
Elements of Simulation & Inference version 0.1

Raazesh Sainudiin

c©2007 2008 Raazesh Sainudiin. Some rights reserved.
This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0

New Zealand License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/nz/.

This work was partially supported by NSF grant DMS-03-06497 and NSF/NIGMS grant
DMS-02-01037.

0 0.5 1

0

0.2

0.4

0.6

0.8

1

n=10

0 0.5 1

0

0.2

0.4

0.6

0.8

1

n=100

0 0.5 1

0

0.2

0.4

0.6

0.8

1

n=1000

1

http://creativecommons.org/licenses/by-nc-sa/3.0/nz/


Contents

1 Introduction and Preliminaries 5

1.1 Computational Statistical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Expectations and their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Simulation 8

2.1 Inversion Sampler for Continuous Random Variables . . . . . . . . . . . . . . . . . . 9

2.2 Some Simulations of Continuous Random Variables . . . . . . . . . . . . . . . . . . . 9

2.3 Inversion Sampler for Discrete Random Variables . . . . . . . . . . . . . . . . . . . . 19

2.4 Some Simulations of Discrete Random Variables . . . . . . . . . . . . . . . . . . . . 19

3 Estimation 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Convergence of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Some Properties of Point Estimators . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Moment Estimator (MME) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Maximum Likelihood Estimator (MLE) . . . . . . . . . . . . . . . . . . . . . 37

3.5 Confidence Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.4 Properties of the Maximum Likelihood Estimator . . . . . . . . . . . . . . . . 50

3.5.5 Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.9 Delta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.12 Confidence Sets for Multiparameter Models . . . . . . . . . . . . . . . . . . . 58

3.5.14 Parametric Bootstrap for Confidence Sets . . . . . . . . . . . . . . . . . . . . 61

3.6 Non-parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 Estimating DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.4 Plug-in Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.6 Non-parametric Bootstrap for Confidence Sets . . . . . . . . . . . . . . . . . 67

4 Hypothesis Testing 69

5 Appendix 71

2



List of Figures

2.1 A plot of the PDF and DF or CDF of the Uniform(0, 1) continuous RV X. . . . . . . 8

2.2 A plot of the PDF, DF or CDF and inverse DF of the Uniform(−1, 1) RV X. . . . . 10

2.3 Density and distribution functions of Exponential(λ) RVs, for λ = 1, 10, 10−1, in
four different axes scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The pdf f , DF F , and inverse DF F [−1] of the the Exponential(λ = 1.0) RV. . . . . 12

2.5 Density and distribution function of several Normal(µ, σ2) RVs. . . . . . . . . . . . . 14

2.6 Unending fluctuations of the running means based on n IID samples from the Stan-
dard Cauchy RV X in each of five replicate simulations (blue lines). The running
means, based on n IID samples from the Uniform(0, 10) RV, for each of five replicate
simulations (magenta lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 The DF F (x; 0.3, 0.7) of the de Moivre(0.3, 0.7) RV and its inverse F [−1](u; 0.3, 0.7). 21

3.1 Sample Space, Random Variable, Realisation, Data, and Data Space. . . . . . . . . . 26

3.2 Plot of the DF of Uniform(0, 1), five IID samples from it, and the ECDF based on
the five samples. Note that the ECDF F̂5 for data points x = (x1, x2, x3, x4, x5) =
(0.5164, 0.5707, 0.0285, 0.1715, 0.6853) jumps by 1/5 = 0.20 at each of the five samples. 31

3.3 Distribution functions of several Normal(µ, σ2) RVs for σ2 = 1, 1
10 ,

1
100 ,

1
1000 . . . . . . 33

3.4 Plot of log(L(1, 0, 0, 0, 1, 1, 0, 0, 1, 0; θ)) as a function of the parameter θ over the
parameter space ΘΘ = [0, 1] and the MLE θ̂10 of 0.4 for the coin-tossing experiment. . 39

3.5 Plot of Levy density as a function of the parameter (x, y) ∈ [−10, 10]2 scripted in
Labwork 5.0.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Plot of the “well-behaved” (uni-modal and non-spiky) log(L((x1, x2, . . . , x100);λ, ζ)),
based on 100 samples (x1, x2, . . . , x100) drawn from the Lognormal(λ∗ = 10.36, ζ∗ =
0.26) as per Labwork 5.0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Density and Confidence Interval of the Asymptotically Normal Point Estimator . . . 48

3.8 100 realisations of C10, C100, C1000 based on samples of size n = 10, 100 and 1000
drawn from the Bernoulli(θ∗ = 0.5) RV as per Labwork 5.0.16. The MLE θ̂n (cyan
dot) and the log-likelihood function (magenta curve) for each of the 100 replications
of the experiment for each sample size n are depicted. The approximate normal-
based 95% confidence intervals with blue boundaries are based on the exact sen =√
θ∗(1− θ∗)/n =

√
1/4, while those with red boundaries are based on the estimated

ŝen =
√
θ̂n(1− θ̂n)/n. The fraction of times the true parameter θ∗ = 0.5 was

engulfed by the exact and approximate confidence interval (empirical coverage) over
the 100 replications of the experiment for each of the three sample sizes are given by
the numbers after Cvrg.= and ∼=, above each sub-plot, respectively. . . . . . . . . . 49

3



LIST OF FIGURES 4

3.9 Plots of ten distinct ECDFs F̂n based on 10 sets of n IID samples from Uniform(0, 1)
RV X, as n increases from 10 to 100 to 1000. The DF F (x) = x over [0, 1] is shown
in red. The script of Labwork 5.0.17 was used to generate this plot. . . . . . . . . . 63

3.10 The empirical DFs F̂ (1)
n from sample size n = 10, 100, 1000 (black), is the point

estimate of the fixed and known DF F (x) = x, x ∈ [0, 1] of Uniform(0, 1) RV (red).
The 95% confidence band for each F̂n are depicted by green lines. . . . . . . . . . . 65

3.11 The empirical DFs F̂ (1)
n1 with n1 = 56485, for the web log times starting October

1, and F̂
(2)
n2 with n2 = 53966, for the web log times starting October 2. Their 95%

confidence bands are indicated by the green. . . . . . . . . . . . . . . . . . . . . . . 66



Chapter 1

Introduction and Preliminaries

Lecture Notes for ENCI 303 S1 2008: Engineering Decision Making
Raazesh Sainudiin, Dept. of Maths & Stats, University of Canterbury, Christchurch, NZ.

1.1 Computational Statistical Experiments

A statistical experimenter is someone who conducts a statistical experiment (for convenience, we
will refer to an experimenter and an experiment from this point on). Roughly, an experiment is
an action with an empirically observable outcome (data) that can not necessarily be predicted with
certainty, in the sense that a repetition of the experiment may result in a different outcome. Most
quantitative scientists are experimenters if they apply statistical principles to further their current
understanding (their theory) of an empirically observable real-world phenomenon. If experimenters
want to further their understanding or theory, they need to improve their mathematical models
(a.k.a. ”rigorous cartoons”) of the phenomenon on the basis of the model’s compatibility with
the observed data or outcome of the experiment. In this sense, an experimenter attempts to learn
about a phenomenon through the outcome of an experiment. An experimenter is often a scientist
or engineer, and vice versa.

Technological advances mean that most experiments today involve computers. First, our instru-
mentational capacity of observing an empirical phenomenon by means of automated data gathering
(sensing) and representation (storage and retrieval) is steadily increasing. Second, our computa-
tional capability to process statistical information or to make a statistical decision from these
possibly massive data-sets is also steadily increasing. Thus, our recent technological advances
make it possible for us to perform computationally intensive experiments with massive amounts of
empirical observations, in a manner that was not viable a decade ago. Hence, a successful scientist
or engineer in most specialisations today is a computational statistical experimenter, i.e. a statisti-
cal experimenter who understands the information structures used to represent data as well as the
statistical algorithms used to process out ones scientific or engineering decisions. These notes are
designed to help you take the first steps along this path.

Let us first demonstrate the need for a statistical experiment. Recall that statistical inference or
learning is the process of using observations or data to infer the distribution function (DF) that
generated it. A generic question is:

Given realisations from X1, X2, . . . , Xn ∼ some unknown DF F , how do we infer F?

Some of the concrete problems involving experiments include:

5



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 6

• Simulation: Often, it is necessary to simulate a random variable (RV) with some specific
distribution to gain insight into its features or simulate whole systems, such as the air-traffic
queues at Heathrow Airport, to make better management decisions.

• Estimation:

1. Parametric Estimation: Using samples from some unknown DF F that is parame-
terised by some unknown θ, we can estimate θ from a statistic Θ̂n called the estimator of
θ using one of several methods (maximum likelihood, moment estimation or parametric
bootstrap).

2. Non-parametric Estimation of the DF: Based on n independent and identically
distributed (IID) observations from an unknown DF F , we can estimate it under the
general assumption that F ∈ {all DFs}.

3. Confidence Sets: We can obtain a 1− α confidence set for the point estimates, of the
unknown parameter θ ∈ ΘΘ or the unknown DF F ∈ {all DFs}

• Hypothesis Testing: Based on observations from some DF F that is hypothesised as be-
longing to a subset ΘΘ0 of ΘΘ called the space of null hypotheses, we will learn to test (attempt
to reject) the falsifiable null hypothesis that F ∈ ΘΘ0 ⊂ ΘΘ.

1.2 Expectations and their Properties

We assume that the reader has taken a basic course in probability theory, such as chapters 1-4 of
Ang & Tang. A working knowledge of set theory, sample spaces, random variables, probability,
density and distribution functions are assumed. The following points should remind the reader of
the basic probability theory needed before continuing.

Definition 1 (Expectation of an RV) The expectation, expected value, mean or first
moment of a random variable X, with distribution function F and density f , is defined as:

E(X) :=
∫
x dF (x) =

{∑
x xf(x) if X is discrete∫
xf(x) dx if X is continuous ,

(1.1)

provided the sum or integral is well-defined. We say the expectation exists if:∫
|x| dF (x) <∞ . (1.2)

Sometimes, we denote E(X) by EX for brevity. Thus, the expectation is a single-number summary
of the RV X and may be thought of as the average. We subscript E to specify the parameter θ ∈ ΘΘ
according to which integration is undertaken.

EθX :=
∫
x dF (x; θ)

Definition 2 (Variance of an RV) Let X be an RV with the mean or expectation E(X). The
variance of X (denoted by V (X) or V X) is:

V (X) := E
(
(X − E(X))2

)
=
∫

(x− E(X))2 dF (x) ,



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

provided this expectation exists. The standard deviation is denoted by sd(X) :=
√
V (X). Thus

variance is a measure of the spread of a distribution. Once again, we subscript V to specify the
parameter θ ∈ ΘΘ according to which integration is undertaken.

VθX :=
∫

(x− E(X))2 dF (x; θ)

Definition 3 (kth moment of an RV) The kth moment of the RV X is:

E(Xk) =
∫
xk dF (x) .

We say that the kth moment exists when E(|X|k) < ∞. We call the following expectation as the
kth central moment:

E
(

(X − E(X))k
)
.

Properties of Expectations

1. If the kth moment exists and if j < k then the jth moment exists.

2. If X1, X2, . . . , Xn are RVs and a1, a2, . . . , an are constants, then:

E

(
n∑
i=1

aiXi

)
=

n∑
i=1

aiE(Xi) . (1.3)

3. If X1, X2, . . . , Xn are independent RVs, then:

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E(Xi) . (1.4)

4. V (X) = E(X2) − (E(X))2 . [This can be proved by completing the square and applying
(1.3)]

5. If a and b are constants then:

V (aX + b) = a2V (X) . (1.5)

6. If X1, X2, . . . , Xn are independent and a1, a2, . . . , an are constants, then:

V

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iV (Xi) . (1.6)



Chapter 2

Simulation

The Uniform(0, 1) RV of Model 1 forms the foundation for random variate generation and sim-
ulation. This is appropriately called the fundamental model or experiment, since every other
experiment can be obtained from this one.

Model 1 (The Fundamental Model) The probability density function (PDF) of the fundamen-
tal model or the Uniform(0, 1) RV is

f(x) =

{
1 if 0 ≤ x ≤ 1,

0 otherwise
(2.1)

and its distribution function (DF) or cumulative distribution function (CDF) is:

F (x) :=
∫ x

−∞
f(y) dy =


0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1

(2.2)

Note that the DF is the identity map in [0, 1]. The PDF and DF are depicted in Figure 2.1.

Figure 2.1: A plot of the PDF and DF or CDF of the Uniform(0, 1) continuous RV X.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Uniform [0,1] pdf

x

f(
x)

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Uniform [0,1] DF or CDF

x

F
(x

)

8



CHAPTER 2. SIMULATION 9

Next, we simulate or generate samples from other RVs by making the following two assumptions:

1. independent samples from the Uniform(0, 1) RV can be generated, and

2. real arithmetic can be performed exactly in a computer.

Both these assumptions are, in fact, not true and require a more careful treatment of the subject.
We may return to these careful treatments later on.

2.1 Inversion Sampler for Continuous Random Variables

Proposition 1 Let F (x) :=
∫ x
−∞ f(y) dy : R → [0, 1] be a continuous DF with density f , and let

its inverse F [−1] : [0, 1]→ R be:

F [−1](u) := inf{x : F (x) = u} .

Then, F [−1](U) has the distribution function F , provided U is a Uniform(0, 1) RV. Recall inf(A)
or infimum of a set A of real numbers is the greatest lower bound of every element of A.

Proof: The “one-line proof” of the proposition is due to the following equalities:

P (F [−1](U) ≤ x) = P (inf{y : F (y) = U)} ≤ x) = P (U ≤ F (x)) = F (x), for all x ∈ R.

This yields the inversion sampler or the inverse (C)DF sampler, where we (i) generate u ∼
Uniform(0, 1) and (ii) return x = F [−1](u), as formalised by the following algorithm.

