A conjecture (M. Steel, April 2001)

Suppose a 0,1 random variable evolves on a tree T with n labelled leaves (and the remaining vertices unlabelled and of degree 3) under the usual symmetric Markov model. Suppose that, for each edge of T, the probability of a net transition (from $0 \rightarrow 1$ or $1 \rightarrow 0$) between the endpoints of the edge lies between f and g, where $0<f \leq g<0.5$. Now, suppose we independently evolve k such variables under this model, and record just the values taken at the leaves of the tree (this gives us n binary sequences of length k). In (Erdös et al. 1999) it is shown that, without any knowledge about T, f or g, and for any $\epsilon>0$, it is possible to correctly reconstruct T with probability at least $1-\epsilon$ provided

$$
k>\frac{c \log (n)}{f^{2}(1-2 g)^{d(T)}},
$$

where c depends only on ϵ and $d(T)$ is a quantity that typically is $O(\log (\log (n))$ and is always $O(\log (n))$. Furthermore there is a polynomial time algorithm for carrying out this reconstruction. Following a result of (Evans et al. 2000) we offer the following:

Conjecture Provided $g<\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right)$ there is a method for correctly reconstructing T with probability at least $1-\epsilon$ provided

$$
k>\frac{c^{\prime} \log (n)}{f^{2}}
$$

where c^{\prime} depends only on ϵ.

