nice concordance: theML estimate of λ based on just n and t (i.e. λML) is exactly
the same value as the ML estimate of λ (i.e. λ̂) for an actual tree whose total length TL is equal to what it is expected to be
under the Yule model for given n and t and λ = λML.
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4. Expected pendant vs. interior edge lengths as a function (only) of t

Let I = I(t) be the expected sum of the interior edge lengths of a Yule tree that has grown for time t . In contrast to
the case for the previous section, the number of leaves of this tree will be regarded as an unconstrained random variable.
Similarly, let P = P(t) and L = L(t) be, respectively, the expected sum of the pendant (and of the total) edge lengths of a
Yule tree that has grown for time t . Thus,

I(0) = P(0) = L(0) = 0, and L(t) = I(t)+ P(t).

Theorem 4.

I(t) =
1
λ
(eλt + e−λt − 2) and P(t) =

1
λ
(eλt − e−λt).

Thus, if p(t) and i(t) are the expected average lengths of the pendant and interior edges of a Yule tree of depth t, then the ratio
p(t)/i(t) converges to 1 exponentially fast with increasing t.

Proof. From Theorem 2, Ln(t) is a linear function of n. So, if we regard n as a random variable, rather than a given value,
then L(t) is the expected value of Ln(t)with respect to the distribution on n. Thus, since E[n] = 2eλt , Theorem 2 gives

L(t) = 2t +
2eλt − 2

λ
(1− y(λt)),

which simplifies to

L(t) =
2
λ
(eλt − 1). (10)

Now, if the Yule tree has k species at time t , then the expected sum of interior edge lengths at time t + δ is

I(t)+ δλk ·
P(t)
k
+ o(δ) = I(t)+ δλP(t)+ o(δ), (11)

since I(t) increases precisely if a speciation event occurs in the interval (t, t+δ) (which has probability δλk+o(δ)) in which
case I(t) increases by the average length of pendant edges (+o(δ)), since one of the k pendant edges, selected uniformly at
random, becomes a new interior edge. Notice that the right-hand side of (11) is, fortunately, independent of k, and so

dI(t)
dt
= λP(t). (12)

Writing P(t) = L(t)− I(t) in (12) and combining this with (10) gives dI(t)dt +λI(t) = 2(e
λt
−1), a standard first-order linear

differential equation, whose solution, subject to I(0) = 0, is the expression for I(t) in Theorem 4. The remainder of the proof
now follows easily. �

4.1. Remarks

If n takes its expected value 2eλt , then Theorem 4 shows that i(t) and p(t) is just 12λ plus ‘correction terms’ that converge
rapidly to 0 with increasing t . In a subsequent paper we will describe the analysis of branch lengths for two more complex
cases: a Yule model where both n and t are conditioned on, and homogeneous birth-death models where extinction occurs
at a positive rate.
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