Algorithm 1 Inversion Sampler or Inverse (C)DF Sampler

1: input: (1) F [−1](x), inverse of the DF of the target RV X, (2) the fundamental sampler
2: initialise: set the seed, if any, for the fundamental sampler
3: output: a sample from X distributed according to F
4: draw u ∼ Uniform(0, 1)
5: return: x = F [−1](u)

This algorithm emphasises the fundamental sampler’s availability in an input step, and its set-up
needs in an initialise step. In the following sections, we will not mention these universal steps; they
will be taken for granted. The direct applicability of Algorithm 1 is limited to univariate densities
for which the inverse of the cumulative distribution function is explicitly known. The next section
will consider some examples.

2.2 Some Simulations of Continuous Random Variables

Model 2 (Uniform(θ1, θ2)) Given two real parameters θ1, θ2 ∈ R, such that θ1 < θ2, the PDF of
the Uniform(θ1, θ2) RV X is:

f(x; θ1, θ2) =

{
1

θ2−θ1 if θ1 ≤ x ≤ θ2,

0 otherwise
(2.3)



CHAPTER 2. SIMULATION 10

and its DF given by F (x; θ1, θ2) =
∫ x
−∞ f(y; θ1, θ2) dy is:

F (x; θ1, θ2) =


0 if x < θ1

x−θ1
θ2−θ1 if θ1 ≤ x ≤ θ2,

1 if x > θ2

(2.4)

Recall that we emphasise the dependence of the probabilities on the two parameters θ1 and θ2 by
specifying them following the semicolon in the argument for f and F .

Figure 2.2: A plot of the PDF, DF or CDF and inverse DF of the Uniform(−1, 1) RV X.

−1 0 1

0

0.1

0.2

0.3

0.4

0.5

Uniform [−1,1] pdf

x

f(
x)

−1 0 1
0

0.2

0.4

0.6

0.8

1

Uniform [−1,1] DF or CDF

x

F
(x

)

0 0.5 1
−1

−0.5

0

0.5

1
Uniform [−1,1] Inverse DF

u
F

 in
ve

rs
e 

(u
)

Simulation 1 (Uniform(θ1, θ2)) To simulate from Uniform(θ1, θ2) RV X using the Inversion Sam-
pler, we first need to find F [−1](u) by solving for x in terms of u = F (x; θ1, θ2):

u =
x− θ1

θ2 − θ1
⇐⇒ x = (θ2 − θ1)u+ θ1 ⇐⇒ F [−1](u; θ1, θ2) = θ1 + (θ2 − θ1)u

Here is a simple implementation of the Inversion Sampler for the Uniform(θ1, θ2) RV in Matlab:

>> rand(’twister’,786); % initialise the fundamental sampler for Uniform(0,1)

>> theta1=-1; theta2=1; % declare values for parameters theta1 and theta2

>> u=rand; % rand is the Fundamental Sampler and u is a sample from it

>> x=theta1+(theta2 - theta1)*u; % sample from Uniform(-1,1]) RV

>> disp(x); % display the sample from Uniform[-1,,1] RV

0.5134

It is just as easy to draw n IID samples from Uniform(θ1, θ2) RV X by transforming n IID samples
from the Uniform(0, 1) RV as follows:

>> rand(’twister’,786543); % initialise the fundamental sampler

>> theta1=-83; theta2=1004; % declare values for parameters a and b

>> u=rand(1,5); % now u is an array of 5 samples from Uniform(0,1)

>> x=theta1+(theta2 - theta1)*u; % x is an array of 5 samples from Uniform(-83,1004]) RV

>> disp(x); % display the 5 samples just drawn from Uniform(-83,1004) RV

465.3065 111.4994 14.3535 724.8881 254.0168

Model 3 (Exponential(λ)) For a given λ > 0, an Exponential(λ) RV has the following PDF f

and DF F :

f(x;λ) = λe−λx F (x;λ) = 1− e−λx . (2.5)

This distribution is fundamental because of its property of memorylessness and plays a funda-
mental role in continuous time processes as we will see later.



CHAPTER 2. SIMULATION 11

We encode the pdf and DF of the Exponential(λ) RV as Matlab functions ExponentialPdf and
ExponentialCdf and use them to produce Figure 2.3 in Labwork 5.0.10.

Figure 2.3: Density and distribution functions of Exponential(λ) RVs, for λ = 1, 10, 10−1, in four
different axes scales.

0 0.5 1 1.5 2
0

2

4

6

8

10

x

f(
x;

 λ
)

Standard Cartesian Scale

 

 
f(x;1)
f(x;10)

f(x;10−1)

10
0

0

2

4

6

8

10
semilog(x) Scale

0 50 100

10
−200

10
0

semilog(y) Scale

10
0

10
5

10
−200

10
0

loglog Scale

0 5 10
0

0.2

0.4

0.6

0.8

1

x

F
(x

; λ
)

 

 
F(x;1)
f(x;10)

f(x;10−1)

10
0

0

0.2

0.4

0.6

0.8

1

0 5 10
10

−5

10
0

10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Example 2.2.1 (Mean and Variance of Exponential(λ)) Show that the mean of an Exponential(λ)
RV X is:

Eλ(X) =
∫ ∞

0
xf(x;λ) dx =

∫ ∞
0

xλe−λx dx =
1
λ
,

and the variance is:

Vλ(X) =
(

1
λ

)2

.

Let us consider the problem of simulating from an Exponential(λ) RV with realisations in R+ :=
[0,∞) := {x : x ≥ 0, x ∈ R} to model the waiting time for a bus at a bus stop.

Simulation 2 (Exponential(λ)) For a given λ > 0, an Exponential(λ) RV has the following pdf
f , DF F and inverse DF F [−1]:

f(x;λ) = λe−λx F (x;λ) = 1− e−λx F [−1](u;λ) =
−1
λ

loge(1− u) (2.6)

We write the natural logarithm loge as log for notational simplicity. An implementation of the
Inversion Sampler for Exponential(λ) as a function in the M-file:

ExpInvCDF.m
function x = ExpInvCDF(u,lambda);

% Return the Inverse CDF of Exponential(lambda) RV X

% Call Syntax: x = ExpInvCDF(u,lambda);

% ExpInvCDF(u,lambda);

% Input : lambda = rate parameter,

% u = array of numbers in [0,1]

% Output : x

x=-(1/lambda) * log(1-u);

We can simply call the function to draw a sample from, say the Exponential(λ = 1.0) RV by:



CHAPTER 2. SIMULATION 12

lambda=1.0; % some value for lambda

u=rand; % rand is the Fundamental Sampler

ExpInvCDF(u,lambda) % sample from Exponential(1) RV via function in ExpInvCDF.m

Because of the following:

U ∼ Uniform(0, 1) =⇒ −U ∼ Uniform(−1, 0) =⇒ 1− U ∼ Uniform(0, 1) ,

we could save a subtraction operation in the above algorithm by replacing -(1/lambda) * log(1-u)

by -(1/lambda) * log(u). This is implemented as the following function.

ExpInvSam.m
function x = ExpInvSam(u,lambda);

% Return the Inverse CDF based Sample from Exponential(lambda) RV X

% Call Syntax: x = ExpInvSam(u,lambda);

% or ExpInvSam(u,lambda);

% Input : lambda = rate parameter,

% u = array of numbers in [0,1] from Uniform[0,1] RV

% Output : x

x=-(1/lambda) * log(u);

>> rand(’twister’,46678); % initialise the fundamental sampler

>> Lambda=1.0; % declare Lambda=1.0

>> x=ExpInvSam(rand(1,5),Lambda); % pass an array of 5 Uniform(0,1) samles from rand

>> disp(x); % display the Exponential(1.0) distributed samples

0.5945 2.5956 0.9441 1.9015 1.3973

Figure 2.4: The pdf f , DF F , and inverse DF F [−1] of the the Exponential(λ = 1.0) RV.

0 10 20
0

0.2

0.4

0.6

0.8

1

x

f(
x;

 1
)

0 10 20
0

0.2

0.4

0.6

0.8

1

x

F
(x

; 1
)

0 0.5 1
0

2

4

6

8

u

F
 in

ve
rs

e 
(u

; 1
)

It is straightforward to do replicate experiments. Consider the experiment of drawing five inde-
pendent samples from the Exponential(λ = 1.0) RV. Suppose we want to repeat or replicate this
experiment seven times and find the sum of the five outcomes of zeros and ones in each of these
replicates. Then we may do the following:

>> rand(’twister’,1973); % initialise the fundamental sampler

>> % store 7 replications of 5 IID draws from Exponential(1.0) RV in array a

>> lambda=1.0; a= -1/lambda * log(rand(5,7)); disp(a);

0.7267 0.3226 1.2649 0.4786 0.3774 0.0394 1.8210

1.2698 0.4401 1.6745 1.4571 0.1786 0.4738 3.3690

0.4204 0.1219 2.2182 3.6692 0.9654 0.0093 1.7126



CHAPTER 2. SIMULATION 13

2.1427 0.1281 0.8500 1.4065 0.1160 0.1324 0.2635

0.6620 1.1729 0.6301 0.6375 0.3793 0.6525 0.8330

>> %sum up the outcomes of the sequence of 5 draws in each replicate

>> s=sum(a); disp(s);

5.2216 2.1856 6.6378 7.6490 2.0168 1.3073 7.9990

Labwork 2.2.2 Consider the problem of modelling the arrival of buses at a bus stop. Suppose
that the time between arrivals is an Exponential(λ = 0.1) RV X with a mean inter-arrival time of
1/λ = 10 minutes. Suppose you go to your bus stop and zero a stop-watch. Simulate the times of
arrival for the next seven buses as indicated by your stop-watch. Seed the fundamental sampler by
your Student ID (eg. if your ID is 11424620 then type rand(’twister’, 11424620); just before
the simulation). Hand in the code with the arrival times of the next seven buses at your ID-seeded
bus stop.

For a continuous RV X with a closed-form expression for the inverse DF F [−1], we can employ
Algorithm 1 to draw samples from X. Table 2.1 summarises some random variables that are
amenable to Algorithm 1.

Table 2.1: Some continuous RVs that can be simulated from using Algorithm 1.
Random Variable X F (x) X = F [−1](U), U ∼ Uniform(0, 1) Simplified form

Uniform(a, b) (2.4) a+ (b− a)U –
Exponential(λ) (2.5) −1

λ log(1− U) −1
λ log(U)

Cauchy (2.9) tan
(
π
(
U − 1

2

))
tan (πU)

Next, we familiarise ourselves with the Gaussian or Normal RV.

Model 4 (Normal(µ, σ2)) X has a Normal(µ, σ2) or Gaussian(µ, σ2) distribution with the location
parameter µ ∈ R and the scale or variance parameter σ2 > 0, if:

f(x;µ, σ2) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
, x ∈ R (2.7)

Normal(0, 1) distributed RV, which plays a fundamental role in asymptotic statistics, is convention-
ally denoted by Z. Z is said to have the Standard Normal distribution with pdf f(z; 0, 1) and
DF F (z; 0, 1) conventionally denoted by φ(z) and Φ(z), respectively.

There is no closed form expression for Φ(z) or F (x;µ, σ). The latter is simply defined as:

F (x;µ, σ2) =
∫ x

−∞
f(y;µ, σ) dy

We can express F (x;µ, σ2) in terms of the error function (erf) as follows:

F (x;µ, σ2) =
1
2

erf
(
x− µ√

2σ2

)
+

1
2

(2.8)

We implement the pdf (2.7) and DF (2.8) for a Normal(µ, σ2) RV X as Matlab functions
NormalPdf and NormalCdf, respectively, in Labwork 5.0.9, and then produce their plots for various
Normal(µ, σ2) RVs, shown in Figure 2.5. Observe the concentration of probability mass, in terms
of the pdf and DF plots, about the location parameter µ as the variance parameter σ2 decreases.



CHAPTER 2. SIMULATION 14

Figure 2.5: Density and distribution function of several Normal(µ, σ2) RVs.

−6 −4 −2 0 2 4 6
0

1

2

3

4

x

f(
x;

 µ
, σ

2 )

 

 

f(x;0,1)

f(x;0,10−1)

f(x;0,10−2)
f(x;−3,1)

f(x;−3,10−1)

f(x;−3,10−2)

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

F
(x

; µ
, σ

2 )

 

 

F(x;0,1)

F(x;0,10−1)

F(x;0,10−2)
F(x;−3,1)

F(x;−3,10−1)

F(x;−3,10−2)

Example 2.2.3 (Mean and Variance of Normal(µ, σ2)) The mean of a Normal(µ, σ2) RV X

is:

E(X) =
∫ ∞
−∞

xf(x;µ, σ2) dx =
1

σ
√

2π

∫ ∞
−∞

x exp
(
− 1

2σ2
(x− µ)2

)
dx = µ ,

and the variance is:

V (X) =
∫ ∞
−∞

(x− µ)2f(x;µ, σ2) dx =
1

σ
√

2π

∫ ∞
−∞

(x− µ)2 exp
(
− 1

2σ2
(x− µ)2

)
dx = σ2 .

Labwork 2.2.4 Write a function to evaluate the P (X ∈ [a, b]) for the Normal(0, 1) RV X for
user-specified values of a and b. [Hint: one option is by making two calls to NormalCdf and doing
one arithmetic operation.]

Simulations 1 and 2 produce samples from a continuous RV X with a closed-form expression for
the inverse DF F [−1] via Algorithm 1 (Table 2.1). But only a few RVs have an explicit F [−1].
For example, Normal(0, 1) RV does not have an explicit F [−1]. Algorithm 2 is a more general but
inexact method that relies on an approximate numerical solution of x, for a given u, that satisfies
the equation F (x) = u.

Algorithm 2 Inversion Sampler by Numerical Solution of F (X) = U via Newton-Raphson Method
1: input: F (x), the DF of the target RV X

2: input: f(x), the density of X
3: input: A reasonable Stopping Rule,

e.g. a specified tolerance ε > 0 and a maximum number of iterations MAX

4: input: a careful mechanism to specify x0

5: output: a sample from X distributed according to F
6: draw: u ∼ Uniform(0, 1)
7: initialise: i← 0, xi ← x0, xi+1 ← x0 − F (x0)−u

f(x0)

8: while Stopping Rule is not satisfied,
e.g. |F (xi)− F (xi−1)| > ε AND i < MAX do

9: xi ← xi+1

10: xi+1 ←
(
xi − F (xi)−u

f(xi)

)
11: i← i+ 1
12: end while
13: return: x← xi

Simulation 3 (Normal(µ, σ2)) We may employ Algorithm 2 to sample from the Normal(µ, σ2)
RV X using the following function.



