CONTENTS

Preliminaries			1
1	1.1	phs and their role in biology Graphs	5
	1.2	Trees and forests	7
	1.3	Intersection graphs	9
	1.4	Applications of graphs in biology	12
	1.5	Exercises	15
2	X-t	rees and phylogenetic trees	17
	2.1	X-trees	17
	2.2	Rooted X -trees	19
	2.3	Ranked trees and the coalescent process	23
	2.4	Tree shapes	26
	2.5	Randomly generated trees	29
	2.6	Tree rearrangement operations	31
	2.7	Reticulate evolution and co-phylogeny	35
	2.8	Phylogenetic forests	37
	2.9	Exercises	42
3	Tre	es and splits	44
0	3.1	Splits-Equivalence Theorem	44
	3.2	A partial order on X -trees	48
	3.3	Compatibility of X-trees	48
	3.4	The splits metric	50
	3.5	Hierarchies, clusters, and splits	52
	3.6	Consensus trees	55
	3.7	Cyclic split systems and weak hierarchies	56
	3.8	The Buneman graph	58
	3.9	Exercises	65
4	Compatibility of characters		67
	4.1	Characters and convexity	67
	4.2	Character compatibility (perfect phylogeny)	71
	4.3	Strongly compatible characters	76
	4.4	Complexity of determining character compatibility	77
	4.5	Maximum compatibility	77
	4.6	Generalized characters and directional constraints	79
	4.7	Defining an X -tree by characters	81
	4.8	Exercises	84

CONTENTS

5	Max	timum Parsimony	87
	5.1	Classical parsimony	87
	5.2	Optimization on a fixed tree	93
	5.3	Extensions of classical parsimony	94
	5.4	Maximum parsimony trees	99
	5.5	Networks of maximum parsimony trees	101
	5.6	Combinatorial statistics of parsimony	105
	5.7	Exercises	111
6	Sub	trees and supertrees	114
	6.1	Restricted subtrees	114
	6.2	Maximum agreement subtrees	115
	6.3	Compatibility of semi-labelled trees	116
	6.4	A reconstruction algorithm for rooted trees	122
	6.5	Complexity analysis	125
	6.6	Supertree methods	129
	6.7	Closure and correction operations	131
	6.8	Defining a tree by subtrees	134
	6.9	Phylogenetic patchworks	139
	6.10	Exercises	146
7	Tree	e-based metrics	149
	7.1	Dissimilarity maps and tree metrics	149
	7.2	Ultrametrics	153
	7.3	Reconstruction methods	160
	7.4	Split decomposition theory	165
	7.5	Ordinal methods	168
	7.6	Group-valued, non-symmetric dissimilarities	171
	7.7	Perturbing tree metrics	179
	7.8	Exercises	185
8	Mar	kov models on trees	187
	8.1	Matrix algebra	187
	8.2	Markov processes on trees and graphs	189
	8.3	Phylogenetic models of character evolution	192
	8.4	Tree reconstruction for the general Markov process	195
	8.5	Stationary and reversible models	198
	8.6	The Hadamard representation	202
	8.7	The 'Felsenstein zone'	207
	8.8	Rate variation across characters	209
	8.9	Model-based reconstruction methods	211
	8.10	Algebraic properties of Markov processes on trees	215
	8.11	Exercises	221
References			223

viii

CONTENTS

Commonly-used symbols	234
Index	236