CHAPTER 2. SIMULATION 15

Sample1NormalByNewRap.m
function x = Sample1NormalByNewRap(u,Mu,SigmaSq)

% Returns a sample from Normal(Mu, SigmaSq)

% Newton-Raphson numerical solution of F(x)=u

% Input: u = one random Uniform(0,1) sample

% Mu = Mean of Normal(Mu, SigmaSq)

% SigmaSq = Variance of Normal(Mu, SigmaSq)

% Usage: x = Sample1NormalByNewRap(u,Mu,SigmaSq)

% To transform an array Us of uniform samples to array Xs of Normal samples via arrayfun

% Xs = arrayfun(@(u)(Sample1NormalByNewRap(u,-100.23,0.01)),Us);

Epsilon=1e-5; % Tolerance in stopping rule

MaxIter=10000; % Maximum allowed iterations in stopping rule

x=0; % initialize the output x as 0

% initialize i, xi, and xii

i=0; % Mu is an ideal initial condition since F(x; Mu, SigmaSq)

xi = Mu; % is convex when x < Mu and concave when x > Mu and the

% Newton-Raphson method started at Mu converges

xii = xi - (NormalCdf(xi,Mu,SigmaSq)-u)/NormalPdf(xi,Mu,SigmaSq);

% Newton-Raphson Iterations

while (abs(NormalCdf(xii,Mu,SigmaSq)-NormalCdf(xi,Mu,SigmaSq))...

> Epsilon & i < MaxIter),

xi = xii;

xii = xii - (NormalCdf(xii,Mu,SigmaSq)-u)/NormalPdf(xii,Mu,SigmaSq);

i=i+1;

end

x=xii; % record the simulated x from the j-th element of u

We draw five samples from the Normal(0, 1) RV Z and store them in z as follows. The vector
z can be obtained by a Newton-Raphson-based numerical transformation of the vector u of 5 IID
samples from the Uniform(0, 1) RV. We simply need to apply the function Sample1NormalByNewRap

to each element of an arra of Unifrm(0, 1) samples. Matlab’s arrayfun command can be used
to apply @(u)(Sample1NormalByNewRap(u,0,1)) (i.e., Sample1NormalByNewRap as a function of
u) to every element of our array of Uniform(0, 1) samples, say Us. Note that F (z) is the same as
the drawn u from U at least up to four significant digits.

>> rand(’twister’,563987);

>> Us=rand(1,5); % store 5 samples from Uniform(0,1) RV in array Us

>> disp(Us); % display Us

0.8872 0.2569 0.5275 0.8650 0.8517

>> z=Sample1NormalByNewRap(u(1),0,1); %transform Us(1) to a Normal(0,1) sample z

>> disp(z); % display z

1.2119

>> z = arrayfun(@(u)(Sample1NormalByNewRap(u,0,1)),Us); %transform array Us via arrayfun

>> % dislay array z obtained from applying Sample1NormalByNewRap to each element of Us

>> disp(z);

1.2119 -0.6530 0.0691 1.1031 1.0439

>> % check that numerical inversion of F worked, i.e., is F(z)=u ?

>> disp(NormalCdf(z,0,1));

0.8872 0.2569 0.5275 0.8650 0.8517

Next we draw five samples from the Normal(−100.23, 0.01) RV X, store it in an array x and observe
that the numerical method is reasonably accurate by the equality of u and F (x).

>> rand(’twister’,563987);

>> disp(Us); % display Us

0.8872 0.2569 0.5275 0.8650 0.8517

>> % transform array Us via arrayfun

>> x = arrayfun(@(u)(Sample1NormalByNewRap(u,-100.23,0.01)),Us);

>> disp(x);



CHAPTER 2. SIMULATION 16

-100.1088 -100.2953 -100.2231 -100.1197 -100.1256

>> disp(NormalCdf(x,-100.23,0.01));

0.8872 0.2569 0.5275 0.8650 0.8517

One has to be extremely careful with this approximate simulation algorithm implemented in floating-
point arithmetic. More robust samplers for the Normal(µ, σ2) RV exist. However, Algorithm 2 is
often the only choice when simulating from an arbitrary RV with an unknown closed-form expression
for its F [−1].

Next, we use our simulation capability to gain an informal and intuitive understanding of one of
the most elementary theorems in probability and statistics, namely, the Central Limit Theorem
(CLT). We will see a formal treatment of CLT later.

Informally, the CLT can be stated as follows:
“The sample mean of a large number of IID samples, none of which is dominant, tends to the
Normal distribution as the number of samples increases.”

Let us investigate the histograms from 10000 simulations of the sample mean of n = 10, 100, 1000
IID Exponential(λ = 0.1) RVs as follows:

>> rand(’twister’,1973); % initialise the fundamental sampler

>> % a demonstration of Central Limit Theorem (CLT) -- Details of CLT are in the sequel

>> % the sample mean should be a Normal(1/lambda,lambda/n) RV

>> lambda=0.1; Reps=10000; n=10; hist(sum(-1/lambda * log(rand(n,Reps)))/n)

>> lambda=0.1; Reps=10000; n=100; hist(sum(-1/lambda * log(rand(n,Reps)))/n,20)

>> lambda=0.1; Reps=10000; n=1000; hist(sum(-1/lambda * log(rand(n,Reps)))/n,20)

Do you see a pattern in the histograms ?

Next, let us become familiar with an RV for which the expectation does not exist. This will help us
appreciate the phrase “none of which is dominant” in the informal statement of the CLT earlier.

Model 5 (Cauchy) The density of the Cauchy RV X is:

f(x) =
1

π(1 + x2)
, −∞ < x <∞ ,

and its DF is:
F (x) =

1
π

tan−1(x) +
1
2
. (2.9)

Example 2.2.5 (Mean of Cauchy RV) The expectation of the Cauchy RV X, obtained via in-
tegration by parts (set u = x and v = tan−1(x)) does not exist , since:∫

|x| dF (x) =
2
π

∫ ∞
0

x

1 + x2
dx =

(
x tan−1(x)

]∞
0
−
∫ ∞

0
tan−1(x) dx =∞ . (2.10)

Variance and higher moments cannot be defined when the expectation itself is undefined.

Simulation 4 (Cauchy) We can draw n IID samples from the Cauchy RV X by transforming n
IID samples from Uniform(0, 1) RV U using the inverse DF as follows:



CHAPTER 2. SIMULATION 17

>> rand(’twister’,2435567); % initialise the fundamental sampler

>> u=rand(1,5); % draw 5 IID samples from Uniform(0,1) RV

>> disp(u); % display the samples in u

0.7176 0.6655 0.9405 0.9198 0.2598

>> x=tan(pi * u); % draw 5 samples from Standard cauchy RV using inverse CDF

>> disp(x); % display the samples in x

-1.2272 -1.7470 -0.1892 -0.2575 1.0634

Recall that the mean of the Cauchy RV X does not exist since
∫
|x| dF (x) = ∞ (2.10). We will

investigate this in Labwork 2.2.6.

Labwork 2.2.6 Let us see what happens when we plot the running sample mean for an increasing
sequence of IID samples from the Standard Cauchy RV X by implementing the following script file:

PlotStandardCauchyRunningMean.m
% script to plot the oscillating running mean of Std Cauchy samples

% relative to those for the Uniform(0,10) samples

rand(’twister’,25567); % initialize the fundamental sampler

for i=1:5

N = 10^5; % maximum sample size

u=rand(1,N); % draw N IID samples from Uniform(0,1)

x=tan(pi * u); % draw N IID samples from Standard cauchy RV using inverse CDF

n=1:N; % make a vector n of current sample size [1 2 3 ... N-1 N]

CSx=cumsum(x); % CSx is the cumulative sum of the array x (type ’help cumsum’)

% Runnign Means <- vector division of cumulative sum of samples by n

RunningMeanStdCauchy = CSx ./ n; % Running Mean for Standard Cauchy samples

RunningMeanUnif010 = cumsum(u*10.0) ./ n; % Running Mean for Uniform(0,10) samples

semilogx(n, RunningMeanStdCauchy) %

hold on;

semilogx(n, RunningMeanUnif010, ’m’)

end

xlabel(’n = sample size’);

ylabel(’Running mean from n samples’)

Figure 2.6: Unending fluctuations of the running means based on n IID samples from the Standard
Cauchy RV X in each of five replicate simulations (blue lines). The running means, based on n

IID samples from the Uniform(0, 10) RV, for each of five replicate simulations (magenta lines).

10
0

10
1

10
2

10
3

10
4

10
5

−5

0

5

10

n = sample size

R
un

ni
ng

 m
ea

n 
fr

om
 n

 s
am

pl
es

The resulting plot is shown in Figure 2.6. Notice that the running means or the sample mean
of n samples as a function of n, for each of the five replicate simulations, never settles down to
a particular value. This is because of the “thick tails” of the density function for this RV which
produces extreme observations. Compare them with the running means, based on n IID samples



CHAPTER 2. SIMULATION 18

from the Uniform(0, 10) RV, for each of five replicate simulations (magenta lines). The latter
sample means have settled down stably to the mean value of 5 after about 700 samples.

See the histograms generated from the following code:

>> Reps=10000; n=1000; hist(sum(tan(pi * rand(n,Reps)))/n,20)

>> Reps=10000; n=1000; hist(sum(tan(pi * rand(n,Reps)))/n,20)

>> Reps=10000; n=1000; hist(sum(tan(pi * rand(n,Reps)))/n,20)

Classwork 2.2.7 Explain in words why the mean of n IID samples from the Cauchy RV is not
obeying the Central Limit Theorem.

Model 6 (Lognormal(λ, ζ)) X has a Lognormal(λ, ζ) distribution if log(X) has a Normal(λ, ζ2)
distribution. The location parameter λ = E(log(X)) > 0 and the scale parameter ζ > 0. The PDF
is:

f(x;λ, ζ) =
1√

2πζx
exp

(
− 1

2ζ2
(log(x)− λ)2

)
, x > 0 (2.11)

No closed form expression for F (x;λ, ζ) exists and it is simply defined as:

F (x;λ, ζ) =
∫ x

0
f(y;λ, ζ) dy

We can express F (x;λ, ζ) in terms of Φ (and, in turn, via the associated error function erf) as
follows:

F (x;λ, ζ) = Φ
(

log(x)− λ
ζ

)
=

1
2

erf
(

log(x)− λ√
2ζ

)
+

1
2

(2.12)

Labwork 2.2.8 Transform a sequence of samples obtained from the fundamental sampler to those
from the Lognormal(λC , ζC) RV C by using only Algorithm 2 as an intermediate step. Do the
following to demonstrate that you can produce 1000 samples from C = WF√

E
, where:

W ∼ Lognormal(log(2000), 0.20), F ∼ Lognormal(log(20), 0.15), E ∼ Lognormal(log(1.6), 0.125)

1. Clearly derive the distribution of C. In other words, what are the values of the parameters
λC and ζC?

2. Seed the fundamental sampler by your Student ID. If your ID is 11424620 then type rand(’twister’,
11424620);.

3. Draw 1000 samples directly from C and report:

(a) how many of them are larger than 35000,

(b) the sample mean, and

(c) the sample standard deviation.

4. Seed the fundamental sampler by your Student ID.

5. Draw 1000 samples indirectly from C, i.e. [(i) draw 1000 samples from W , (ii) draw 1000 samples
from F , (iii) draw 1000 samples from E, and (iv) transform each of the 1000 triples into 1000 samples
from C via WF/

√
E] and report:

(a) how many of them are larger than 35000,

(b) the sample mean, and

(c) the sample standard deviation.

[Hint: If Y is a Normal(λ, ζ) RV, then Z = eY is said to be a Lognormal(λ, ζ) RV. ]



CHAPTER 2. SIMULATION 19

2.3 Inversion Sampler for Discrete Random Variables

Next, consider the problem of sampling from a random variable X with a discontinuous
or discrete DF using the inversion sampler. We need to define the inverse more carefully here.

Proposition 2 Let the support of the RV X be over some real interval [a, b] and let its inverse DF
be defined as follows:

F [−1](u) := inf{x ∈ [a, b] : F (x) ≥ u, 0 ≤ u ≤ 1} .

If U ∼ Uniform(0, 1) then X = F [−1](U) has the DF F .

Proof: The proof is a consequence of the following equalities:

P (X ≤ x) = P (F [−1](u) ≤ x) = P (U ≤ F (x)) = F (x)

2.4 Some Simulations of Discrete Random Variables

Model 7 (Bernoulli(θ)) Given a parameter θ ∈ [0, 1], the probability mass function (PMF) for the
Bernoulli(θ) RV X is:

f(x; θ) =


θ if x = 1,

1− θ if x = 0,

0 otherwise

or, equivalently, f(x; θ) =

{
θx(1− θ)1−x if x ∈ {0, 1},
0 otherwise

(2.13)

and its DF is:

F (x; θ) =


1 if 1 ≤ x,

1− θ if 0 ≤ x < 1,

0 otherwise

(2.14)

We emphasise the dependence of the probabilities on the parameter θ by specifying it following the
semicolon in the argument for f and F .

Simulation 5 (Bernoulli(θ)) Consider the problem of simulating from a Bernoulli(θ) RV based on
an input from a Uniform(0, 1) RV. Recall that bxc (called the ‘floor of x’) is the largest integer
that is smaller than or equal to x, e.g. b3.8c = 3. Using the floor function, we can simulate a
Bernoulli(θ) RV X as follows:

>> theta = 0.3; % set theta = Prob(X=1)

% return x -- floor(y) is the largest integer less than or equal to y

>> x = floor(rand + theta) % rand is the Fundamental Sampler

>> disp(x) % display the outcome of the simulation

0

>> n=10; % set the number of IID Bernoulli(theta=0.3) trials you want to simulate

>> x = floor(rand(1,10)+theta); % vectorize the operation

>> disp(x) % display the outcomes of the simulation

0 0 1 0 0 0 0 0 1 1



CHAPTER 2. SIMULATION 20

Again, it is straightforward to do replicate experiments, e.g. to demonstrate the Central Limit
Theorem for a sequence of n IID Bernoulli(θ) trials.

>> % a demonstration of Central Limit Theorem --

>> % the sample mean of a sequence of n IID Bernoulli(theta) RVs is Gaussian(theta,theta(1-theta)/n)

>> theta=0.5; Reps=10000; n=10; hist(sum(floor(rand(n,Reps)+theta))/n)

>> theta=0.5; Reps=10000; n=100; hist(sum(floor(rand(n,Reps)+theta))/n,20)

>> theta=0.5; Reps=10000; n=1000; hist(sum(floor(rand(n,Reps)+theta))/n,30)

Next let us consider a natural generalization of the Bernoulli(θ) RV with more than two outcomes.

Model 8 (de Moivre(θ1, θ2, . . . , θk)) Given a specific point (θ1, θ2, . . . , θk) in the k-Simplex:

4k := { (θ1, θ2, . . . , θk) : θ1 ≥ 0, θ2 ≥ 0, . . . , θk ≥ 0,
k∑
i=1

θi = 1 } ,

we say that an RV X is de Moivre(θ1, θ2, . . . , θk) distributed if its PMF is:

f(x; θ1, θ2, . . . , θk) =

{
0 if x /∈ [k] := {1, 2, . . . , k},
θx if x ∈ [k].

The DF for de Moivre(θ1, θ2, . . . , θk) RV X is:

F (x; θ1, θ2, . . . , θk) =



0 if −∞ < x < 1

θ1 if 1 ≤ x < 2

θ1 + θ2 if 2 ≤ x < 3
...

θ1 + θ2 + · · ·+ θk−1 if k − 1 ≤ x < k

θ1 + θ2 + · · ·+ θk−1 + θk = 1 if k ≤ x <∞

(2.15)

The de Moivre(θ1, θ2, . . . , θk) RV can be thought of as a probability model for “the outcome of rolling
a polygonal cylindrical die with k rectangular faces that are marked with 1, 2, . . . , k”. The parameters
θ1, θ2, . . . , θk specify how the die is loaded and may be idealised as specifying the cylinder’s centre
of mass with respect to the respective faces. Thus, when θ1 = θ2 = · · · = θk = 1/k, we have a
probability model for the outcomes of a fair die.

Next we simulate from de Moivre(θ1, θ2, . . . , θk) RV X via its inverse DF

F [−1] : [0, 1]→ [k] := {1, 2, . . . , k} ,

given by:

F [−1](u; θ1, θ2, . . . , θk) =



1 if 0 ≤ u < θ1

2 if θ1 ≤ u < θ1 + θ2

3 if θ1 + θ2 ≤ u < θ1 + θ2 + θ3

...
k if θ1 + θ2 + · · ·+ θk−1 ≤ u < 1

When k = 2 in the de Moivre(θ1, θ2) model, we have an RV that is similar to the Bernoulli(p = θ1)
RV. The DF F and its inverse F [−1] for a specific θ1 = 0.3 are depicted in Figure 2.7.
First we simulate from an equi-probable special case of the de Moivre(θ1, θ2, . . . , θk) RV, with
θ1 = θ2 = · · · = θk = 1/k.



CHAPTER 2. SIMULATION 21

Figure 2.7: The DF F (x; 0.3, 0.7) of the de Moivre(0.3, 0.7) RV and its inverse F [−1](u; 0.3, 0.7).

0 1 2 3

0

0.2

0.4

0.6

0.8

1

x

F
(x

)

0 0.5 1

0

0.5

1

1.5

2

2.5

u

F
 in

ve
rs

e 
(u

)

Simulation 6 (de Moivre(1/k, 1/k, . . . , 1/k)) The equi-probable de Moivre(1/k, 1/k, . . . , 1/k) RV
X with a discrete uniform distribution over [k] = {1, 2, . . . k} can be efficiently sampled using the
ceiling function. Recall that dye is the smallest integer larger than or equal to y, eg. d13.1e = 14.
Algorithm 3 produces samples from the de Moivre(1/k, 1/k, . . . , 1/k) RV X.

Algorithm 3 Inversion Sampler for de Moivre(1/k, 1/k, . . . , 1/k) RV
1: input:

1. k in de Moivre(1/k, 1/k, . . . , 1/k) RV X

2. u ∼ Uniform(0, 1)

2: output: a sample from X

3: return: x← dkue

The M-file implementing Algorithm 3 is:

SimdeMoivreEqui.m
function x = SimdeMoivreEqui(u,k);

% return samples from de Moivre(1/k,1/k,...,1/k) RV X

% Call Syntax: x = SimdeMoivreEqui(u,k);

% Input : u = array of uniform random numbers eg. rand

% k = number of equi-probabble outcomes of X

% Output : x = samples from X

x = ceil(k * u) ; % ceil(y) is the smallest integer larger than y

%x = floor(k * u); if outcomes are in {0,1,...,k-1}

Let us use the function SimdeMoivreEqui to draw five samples from a fair seven-faced cylindrical
dice.

>> k=7; % number of faces of the fair dice

>> n=5; % number of trials

>> rand(’twister’,78657); % initialise the fundamental sampler

>> u=rand(1,n); % draw n samples from Uniform(0,1)



CHAPTER 2. SIMULATION 22

>> % inverse transform samples from Uniform(0,1) to samples

>> % from de Moivre(1/7,1/7,1/7,1/7,1/7,1/7,1/7)

>> outcomes=SimdeMoivreEqui(u,k); % save the outcomes in an array

>> disp(outcomes);

6 5 5 5 2

Now, let us consider the more general problem of implementing a sampler for an arbitrary but
specified de Moivre(θ1, θ2, . . . , θk) RV. That is, the values of θi need not be equal to 1/k.

Simulation 7 (de Moivre(θ1, θ2, . . . , θk)) We can generate samples from a de Moivre(θ1, θ2, . . . , θk)
RV X when (θ1, θ2, . . . , θk) are specifiable as an input vector via the following algorithm.

Algorithm 4 Inversion Sampler for de Moivre(θ1, θ2, . . . , θk) RV X

1: input:

1. parameter vector (θ1, θ2, . . . , θk) of de Moivre(θ1, θ2, . . . , θk) RV X.

2. u ∼ Uniform(0, 1)

2: output: a sample from X

3: initialise: F ← θ1, i← 1
4: while u > F do
5: i← i+ 1
6: F ← F + θi
7: end while
8: return: x← i

The M-file implementing Algorithm 4 is:

SimdeMoivreOnce.m
function x = SimdeMoivreOnce(u,f)

% Returns a sample from the de Moivre(f=(f_1,f_2,...,f_k)) RV X

% Call Syntax: x = SimdeMoivreOnce(u,f);

% deMoivreEqui(u,k);

% Input : u = a uniform random number eg. rand

% f = an array of probabilities f=[f1 f2...fk]

% Output : x = sample from X

x=1; % initial index is 1

current_f=f(x);

while u>current_f;

x=x+1;

current_f = current_f + f(x);

end

Let us use the function deMoivreEqui to draw five samples from a fair seven-faced dice.

>> k=7; % number of faces of the fair dice

>> n=5; % number of trials

>> rand(’twister’,78657); % initialise the fundamental sampler

>> Us=rand(1,n); % draw n samples from Uniform(0,1)

>> disp(Us);

0.8330 0.6819 0.6468 0.6674 0.2577

>> % inverse transform samples from Uniform(0,1) to samples

>> % from de Moivre(1/7,1/7,1/7,1/7,1/7,1/7,1/7)

>> f=[1/7 1/7 1/7 1/7 1/7 1/7 1/7];

>> disp(f);



CHAPTER 2. SIMULATION 23

0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

>> % use funarray to apply function-handled SimdeMoivreOnce to

>> % each element of array Us and save it in array outcomes2

>> outcomes2=arrayfun(@(u)(SimdeMoivreOnce(u,f)),Us);

>> disp(outcomes2);

6 5 5 5 2

>> disp(SimdeMoivreEqui(u,k)); % same result using the previous algorithm

6 5 5 5 2

Clearly, Algorithm 4 may be used to sample from any de Moivre(θ1, . . . , θk) RV X. We demostrate
this by producing five samples from a randomly generated PMF f2.

>> rand(’twister’,1777); % initialise the fundamental sampler

>> f2=rand(1,10); % create an arbitrary array

>> f2=f2/sum(f2); % normalize to make a probability mass function

>> disp(f2); % display the weights of our 10-faced die

0.0073 0.0188 0.1515 0.1311 0.1760 0.1121 ...

0.1718 0.1213 0.0377 0.0723

>> disp(sum(f2)); % the weights sum to 1

1.0000

>> disp(arrayfun(@(u)(SimdeMoivreOnce(u,f2)),rand(5,5))) % the samples from f2 are

4 3 4 7 3

6 7 4 5 3

5 8 7 10 6

2 3 5 7 7

6 5 9 5 7

Note that the principal work here is the sequential search, in which the mean number of comparisons
until success is:

1θ1 + 2θ2 + 3θ3 + . . .+ kθk =
k∑
i=1

iθi

For the de Moivre(1/k, 1/k, . . . , 1/k) RV, the right-hand side of the above expression is:

k∑
i=1

i
1
k

=
1
k

k∑
i=1

i =
1
k

k(k + 1)
2

=
k + 1

2
,

indicating that the average-case efficiency is linear in k. This linear dependence on k is denoted by
O(k). In other words, as the number of faces k increases, one has to work linearly harder to get
samples from de Moivre(1/k, 1/k, . . . , 1/k) RV using Algorithm 4. Using the simpler Algorithm 3,
which exploits the fact that all values of θi are equal, we generated samples in constant time, which
is denoted by O(1).

The above problem is a special case of simulating from the following more general RV.

Model 9 (GD(θ0, θ1, . . .)) We say X is a GeneralDiscrete(θ0, θ1, . . .) or GD(θ0, θ1, . . .) RV over
the countable discrete state space Z+ := {0, 1, 2, . . .} with parameters (θ0, θ1, . . .) if the PMF of X
is defined as follows:

f(X = x; θ0, θ1, . . .) =


0, if x /∈ {0, 1, 2, . . .}
θ0, if x = 0

θ1, if x = 1
...



CHAPTER 2. SIMULATION 24

Algorithm 5 allows us to simulate from any member of the class of non-negative discrete RVs as
specified by the probabilities (θ0, θ1, . . .). When an RV X takes values in another countable set
X 6= Z+, then we can still use the above algorithm provided we have a one-to-one and onto mapping
D from Z+ to X that allows us to think of {0, 1, 2, . . .} as indices of an array D.

Algorithm 5 Inversion Sampler for GD(θ0, θ1, . . .) RV X

1: input:

1. θ0 and {C(i) = θi/θi−1} for any i ∈ {1, 2, 3, . . .}.

2. u ∼ Uniform(0, 1)

2: output: a sample from X

3: initialise: p← θ0, q ← θ0, i← 0
4: while u > q do
5: i← i+ 1, p← p C(i), q ← q + p

6: end while
7: return: x = i

Model 10 (Binomial(n, θ) RV) Let the RV X =
∑n

i=1Xi be the sum of n independent and iden-
tically distributed Bernoulli(θ) RVs, i.e.:

X =
n∑
i=1

Xi, X1, X2, . . . , Xn
IID∼ Bernoulli(θ) .

Given two parameters n and θ, the pmf of the Binomial(n, θ) RV X is:

f(x;n, θ) =


(
n

x

)
θx(1− θ)n−x if x ∈ {0, 1, 2, 3, . . . , n} ,

0 otherwise
(2.16)

where,
(
n
x

)
is: (

n

x

)
=
n(n− 1)(n− 2) . . . (n− x+ 1)
x(x− 1)(x− 2) · · · (2)(1)

=
n!

x!(n− x)!
.(

n
x

)
is read as “n choose x.”

Example 2.4.1 (Mean and variance of Binomial(n, θ) RV) Let X ∼ Binomial(n, θ). Based
on the definition of expectation:

E(X) =
∫
x dF (x;n, θ) =

∑
x

xf(x;n, θ) =
n∑
x=0

x

(
n

x

)
θx(1− θ)n−x .

However, this is a nontrivial sum to evaluate. Instead, we may use (1.3) and (1.6) by noting that
X =

∑n
i=1Xi, where the {X1, X2, . . . , Xn}

IID∼ Bernoulli(θ), E(Xi) = θ and V (Xi) = θ(1− θ):

E(X) = E(X1 +X2, · · · , Xn) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) = nθ ,

V (X) = V

(
n∑
i=1

Xi

)
=

n∑
i=1

V (Xi) =
n∑
i=1

θ(1− θ) = nθ(1− θ) .



CHAPTER 2. SIMULATION 25

Simulation 8 (Binomial(n, θ)) To simulate from a Binomial(n, θ) RV X, we can use Algorithm
5 with:

θ0 = (1− θ)n, C(x+ 1) =
θ(n− x)

(1− θ)(x+ 1)
, Mean Efficiency: O(1 + nθ) .

Similarly, with the appropriate θ0 and C(x + 1), we can also simulate from the Geometric(θ) and
Poisson(λ) RVs.

Labwork 2.4.2 1. Implement Algorithm 5 via a function named MyGenDiscInvSampler in
MATLAB. Hand in the M-file named MyGenDiscInvSampler.m giving detailed comments ex-
plaining your understanding of each step of the code. [Hint: C(i) should be implemented as
a function (use function handles via @) that can be passed as a parameter to the function
MyGenDiscInvSampler].

2. Show that your code works for drawing samples from a Binomial(n, p) RV by doing the fol-
lowing:

(a) Seed the fundamental sampler by your Student ID (if your ID is 11424620 then type
rand(’twister’, 11424620);)

(b) Draw 100 samples from the Binomial(n = 20, p = 0.5) RV and report the results in an
2 × 2 table with column headings x and No. of observations. [Hint: the inputs θ0 and
C(i) for the Binomial(n, p) RV is given above].

3. Show that your code works for drawing samples from a Geometric(p) RV by doing the follow-
ing:

(a) Seed the fundamental sampler by your Student ID.

(b) Set the variable Mytheta=rand.

(c) Draw 100 samples from the Geometric(Mytheta) RV and report the sample mean. [Note:
the inputs θ0 and C(i) for the Geometric(θ) RV should be derived and the workings
shown].



Chapter 3

Estimation

3.1 Introduction

The problem of estimation is of fundamental importance in statistical inference and learning. We
will formalise the general estimation problem here after a brief introduction to statistics.

3.2 Statistics

Definition 4 (Data) The function X measures the outcome ω of an experiment with sample space
Ω [Often, the sample space is also denoted by S]. Formally, X is a random variable [or a random
vector X = (X1, X2, . . . , Xn), i.e. a vector of random variables] taking values in the data space
X:

X(ω) : Ω 7→ X .

The realisation of the RV X when an experiment is performed is the observation or data x ∈ X. That
is, when the experiment is performed once and it yields a specific ω ∈ Ω, the data X(ω) = x ∈ X is
the corresponding realisation of the RV X.

Figure 3.1: Sample Space, Random Variable, Realisation, Data, and Data Space.

26



CHAPTER 3. ESTIMATION 27

Example 3.2.1 For some given parameter θ ∈ ΘΘ := [0, 1], consider n IID Bernoulli(θ) trials,
i.e. X1, X2, . . . , Xn

IID∼ Bernoulli(θ). Then the random vector X = (X1, X2, . . . , Xn), which takes
values in the data space X = {0, 1}n := {(x1, x2, . . . , xn) : xi ∈ {0, 1}, i = 1, 2, . . . , n}, made up of
vertices of the n-dimensional hyper-cube, measures the outcomes of this experiment. A particular
realisation of X, upon performance of this experiment, is the observation, data or data vector
(x1, x2, . . . , xn). For instance, if we observed n− 1 tails and 1 heads, in that order, then our data
vector (x1, x2, . . . , xn−1, xn) = (0, 0, . . . , 0, 1).

Definition 5 (Statistic) A statistic T is any function of the data:

T (x) : X 7→ T .

Thus, a statistic T is also an RV that takes values in the space T. When x ∈ X is the realisation of
an experiment, we let T (x) = t denote the corresponding realisation of the statistic T . Sometimes
we use Tn(X) and Tn to emphasise that X is an n-dimensional random vector, i.e. X ⊂ Rn

Classwork 3.2.2 Is the RV X, for which the realisation is the observed data X(ω) = x, a statistic?
In other words, is the data a statistic? [Hint: consider the identity map T (x) = x : X 7→ T = X.]

Next, we define two important statistics called the sample mean and sample variance. Since
they are obtained from the sample data, they are called sample moments, as opposed to the pop-
ulation moments. The corresponding population moments are E(X1) and V (X1), respectively.

Definition 6 (Sample Mean) From a given a sequence of RVs X1, X2, . . . , Xn, we may obtain
another RV called the n-samples mean or simply the sample mean:

Tn( (X1, X2, . . . , Xn) ) = Xn( (X1, X2, . . . , Xn) ) :=
1
n

n∑
i=1

Xi . (3.1)

For brevity, we write
Xn( (X1, X2, . . . , Xn) ) as Xn ,

and its realisation
Xn( (x1, x2, . . . , xn) ) as xn .

Note that the expectation and variance of Xn are:

E(Xn) = E

(
1
n

n∑
i=1

Xi

)
[by definition (3.1)]

=
1
n

n∑
i=1

E (Xi) [by property (1.3)]

Furthermore, if every Xi in the original sequence of RVs X1, X2, . . . is identically distributed with
the same expectation, by convention E(X1), then:

E(Xn) =
1
n

n∑
i=1

E (Xi) =
1
n

n∑
i=1

E (X1) =
1
n
n E (X1) = E (X1) . (3.2)



CHAPTER 3. ESTIMATION 28

Similarly, we can show that:

V (Xn) = V

(
1
n

n∑
i=1

Xi

)
[by definition (3.1)]

=
(

1
n

)2

V

(
n∑
i=1

Xi

)
[by property (1.5)]

Furthermore, if the original sequence of RVs X1, X2, . . . is independently distributed then:

V (Xn) =
(

1
n

)2

V

(
n∑
i=1

Xi

)
=

1
n2

n∑
i=1

V (Xi) [by property (1.6)]

Finally, if the original sequence of RVs X1, X2, . . . is independently and identically distributed
with the same variance (V (X1) by convention) then:

V (Xn) =
1
n2

n∑
i=1

V (Xi) =
1
n2

n∑
i=1

V (X1) =
1
n2

n V (X1) =
1
n
V (X1) . (3.3)

Labwork 3.2.3 After initializing the fundamental sampler, we draw five samples and then obtain
the sample mean using the Matlab function mean. In the following, we will reuse the samples
stored in the array XsFromUni01Twstr101.

>> rand(’twister’,101); % initialise the fundamental Uniform(0,1) sampler

>> XsFromUni01Twstr101=rand(1,5); % simulate n=5 IID samples from Uniform(0,1) RV

>> SampleMean=mean(XsFromUni01Twstr101);% find sample mean

>> disp(XsFromUni01Twstr101); % The data-points x_1,x_2,x_3,x_4,x_5 are:

0.5164 0.5707 0.0285 0.1715 0.6853

>> disp(SampleMean); % The Sample mean is :

0.3945

We can thus use mean to obtain the sample mean xn of n sample points x1, x2, . . . , xn.

Definition 7 (Sample Variance & Standard Deviation) From a given a sequence of random
variables X1, X2, . . . , Xn, we may obtain another statistic called the n-samples variance or simply
the sample variance :

Tn( (X1, X2, . . . , Xn) ) = S2
n( (X1, X2, . . . , Xn) ) :=

1
n− 1

n∑
i=1

(Xi −Xn)2 . (3.4)

For brevity, we write S2
n( (X1, X2, . . . , Xn) ) as S2

n and its realisation S2
n( (x1, x2, . . . , xn) ) as s2

n.

Sample standard deviation is simply the square root of sample variance:

Sn( (X1, X2, . . . , Xn) ) =
√
S2
n( (X1, X2, . . . , Xn) ) (3.5)

For brevity, we write Sn( (X1, X2, . . . , Xn) ) as Sn and its realisation Sn( (x1, x2, . . . , xn) ) as sn.

Once again, if X1, X2, . . . , Xn
IID∼ X1, the expectation of the sample variance is:

E(S2
n) = V (X1) .



CHAPTER 3. ESTIMATION 29

Labwork 3.2.4 We can compute the sample variance and sample standard deviation for the five
samples stored in the array XsFromUni01Twstr101 from Labwork 3.2.3 using Matlab’s functions
var and std, respectively.

>> disp(XsFromUni01Twstr101); % The data-points x_1,x_2,x_3,x_4,x_5 are :

0.5164 0.5707 0.0285 0.1715 0.6853

>> SampleVar=var(XsFromUni01Twstr101);% find sample variance

>> SampleStd=std(XsFromUni01Twstr101);% find sample standard deviation

>> disp(SampleVar) % The sample variance is:

0.0785

>> disp(SampleStd) % The sample standard deviation is:

0.2802

It is important to bear in mind that the statistics such as sample mean and sample variance are
random variables and have an underlying distribution.

Definition 8 (Order Statistics) Suppose X1, X2, . . . , Xn
IID∼ F , where F is the DF from the set

of all DFs over the real line. Then, the n-sample order statistics X([n]) is:

X([n])( (X1, X2, . . . , Xn) ) :=
(
X(1), X(2), . . . X(n)

)
, such that, X(1) ≤ X(2) ≤ . . . ≤ X(n) . (3.6)

For brevity, we write X([n])( (X1, X2, . . . , Xn) ) as X([n]) and its realisation X([n])( (x1, x2, . . . , xn) )
as x([n]) = (x(1), x(2), . . . x(n)).

Without going into the details of how to sort the data in ascending order to obtain the order statis-
tics (an elementary topic of an Introductory Computer Science course), we simply use Matlab’s
function sort to obtain the order statistics, as illustrated in the following example.

Labwork 3.2.5 The order statistics for the five samples stored in XsFromUni01Twstr101 from
Labwork 3.2.3 can be computed using sort as follows:

>> disp(XsFromUni01Twstr101); % display the sample points

0.5164 0.5707 0.0285 0.1715 0.6853

>> SortedXsFromUni01Twstr101=sort(XsFromUni01Twstr101); % sort data

>> disp(SortedXsFromUni01Twstr101); % display the order statistics

0.0285 0.1715 0.5164 0.5707 0.6853

Therefore, we can use sort to obtain our order statistics x(1), x(2), . . . , x(n) from n sample points
x1, x2, . . . , xn.

Next, we will introduce a family of common statistics, called the qth quantile, by first defining the
function:

Definition 9 (Inverse DF or Inverse CDF or Quantile Function) Let X be an RV with DF
F . The inverse DF or inverse CDF or quantile function is:

F [−1](q) := inf {x : F (x) > q}, for some q ∈ [0, 1] . (3.7)

If F is strictly increasing and continuous then F [−1](q) is the unique x ∈ R such that F (x) = q.

A functional is merely a function of another function. Thus, T (F ) : {All DFs } 7→ T, being a
map or function from the space of DFs to its range T, is a functional. Some specific examples of
functionals we have already seen include:



CHAPTER 3. ESTIMATION 30

1. The mean of RV X ∼ F is a function of the DF F :

T (F ) = E(X) =
∫
x dF (x) .

2. The variance of RV X ∼ F is a function of the DF F :

T (F ) = E(X − E(X))2 =
∫

(x− E(X))2 dF (x) .

3. The value of DF at a given x ∈ R of RV X ∼ F is also a function of DF F :

T (F ) = F (x) .

Other functionals of F that depend on the quantile function F [−1] are:

1. The qth quantile of RV X ∼ F :

T (F ) = F [−1](q) where q ∈ [0, 1] .

2. The first quartile or the 0.25th quantile of the RV X ∼ F :

T (F ) = F [−1](0.25) .

3. The median or the second quartile or the 0.50th quantile of the RV X ∼ F :

T (F ) = F [−1](0.50) .

4. The third quartile or the 0.75th quantile of the RV X ∼ F :

T (F ) = F [−1](0.75) .

Definition 10 (Empirical Distribution Function (EDF or ECDF)) Suppose we have n IID
RVs, X1, X2, . . . , Xn

IID∼ F , where F is a DF from the set of all DFs over the real line. Then, the
n-sample empirical distribution function (EDF or ECDF) is the discrete distribution function F̂n
that puts a probability mass of 1/n at each sample or data point xi:

F̂n(x) =
∑n

i=1 11(Xi ≤ x)
n

, where 11(Xi ≤ x) :=

{
1 if xi ≤ x
0 if xi > x

(3.8)

Labwork 3.2.6 Let us plot the ECDF for the five samples drawn from the Uniform(0, 1) RV in
Labwork 3.2.3 using the Matlab function ECDF (given in Labwork 5.0.11). Let us super-impose
the samples and the true DF as depicted in Figure 3.2 with the following script:

plotunifecdf.m
xs = -1:0.01:2; % vector xs from -1 to 2 with increment .05 for x values

% get the [0,1] uniform DF or cdf of xs in vector cdf

cdf=zeros(size(xs));% initialise cdf as zero

indices = find(xs>=1); cdf(indices) = 1; % set cdf as 1 when xs >= 1

indices = find(xs>=0 & xs<=1); cdf(indices)=xs(indices); % cdf=xs when 0 <= xs <= 1

plot(xs,cdf,’r’) % plot the DF

hold on; title(’Uniform [0,1] DF and ECDF’); xlabel(’x’); axis([-0.2 1.2 -0.2 1.2])

x=[0.5164, 0.5707, 0.0285, 0.1715, 0.6853]; % five samples

plot(x,zeros(1,5),’r+’,’LineWidth’,2,’MarkerSize’,10)% plot the data as red + marks

hold on; grid on; % turn on grid

ECDF(x,1,.2,.6);% ECDF (type help ECDF) plot is extended to left and right by .2 and .4, respectively.



CHAPTER 3. ESTIMATION 31

Figure 3.2: Plot of the DF of Uniform(0, 1), five IID samples from it, and the ECDF based
on the five samples. Note that the ECDF F̂5 for data points x = (x1, x2, x3, x4, x5) =
(0.5164, 0.5707, 0.0285, 0.1715, 0.6853) jumps by 1/5 = 0.20 at each of the five samples.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Uniform [0,1] DF and ECDF

x

Definition 11 (qth Sample Quantile) For some q ∈ [0, 1] and n IID RVs X1, X2, . . . , Xn
IID∼ F ,

we can obtain the ECDF F̂n using (3.8). The qth sample quantile is defined as the statistic
(statistical functional):

T (F̂n) = F̂ [−1]
n (q) := inf {x : F̂ [−1]

n (x) ≥ q} . (3.9)

By replacing q in this definition of the qth sample quantile by 0.25, 0.5 or 0.75, we obtain the first,
second (sample median) or third sample quartile, respectively.

The following algorithm can be used to obtain the qth sample quantile of n IID samples (x1, x2, . . . , xn)
on the basis of their order statistics (x(1), x(2), . . . , x(n)).

The qth sample quantile, F̂ [−1]
n (q), is found by interpolation from the order statistics (x(1), x(2), . . . , x(n))

of the n data points (x1, x2, . . . , xn), using the formula:

F̂ [−1]
n (q) = (1− δ)x(i+1) + δx(i+2), where, i = b(n− 1)qc and δ = (n− 1)q − b(n− 1)qc .

Thus, the sample minimum of the data points (x1, x2, . . . , xn) is given by F̂ [−1]
n (0), the sample

maximum is given by F̂ [−1]
n (1) and the sample median is given by F̂ [−1]

n (0.5), etc.

Labwork 3.2.7 Use the implementation of Algorithm 6 in Labwork 5.0.12 as the Matlab function
qthSampleQuantile to find the qth sample quantile of two simulated data arrays:

1. SortedXsFromUni01Twstr101, the order statistics that was constructed in Labwork 3.2.5 and

2. Another sorted array of 7 samples called SortedXs



CHAPTER 3. ESTIMATION 32

Algorithm 6 qth Sample Quantile of Order Statistics
1: input:

1. q in the qth sample quantile, i.e. the argument q of F̂ [−1]
n (q),

2. order statistic (x(1), x(2), . . . , x(n)), i.e. the sorted (x1, x2, . . . , xn), where n > 0.

2: output: F̂ [−1]
n (q), the qth sample quantile

3: i← b(n− 1)qc
4: δ ← (n− 1)q − i
5: if i = n− 1 then
6: F̂

[−1]
n (q)← x(i+1)

7: else
8: F̂

[−1]
n (q)← (1− δ)x(i+1) + δx(i+2)

9: end if
10: return: F̂ [−1]

n (q)

>> disp(SortedXsFromUni01Twstr101)

0.0285 0.1715 0.5164 0.5707 0.6853

>> rand(’twister’,420);

>> SortedXs=sort(rand(1,7));

>> disp(SortedXs)

0.1089 0.2670 0.3156 0.3525 0.4530 0.6297 0.8682

>> for q=[0, 0.25, 0.5, 0.75, 1.0]

disp([q, qthSampleQuantile(q,SortedXsFromUni01Twstr101) ...

qthSampleQuantile(q,SortedXs)])

end

0 0.0285 0.1089

0.2500 0.1715 0.2913

0.5000 0.5164 0.3525

0.7500 0.5707 0.5414

1.0000 0.6853 0.8682

3.3 Convergence of Random Variables

This important topic is concerned with the limiting behavior of sequences of RVs

{Xi}ni=1 := X1, X2, X3, . . . , Xn−1, Xn as n→∞ .

From a statistical viewpoint, n→∞ is associated with the amount of data or information tending
to ∞. Readers should ensure that they are familiar with the notions of convergence, limits and
continuity in the real line before proceeding further.

Consider the class of discrete RVs with distributions that place all probability mass on a single real
number. This is the probability model for the deterministic real variable.

Model 11 (Point Mass(θ)) Given a specific point θ ∈ R, we say an RV X has point mass at θ or
is Point Mass(θ) distributed if the DF is:

F (x; θ) =

{
0 if x < θ

1 if x ≥ θ
(3.10)



CHAPTER 3. ESTIMATION 33

and the PMF is:

f(x; θ) =

{
0 if x 6= θ

1 if x = θ
(3.11)

Thus, Point Mass(θ) RV X is deterministic in the sense that every realisation of X is exactly equal
to θ ∈ R. We will see that this distribution plays a central limiting role in asymptotic statistics.

Example 3.3.1 (Mean and variance of Point Mass(θ) RV) Let X ∼ Point Mass(θ). Then:

E(X) =
∑
x

xf(x) = θ × 1 = θ , V (X) = E(X2)− (E(X))2 = θ2 − θ2 = 0 .

Classwork 3.3.2 Suppose you are given an independent sequence of RVs {Xi}ni=1, where Xi ∼
Normal(0, 1/i). How would you talk about the convergence of Xn ∼ Normal(0, 1/n) as n ap-
proaches ∞? Figure 3.3 shows that the probability mass of Xn increasingly concentrates about 0
as n approaches ∞ and the variance 1/n approaches 0. Based on this observation, can we expect
limn→∞Xn = X, where the limiting RV X ∼ Point Mass(0) ?

The answer is no. This is because P (Xn = X) = 0 for any n, since X ∼ Point Mass(0) is a
discrete RV with exactly one outcome 0, and Xn ∼ Normal(0, 1/n) is a continuous RV for every
n, however large. In other words, a continuous RV, such as Xn, has 0 probability of realising any
single real number in its support, such as 0.

Figure 3.3: Distribution functions of several Normal(µ, σ2) RVs for σ2 = 1, 1
10 ,

1
100 ,

1
1000 .

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

 

 

F(x;0,1)

F(x;0,10−1)

F(x;0,10−2)

F(x;0,10−3)
DF of PointMass(0) RV

Thus, we need more sophisticated notions of convergence for sequences of RVs. Two such notions
are formalised next as they are necessary for a clear understanding of three basic propositions in
Statistics :

1. Weak Law of Large Numbers,

2. Central Limit Theorem,

3. Gilvenko-Cantelli Theorem.

Definition 12 (Convergence in Distribution) Let X1, X2, . . . , be a sequence of RVs and let X
be another RV. Let Fn denote the DF of Xn and F denote the DF of X. We say that Xn converges
to X in distribution, and write:

Xn  X

if for any real number t at which F is continuous,

lim
n→∞

Fn(t) = F (t) [in the sense of limits in the real line R]



CHAPTER 3. ESTIMATION 34

Definition 13 (Convergence in Probability) Let X1, X2, . . . , be a sequence of RVs and let X
be another RV. Let Fn denote the DF of Xn and F denote the DF of X. We say that Xn converges
to X in probability, and write:

Xn
P−→ X

if for every real number ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0 [in the sense of limits in the real line R]

Let us revisit the problem of convergence in Classwork 3.3.2 with these new concepts.

Example 3.3.3 Suppose you are given an independent sequence of RVs {Xi}ni=1, where Xi ∼
Normal(0, 1/i) with DF Fn, and let X ∼ Point Mass(0) with DF F . We can formalise our obser-
vation in Classwork 3.3.2 that Xn is concentrating about 0 as n→∞ by the statement:

Xn is converging in distribution to X, i.e. Xn  X.

Regarding the same sequence of RVs in Classwork 3.3.2 and Example 3.3.3, we are tempted to
ask whether Xn ∼ Normal(0, 1/n) converges in probability to X ∼ Point Mass(0), i.e. whether
Xn

P−→ X. We need some elementary inequalities in probability to help us answer this question.

Example 3.3.4 Does the sequence of RVs Xn ∼ Normal(0, 1/n) converge in probability to X ∼
Point Mass(0), i.e. does Xn

P−→ X?

To find out if Xn
P−→ X, we need to show that for any ε > 0, limn→∞ P (|Xn −X| > ε) = 0.

Let ε be any real number greater than 0, then:

P (|Xn| > ε) = P (|Xn|2 > ε2)

=
E(X2

n)
ε2

[by Markov’s Inequality: P (X ≥ ε) ≤ E(X)
ε

, for any ε > 0 ]

=
1
n

ε2
→ 0, as n→∞

Hence, we have shown that for any ε > 0, limn→∞ P (|Xn−X| > ε) = 0 and therefore by Definition
13, Xn

P−→ X or Xn
P−→ 0.

Convention: When X has a Point Mass(θ) distribution and Xn
P−→ X, we simply write Xn

P−→ θ.

Now that we have been introduced to two notions of convergence for RV sequences, we can begin
to appreciate the basic limit theorems used in statistical inference.

3.4 Point Estimation

Point estimation is any statistical methodology that provides one with a “single best guess”
of some specific quantity of interest. Traditionally, we denote this quantity of interest as θ∗ and
its point estimate as θ̂ or θ̂n. The subscript n in the point estimate θ̂n emphasises that our
estimate is based on n observations or data points from a given statistical experiment to estimate
θ∗. This quantity of interest, which is usually unknown, can be:



CHAPTER 3. ESTIMATION 35

• a parameter θ∗ which is an element of the parameter space ΘΘ, denoted θ ∈ ΘΘ,

• a distribution function (DF) F ∗ ∈ F := the set of all DFs

• a regression function g∗ ∈ G, where G is a class of regression functions.

Recall that a statistic is an RV T (X) that maps every data point x in the data space X with
T (x) = t in its range T, i.e. T (x) : X 7→ T (Definition 5). Next, we look at a specific class of
statistics whose range is the parameter space ΘΘ.

Definition 14 A point estimator Θ̂ of some fixed and possibly unknown θ∗ ∈ ΘΘ is a statistic
that associates each data point x ∈ X with an estimate Θ̂(x) = θ̂ ∈ ΘΘ,

Θ̂ := Θ̂(x) = θ̂ : X 7→ ΘΘ .

If our data point x := (x1, x2, . . . , xn) is an n-vector or a point in the n-dimensional real space,
i.e. x := (x1, x2, . . . , xn) ∈ Xn ⊂ Rn, then we emphasise the dimension n in our point estimator
Θ̂n of θ∗ ∈ ΘΘ.

Θ̂n := Θ̂n(x := (x1, x2, . . . , xn)) = θ̂n : Xn 7→ ΘΘ, Xn ⊂ Rn .

The typical situation for us involves point estimation of θ∗ ∈ ΘΘ on the basis of one realisation x ∈
Xn ⊂ Rn of an independent and identically distributed (IID) random vector X = (X1, X2, . . . , Xn),
such that X1, X2, . . . , Xn

IID∼ X1 and the DF of X1 is F (x1; θ∗), i.e. the distribution of the IID RVs,
X1, X2, . . . , Xn, is parameterised by θ∗ ∈ ΘΘ.

3.4.1 Some Properties of Point Estimators

Given that an estimator is merely a function from the data space to the parameter space, we need
choose only the best estimators available. Recall that a point estimator Θ̂n, being a statistic or
an RV of the data has a probability distribution over its range ΘΘ. This distribution over ΘΘ is
called the sampling distribution of Θ̂n. Note that the sampling distribution not only depends
on the statistic Θ̂n := Θ̂n(X1, X2, . . . , Xn) but also on θ∗ which in turn determines the distribution
of the IID data vector (X1, X2, . . . , Xn). The following definitions are useful for selecting better
estimators.

Definition 15 (Bias of a Point Estimator) The biasn of an estimator Θ̂n of θ∗ ∈ ΘΘ is:

biasn = biasn(Θ̂n) := Eθ∗(Θ̂n)− θ∗ . (3.12)

We say that the estimator Θ̂n is unbiased if biasn(Θ̂n) = 0 or if Eθ∗(Θ̂n) = θ∗ for every n. If
limn→∞ biasn(Θ̂n) = 0, we say that the estimator is asymptotically unbiased.

Since the expectation of the sampling distribution of the point estimator Θ̂n depends on the un-
known θ∗, we emphasise the θ∗-dependence by Eθ∗(Θ̂n).

Definition 16 (Standard Error of a Point Estimator) The standard deviation of the point
estimator Θ̂n of θ∗ ∈ ΘΘ is called the standard error:

sen = sen(Θ̂n) =
√
Vθ∗(Θ̂n) . (3.13)



CHAPTER 3. ESTIMATION 36

Since the variance of the sampling distribution of the point estimator Θ̂n depends on the fixed and
possibly unknown θ∗, as emphasised by Vθ∗ in (3.13), the sen is also a possibly unknown quantity
and may itself be estimated from the data. The estimated standard error, denoted by ŝen, is
calculated by replacing Vθ∗(Θ̂n) in (3.13) with its appropriate estimate.

Another reasonable property of an estimator is that it converge to the “true” parameter θ∗, as we
gather more and more IID data from a θ∗-specified DF F (x; θ∗). This property is stated precisely
next.

Definition 17 (Asymptotic Consistency of a Point Estimator) A point estimator Θ̂n of θ∗ ∈
ΘΘ is said to be consistent if Θ̂n

P−→ θ∗.

Definition 18 (Mean Squared Error (MSE) of a Point Estimator) Often, the quality of a
point estimator Θ̂n of θ∗ ∈ ΘΘ is assessed by the mean squared error or MSEn defined by:

MSEn = MSEn(Θ̂n) := Eθ∗
(

(Θ̂n − θ∗)2
)
. (3.14)

The following proposition shows a simple relationship between the mean square error, bias and
variance of an estimator Θ̂n of θ∗.

Proposition 3 (The
√

MSEn : sen : biasn–Sided Right Triangle of an Estimator) Let Θ̂n be
an estimator of θ∗ ∈ ΘΘ. Then:

MSEn(Θ̂n) = (sen(Θ̂n))2 + (biasn(Θ̂n))2 . (3.15)

Proposition 4 Let Θ̂n be an estimator of θ∗ ∈ ΘΘ. Then, if biasn(Θ̂n) → 0 and sen(Θ̂n) → 0 as
n→∞, the estimator Θ̂n is asymptotically consistent:

Θ̂n
P−→ θ∗ .

We want our estimator to be unbiased with small standard errors as the sample size n gets large.
The point estimator Θ̂n will then produce a point estimate:

Θ̂n((x1, x2, . . . , xn)) = θ̂ ∈ ΘΘ,

on the basis of the observed data (x1, x2, . . . , xn) that is close to the true parameter θ∗ ∈ ΘΘ.

Next we look at two specific point estimators, namely, moment estimators (MMEs) and maximum
likelihood estimators (MLEs).

3.4.2 Moment Estimator (MME)

The way in which you have been making probability statements in problems from Chapters 3
and 4 of Ang & Tang involved the solving of moment equations for parameters by substituting
the sample moments for the population moments. Let us formalise this general estimation
procedure.

See notes scribed on the board from class and tutorials (Use Table 6.1 of Ang & Tang to solve for
MME of parameters in common distributions).



CHAPTER 3. ESTIMATION 37

3.4.3 Maximum Likelihood Estimator (MLE)

See notes from class.

Example 3.4.4 (Coin Tossing Experiment (X1, . . . , Xn
IID∼ Bernoulli(θ∗))) I tossed a coin that

has an unknown probability θ∗ of landing Heads independently and identically 10 times in a row.
Four of my outcomes were Heads and the remaining six were Tails, with the actual sequence of
Bernoulli outcomes (Heads 7→ 1 and Tails 7→ 0) being (1, 0, 0, 0, 1, 1, 0, 0, 1, 0). I would like to esti-
mate the probability θ∗ ∈ ΘΘ = [0, 1] of observing Heads using the maximum likelihood estimator or
MLE Θ̂n((X1, X2, . . . , Xn)) of θ. We derive the MLE next.

First, the likelihood function is:

L(θ) := L(x1, x2, . . . , xn; θ) = P (x1, x2, . . . , xn|θ)

= P (x1|θ)P (x2|θ) · · ·P (xn|θ) :=
n∏
i=1

P (xi|θ)

= θ
Pn
i=1 xi(1− θ)n−

Pn
i=1 xi := θtn(1− θ)n−tn

In the last step, we have formally defined the following statistic of the data:

Tn(X1, X2, . . . , Xn) =
n∑
i=1

Xi : Xn → Tn

with the corresponding realisation tn := Tn(x1, x2, . . . , xn) =
∑n

i=1 xi ∈ Tn. Let us now take the
natural logarithm of both sides:

log(L(θ)) := log(L(x1, x2, . . . , xn; θ)) = log
(
θtn(1− θ)n−tn

)
= tn log(θ) + (n− tn) log(1− θ)

Next, we take the derivative with respect to the parameter θ:

∂

∂θ
log(L(θ)) =

∂

∂θ
tn log(θ) +

∂

∂θ
(n− tn) log(1− θ)

=
tn
θ
− n− tn

1− θ

Now, set ∂
∂θ log(L(θ)) = 0 and solve for θ to obtain the maximum likelihood estimate θ̂n:

∂

∂θ
log(L(θ)) = 0 ⇐⇒ tn

θ
=
n− tn
1− θ

⇐⇒ 1− θ
θ

=
n− tn
tn

⇐⇒ 1
θ
− 1 =

n

tn
− 1 ⇐⇒ θ̂n =

tn
n

Therefore the MLE is:

Θ̂n(X1, X2, . . . , Xn) =
1
n
Tn(X1, X2, . . . , Xn) =

1
n

n∑
i=1

Xi = Xn

For the coin tossing experiment I just performed (n = 10 times), the point estimate of θ is:

θ̂10 = Θ̂10((x1, x2, . . . , x10)) = Θ̂10((1, 0, 0, 0, 1, 1, 0, 0, 1, 0))

=
1 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 0

10
=

4
10

= 0.40 .



CHAPTER 3. ESTIMATION 38

Practical Excursion in One-dimensional Optimisation

Numerically maximising a log-likelihood function of one parameter is a useful technique. This can be
used for models with no analytically known MLE. A fairly large field of maths, called optimisation,
exists for this sole purpose. Conventionally, in optimisation, one is interested in minimisation.
Therefore, the basic algorithms are cast in the “find the minimiser and the minimum” of a target
function f : R 7→ R. Since we are interested in maximising our target, which is the likelihood
or log-likelihood function, say log(L(x1, . . . , xn; θ)) : ΘΘ 7→ R, we will simply apply the standard
optimisation algorithms directly to − log(L(x1, . . . , xn; θ)) : ΘΘ 7→ R.

The algorithm implemented in fminbnd is based on the golden section search and an inverse
parabolic interpolation, and attempts to find the minimum of a function of one variable within
a given fixed interval. Briefly, the golden section search proceeds by successively bracketing the
minimum of the target function within an acceptably small interval inside the given starting inter-
val [see Section 8.2 of Forsythe, G. E., M. A. Malcolm, and C. B. Moler, 1977, Computer Methods
for Mathematical Computations, Prentice-Hall]. Matlab’s fminbnd also relies on Brent’s inverse
parabolic interpolation [see Chapter 5 of Brent, Richard. P., 1973, Algorithms for Minimization
without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey]. Briefly, additional smoothness
conditions are assumed for the target function to aid in a faster bracketing strategy through poly-
nomial interpolations of past function evaluations. Matlab’s fminbnd has several limitations,
including:

• The likelihood function must be continuous.

• Only local MLE solutions, i.e. those inside the starting interval, are given.

• One needs to know or carefully guess the starting interval that contains the MLE.

• Matlab’s fminbnd exhibits slow convergence when the solution is on a boundary of the
starting interval.

Labwork 3.4.5 (Coin-tossing experiment) The following script was used to study the coin-
tossing experiment in Matlab. The plot of the log-likelihood function and the numerical optimisa-
tion of MLE are carried out using Matlab’s built-in function fminbnd (See Figure 3.4).

BernoulliMLE.m
% To simulate n coin tosses, set theta=probability of heads and n

% Then draw n IID samples from Bernoulli(theta) RV

% theta=0.5; n=20; x=floor(rand(1,n) + theta);

% enter data from a real coin tossing experiment

x=[1 0 0 0 1 1 0 0 1 0]; n=length(x);

t = sum(x); % statistic t is the sum of the x_i values

% display the outcomes and their sum

display(x)

display(t)

% Analyticaly MLE is t/n

MLE=t/n

% l is the log-likelihood of data x as a function of parameter theta

l=@(theta)sum(log(theta ^ t * (1-theta)^(n-t)));

ThetaS=[0:0.001:1]; % sample some values for theta

% plot the log-likelihood function and MLE in two scales

subplot(1,2,1);

plot(ThetaS,arrayfun(l,ThetaS),’m’,’LineWidth’,2);

hold on; stem([MLE],[-89],’b--’); % plot MLE as a stem plot

subplot(1,2,2);



CHAPTER 3. ESTIMATION 39

semilogx(ThetaS,arrayfun(l,ThetaS),’m’,’LineWidth’,2);

hold on; stem([MLE],[-89],’b--’); % plot MLE as a stem plot

% Now we will find the MLE by finding the minimiser or argmin of -l

% negative log-likelihood function of parameter theta

negl=@(theta)-sum(log(theta ^ t * (1-theta)^(n-t)));

% read help fminbnd

% you need to supply the function to be minimised and its search interval

% NumericalMLE = fminbnd(negl,0,1)

% to see the iteration in the numerical minimisation

NumericalMLE = fminbnd(negl,0,1,optimset(’Display’,’iter’))

>> BernoulliMLE

x = 1 0 0 0 1 1 0 0 1 0

t = 4

MLE = 0.4000

Func-count x f(x) Procedure

1 0.381966 6.73697 initial

2 0.618034 7.69939 golden

3 0.236068 7.3902 golden

4 0.408979 6.73179 parabolic

5 0.399339 6.73013 parabolic

6 0.400045 6.73012 parabolic

7 0.400001 6.73012 parabolic

8 0.399968 6.73012 parabolic

Optimisation terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04

NumericalMLE = 0.4000

Figure 3.4: Plot of log(L(1, 0, 0, 0, 1, 1, 0, 0, 1, 0; θ)) as a function of the parameter θ over the pa-
rameter space ΘΘ = [0, 1] and the MLE θ̂10 of 0.4 for the coin-tossing experiment.

0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
−3

10
−2

10
−1

10
0

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Labwork 3.4.6 Recall Labwork 2.2.2 where you modeled the arrival of buses at a bus stop using the
IID Exponential(λ∗ = 0.1) distributed inter-arrival times with a mean of 1/λ∗ = 10 minutes. Once
again, seed the fundamental sampler by your Student ID (e.g. if your ID is 11424620 then type
rand(’twister’, 11424620);), just before simulating the inter-arrival times of the next seven
buses. Hand in the following six items:

1. Waiting times x1, x2, . . . , x7 between arrivals of the next seven buses at your ID-seeded bus
stop;



CHAPTER 3. ESTIMATION 40

2. A plot of the empirical DF F̂n from your (simulated) data x1, x2, . . . , x7. [You may use the
Matlab function ECDF of Labwork 5.0.11)];

3. The first, second and third sample quartiles as well as the 0.20th sample quantile for your data
x1, x2, . . . , x7. [You may use the Matlab function qthSampleQuantile of Labwork 5.0.12];

4. Pretending that you did not know the true parameter (λ∗ = 0.1) used in the simulation,
produce the maximum likelihood estimate (ML estimate) λ̂7 from your seven observations
x1, x2, . . . , x7;

5. Plot the log-likelihood function for your data x1, x2, . . . , x7 as a function of the parameter λ;
and

6. Show that you have verified that the numerical optimisation routine fminbnd returns the
correct ML estimate λ̂7.

Summarizing Table of Point Estimators

Using the sample meanXn and sample standard deviation Sn defined in (3.1) and (3.5), respectively,
we summarise the two point estimators of the parameters of some common distributions below. For
some cases, the MLE is the same as the MME and can be solved analytically.

Table 3.1: Summary of the Method of Moment Estimator (MME) and the Maximum Likelihood
Estimator (MLE) for some IID Experiments.
Statistical Experiment MLE MME

X1, X2, . . . , Xn
IID∼ Bernoulli(θ) θ̂ = Xn same as MLE

X1, X2, . . . , Xn
IID∼ Exponential(λ) λ̂ = 1/Xn same as MLE

X1, X2, . . . , Xn
IID∼ Normal(µ, σ2) µ̂ = Xn, σ̂ =

√
n−1
n S2

n µ̂ = Xn, σ̂ = Sn

X1, X2, . . . , Xn
IID∼ Lognormal(λ, ζ) λ̂ = 1

n

∑n
i=1 log(Xi) λ̂ = log(Xn)− 1

2 ζ̂
2

ζ̂ =
√

1
n

∑n
i=1 (log(Xi)− λ̂)2 ζ̂ =

√
log
(
S2
n/X

2
n + 1

)

Example 3.4.7 (Homework 3.4.7 of Assignment 9 from 6.7 on page 275 of Ang & Tang)
The distribution of ocean wave heights, H, may be modeled with the Raleigh(α) RV with parameter
α and probability density function,

f(h;α) =
h

α2
exp

(
−1

2
(h/α)2

)
, h ∈ H := [0,∞) .

The parameter space for alpha is AA = (0,∞). Suppose that the following measurements h1, h2, . . . , h10

of wave heights in meters were observed to be

1.50, 2.80, 2.50, 3.20, 1.90, 4.10, 3.60, 2.60, 2.90, 2.30 ,

respectively. Under the assumption that the 10 samples are IID realisations from a Raleigh(α∗) RV
with a fixed and unknown parameter α∗, find the ML estimate α̂10 of α∗.



CHAPTER 3. ESTIMATION 41

We first obtain the log-likelihood function of α for the data h1, h2, . . . , hn
IID∼ Raleigh(α).

`(α) := log(L(h1, h2, . . . , hn;α)) = log

(
n∏
i=1

f(hi;α)

)
=

n∑
i=1

log(f(hi;α))

=
n∑
i=1

log
(
hi
α2
e−

1
2

(hi/α)2
)

=
n∑
i=1

(
log(hi)− 2 log(α)−1

2
(hi/α)2

)

=
n∑
i=1

(log(hi))− 2n log(α)−
n∑
i=1

(
1
2
h2
iα
−2

)
Now, let us take the derivative with respect to α,

∂

∂α
(`(α)) :=

∂

∂α

(
n∑
i=1

(log(hi))− 2n log(α)−
n∑
i=1

(
1
2
h2
iα
−2

))

=
∂

∂α

(
n∑
i=1

(log(hi))

)
− ∂

∂α
(2n log(α))− ∂

∂α

(
n∑
i=1

(
1
2
h2
iα
−2

))

= 0− 2n
1
α
−

n∑
i=1

(
1
2
h2
i (−2α−3)

)
= −2nα−1 + α−3

n∑
i=1

(
h2
i

)
Next, we set the derivative to 0, solve for α, and set the solution equal to the ML estimate α̂n.

0 =
∂

∂α
(`(α)) ⇐⇒ 0 = −2nα−1 + α−3

n∑
i=1

h2
i ⇐⇒ 2nα−1 = α−3

n∑
i=1

h2
i

⇐⇒ 2nα−1α3 =
n∑
i=1

h2
i ⇐⇒ α2 =

1
2n

n∑
i=1

h2
i ⇐⇒ α̂n =

√√√√ 1
2n

n∑
i=1

h2
i

Therefore, the ML estimate of the unknown α∗ ∈ AA on the basis of our 10 observations h1, h2, . . . , h10

of wave heights is

α̂10 =

√√√√ 1
2 ∗ 10

10∑
i=1

h2
i

=

√
1
20

(1.502 + 2.802 + 2.502 + 3.202 + 1.902 + 4.102 + 3.602 + 2.602 + 2.902 + 2.302) u 2

Labwork 3.4.8 Recall labwork 2.2.8 where you simulated 1000 samples directly from the RV C (in
part 3.). Pretend that you do not know the true parameters used in this particular simulation from
RV C and do the following:

1. Store the first 10, the first 100 and all 1000 samples in data arrays named x10, x100 and
x1000 [Please don’t do this manually!].

2. Report the MLE of the two parameters for each of the three sub-arrays of data, namely x10,
x100 and x1000, i.e. report the six point estimates: λ̂10, ζ̂10, λ̂100, ζ̂100, λ̂1000, ζ̂1000.

3. Report the MME of the two parameters for each of the three sub-arrays of data, namely x10,
x100 and x1000, i.e. report the six point estimates: λ̂10, ζ̂10, λ̂100, ζ̂100, λ̂1000, ζ̂1000.



CHAPTER 3. ESTIMATION 42

4. Discuss in a short paragraph what you can deduce from the two sets of point estimates. Explain
how the maximum likelihood (ML) and method of moments (MM) estimates of the parameters
are related to the true parameters used in the simulation as the sample size increases in powers
of 10.

5. There is no credit for this part: Try to use fminsearch to numerically find the MLE for
your data and make a 2D-plot of the log-likelihood function being maximised.

Practical Excursion in Multi-dimensional Optimisation

The basic idea involves multi-dimensional iterations that attempt to converge on a local maximum
close to the starting vector θ(0) ∈ ΘΘ (our initial guess). We can employ Matlab’s built-in function
fminsearch to find the MLE of vector-valued parameters such as in the Lognormal model with two
parameters, i.e. θ = (λ, ζ) ∈ ΘΘ ⊂ R2. The function fminsearch is similar to fminbnd except that
it handles a given function of many variables, and the user specifies a starting vector θ(0) rather
than a starting interval. We illustrate the use of fminsearch on a more challenging target called
the Levy density:

f(x, y) = exp

0@− 1

50

0@ 5X
i=1

i cos ((i− 1)x+ i)

!0@ 5X
j=1

j cos ((j + 1)y + j)

1A+ (x+ 1.42513)2 + (y + 0.80032)2

1A1A

Figure 3.5: Plot of Levy density as a function of the parameter (x, y) ∈ [−10, 10]2 scripted in
Labwork 5.0.13.

fminsearch uses the simplex search method [Nelder, J.A., and Mead, R. 1965, Computer Journal,
vol. 7, p. 308-313]. For an animation of the method and more details, please visit http://en.
wikipedia.org/wiki/Nelder-Mead_method. An advantage of the method is that it does not use
numerical (finite differencing) or analytical (closed-form expressions) gradients but relies on a direct
search method. Briefly, the simplex algorithm tries to “tumble and shrink” a simplex towards the
local valley of the function to be minimised. If k is the dimension of the parameter space or domain
of the function to be optimised, a k-dimensional simplex is specified by its k + 1 distinct vertices

http://en.wikipedia.org/wiki/Nelder-Mead_method
http://en.wikipedia.org/wiki/Nelder-Mead_method
http://en.wikipedia.org/wiki/Nelder-Mead_method
http://en.wikipedia.org/wiki/Nelder-Mead_method


CHAPTER 3. ESTIMATION 43

each of dimension k. Thus, a simplex is a triangle in a two-dimensional space and a pyramid in a
three-dimensional space. At each iteration of the algorithm:

1. A new point inside or nearby the current simplex is proposed.

2. The function’s value at the newly proposed point is compared with its values at the vertices
of the simplex.

3. One of the vertices is typically replaced by the proposed point, giving rise to a new simplex.

4. The first three steps are repeated until the diameter of the simplex is less than the specified
tolerance.

A major limitation of fminsearch, as demonstrated with the Levy target (encoded in Labwork 5.0.14)
is that it can only give local solutions. The global maximiser of the Levy function f(x, y) is
(−1.3069,−1.4249) and the global maximum is f(−1.3069,−1.4249) = 33.8775 For instance,
if we start the search close to, say (x(0), y(0)) = (−1.3,−1.4), as shown below, then the simplex
algorithm converges as desired to the solution (−1.3068,−1.4249).

>> [params, fvalue, exitflag, output] = fminsearch(’NegLevyDensity’,[-1.3 -1.4],options)

params = -1.3068 -1.4249

fvalue = -33.8775

exitflag = 1

output =

iterations: 24

funcCount: 46

algorithm: ’Nelder-Mead simplex direct search’

message: [1x194 char]

However, if we start the search further away, say (x(0), y(0)) = (1.3, 1.4), as shown below, then the
algorithm converges to the local maximiser (1.1627, 1.3093) with a local maximum value of
f(1.1627, 1.3093) = 0.9632, which is clearly smaller than the global maximum of 33.8775.

>> [params, fvalue, exitflag, output] = fminsearch(’NegLevyDensity’,[1.3 1.4],options)

params = 1.1627 1.3093

fvalue = -0.9632

exitflag = 1

output =

iterations: 29

funcCount: 57

algorithm: ’Nelder-Mead simplex direct search’

message: [1x194 char]

Therefore, we have to be extremely careful when using point-valued, iterative, local optimisation
algorithms, implemented in floating-point arithmetic to find the global maximum. Other examples
of such algorithms include:

• Conjugate Gradient Method:
http://en.wikipedia.org/wiki/Conjugate_gradient_method

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:
http://en.wikipedia.org/wiki/BFGS_method

• Simulated Annealing:
http://en.wikipedia.org/wiki/Simulated_annealing

http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/BFGS_method
http://en.wikipedia.org/wiki/BFGS_method
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Simulated_annealing


CHAPTER 3. ESTIMATION 44

Figure 3.6: Plot of the “well-behaved” (uni-modal and non-spiky) log(L((x1, x2, . . . , x100);λ, ζ)),
based on 100 samples (x1, x2, . . . , x100) drawn from the Lognormal(λ∗ = 10.36, ζ∗ = 0.26) as per
Labwork 5.0.15.

In general, we have no guarantee that the output of such local optimisation routines will indeed be
the global optimum. In practice, you can start the search at several distinct starting points and
choose the best local maximum from the lot.

When the target function is “well-behaved,” i.e. uni-modal or single-peaked and not too spiky,
the optimisation routine can be expected to perform well. Log-likelihood functions are often well-
behaved. Let us generate 100 samples from an RV C ∼ Lognormal(λ∗ = 10.36, ζ∗ = 0.26) by
exponentiating the samples from the Normal(10.36, 0.262) RV, and then compute the corresponding
MMEs and MLEs for parameters (λ, ζ) using the formulae in Table 3.1.

>> rand(’twister’,001); % set the fundamental sampler

>> % draw 100 samples from the Lognormal(10.36,0.26) RV

>> Cs = exp(arrayfun(@(u)(Sample1NormalByNewRap(u,10.36,0.26^2)),rand(1,100)));

>> MLElambdahat = mean(log(Cs)) % maximum likelihood estimate of lambda

MLElambdahat = 10.3397

>> MLEzetahat = sqrt(mean( (log(Cs)-MLElambdahat) .^ 2)) % max. lkl. estimate of zeta

MLEzetahat = 0.2744

>> MMEzetaahat = sqrt(log(var(Cs)/(mean(Cs)^2) + 1)) % moment estimate of zeta

MMEzetaahat = 0.2624

>> MMElambdahat = log(mean(Cs))-(0.5*MMEzetaahat^2) % moment estimate of lambda

MMElambdahat = 10.3417

Let us try to apply the simplex algorithm to find the MLE numerically. We first encode the negative
log-likelihood function of the parameters (λ, ζ) ∈ (0,∞)2 for the given data x, as follows:

NegLogNormalLogLkl.m
function l = NegLogNormalLogLkl(x,params)

% Returns the -log likelihood of [lambda zeta]=exp(params)

% for observed data vector x=(x_1,...,x_n) ~IID LogNormal(lambda, zeta).

% We define lambda and zeta as exp(params) to allow for unconstrained

% minimisation by fminsearch and respect the positive domain constraints



CHAPTER 3. ESTIMATION 45

% for Lambda and zeta. So in the end we re-transform, i.e. [lambda zeta]=exp(params)

% lambda=params(1); zeta=params(1);

lambda=exp(params(1)); zeta=exp(params(2));

% minus Log-likelihood function

l = -sum(log((1 ./ (sqrt(2*pi)*zeta) .* x) .* exp((-1/(2*zeta^2))*(log(x)-lambda).^2)));

Here is how we can call fminsearch and find the MLE after the re-transformation.

>> [params, fvalue, exitflag, output] = ...

fminsearch(@(params)(NegLogNormalLogLkl(Cs,params)),[log(5), log(1)])

params = 2.3360 -1.2931

fvalue = -1.0214e+03

exitflag = 1

output =

iterations: 74

funcCount: 131

algorithm: ’Nelder-Mead simplex direct search’

message: [1x194 char]

>> % But we want exp(params) since we defined lambda and zeta as exp(params)

exp(params)

ans = 10.3397 0.2744

Note that the MLEs (λ̂100, ζ̂100) = (10.3397, 0.2744) from 74 iterations or “tumbles” of the ‘Nelder-
Mead simplex (triangle)’ and the MLEs agree well with the direct evaluations MLElambdahat and
MLEzetahat based on the formulae in Table 3.1.

3.5 Confidence Sets

As we saw in Section 3.4, the point estimate θ̂n is a “single best guess” of the fixed and possibly
unknown parameter θ∗ ∈ ΘΘ. However, if we wanted to make a statement about our confidence in
an estimation procedure, then one possibility is to produce subsets from the parameter space ΘΘ
called confidence sets that “engulf” θ∗ with a probability of at least 1− α.

Formally, an 1− α confidence interval for the parameter θ∗ ∈ ΘΘ ⊂ R, based on n observations
or data points X1, X2, . . . , Xn, is an interval Cn that is a function of the data:

Cn := [C n, C n] = [C n(X1, X2, . . . , Xn), C n(X1, X2, . . . , Xn)] ,

such that:
Pθ∗

(
θ∗ ∈ Cn := [C n, C n]

)
≥ 1− α .

Note that the confidence interval Cn := [C n, C n] is a two-dimensional RV or a random vector in
R2 that depends on the two statistics C n(X1, X2, . . . , Xn) and C n(X1, X2, . . . , Xn), as well as θ∗,
which in turn determines the distribution of the data (X1, X2, . . . , Xn). In words, Cn engulfs the
true parameter θ∗ ∈ ΘΘ with a probability of at least1 − α. We call 1 − α as the coverage of the
confidence interval Cn.

Formally, a 1−α confidence set Cn for a vector-valued θ∗ ∈ ΘΘ ⊂ Rk is any subset of ΘΘ such that
Pθ∗(θ∗ ∈ Cn) ≥ 1 − α. The typical forms taken by Cn are k-dimensional boxes or hyper-cuboids,
hyper-ellipsoids and subsets defined by inequalities involving level sets of some estimator of θ∗.

Typically, we take α = 0.05 because we are interested in the 1 − α = 0.95 or 95% confidence
interval/set Cn ⊂ ΘΘ of θ∗ ∈ ΘΘ from an estimator Θ̂n of θ∗.



CHAPTER 3. ESTIMATION 46

Proposition 5 (Central Limit Theorem (CLT)) Let X1, X2, . . .
IID∼ X1 and suppose E(X1)

and V (X1) exists. Then:

Xn =
1
n

n∑
i=1

Xi  X ∼ Normal
(
E(X1),

V (X1)
n

)
, (3.16)

Xn − E(X1)  X − E(X1) ∼ Normal
(

0,
V (X1)
n

)
, (3.17)

√
n
(
Xn − E(X1)

)
 
√
n (X − E(X1)) ∼ Normal (0, V (X1)) , (3.18)

Zn :=
Xn − E(Xn)√

V (Xn)
=
√
n
(
Xn − E(X1)

)√
V (X1)

 Z ∼ Normal (0, 1) , (3.19)

lim
n→∞

P

Xn − E(Xn)√
V (Xn)

≤ z

 = lim
n→∞

P (Zn ≤ z) = Φ(z) :=
∫ z

−∞

(
1√
2π

exp
(
−x2

2

))
dx . (3.20)

Thus, for sufficiently large sample size n (n > 30) we can make the following approximation:

P

Xn − E(Xn)√
V (Xn)

≤ z

 u P (Z ≤ z) = Φ(z) :=
∫ z

−∞

(
1√
2π

exp
(
−x2

2

))
dx . (3.21)

Proof: See any intermediate to advanced undergraduate text in probability.

Heuristic Interpretation of CLT: Probability statements about the sample mean RV Xn can be
approximated using a Normal distribution.

Let us look at an example that makes use of the CLT next.

Example 3.5.1 (Errors in computer code (Wasserman03, p. 78)) Suppose the collection of
RVs X1, X2, . . . , Xn model the number of errors in n computer programs named 1, 2, . . . , n, re-
spectively. Suppose that the RV Xi modelling the number of errors in the ith program is the
Poisson(λ∗ = 5) for any i = 1, 2, . . . , n. Also suppose that they are independently distributed.
In short, we suppose that:

X1, X2, . . . , Xn
IID∼ Poisson(λ∗ = 5) .

Suppose we have n = 125 programs and want to make a probability statement about Xn which is
the average number of errors per program out of these 125 programs. Since E(Xi) = λ∗ = 5 and
V (Xi) = λ∗ = 5, we may want to know how often our sample mean X125 differs from the expectation
of 5 errors per program. Using the CLT, we can approximate P (Xn < 5.5), for instance, as follows:

P (Xn < 5.5) = P

(√
n(Xn − E(X1))√

V (X1)
<

√
n(5.5− E(X1))√

V (X1)

)

u P

(
Z <

√
n(5.5− λ∗)√

λ∗

)
[by (3.21), and E(X1) = V (X1) = λ∗]

= P

(
Z <

√
125(5.5− 5)√

5

)
[Since, λ∗ = 5 and n = 125 in this Example]

= P (Z ≤ 2.5) = Φ(2.5) =
∫ 2.5

−∞

(
1√
2π

exp
(
−x2

2

))
dx u 0.993790334674224 .

To obtain the final number in this approximation, we need the following:



CHAPTER 3. ESTIMATION 47

Labwork 3.5.2 The numerical approximation of Φ(2.5) was obtained via the call shown below to
our erf-based NormalCdf function from 5.0.9. We could have also found it from a pre-computed
Table for Φ(x).

>> format long

>> disp(NormalCdf(2.5,0,1))

0.993790334674224

The CLT says that if X1, X2, . . .
IID∼ X1 then Zn :=

√
n(Xn − E(X1))/

√
V (X1) is approximately

distributed as Normal(0, 1). In Example 3.5.1, we knew
√
V (X1) since we assumed knowledge of

λ∗ = 5. However, in general, we may not know
√
V (X1). The next proposition says that we may

estimate
√
V (X1) using the sample standard deviation Sn of X1, X2, . . . , Xn, according to (3.5),

and still make probability statements about the sample mean Xn using a Normal distribution,
provided n is not too small, for e.g. n ≥ 30.

Proposition 6 (CLT based on Sample Variance) Let X1, X2, . . .
IID∼ X1 and suppose E(X1)

and V (X1) exists, then: √
n
(
Xn − E(X1)

)
Sn

 Normal(0, 1) . (3.22)

The following property of an estimator makes the task of producing confidence intervals straight-
forward.

Definition 19 (Asymptotic Normality of Estimators) An estimator Θ̂n of a fixed and pos-
sibly unknown parameter θ∗ ∈ ΘΘ is asymptotically normal if:

Θ̂n − θ∗

sen
 Normal(0, 1) . (3.23)

That is, Θ̂n  Normal(θ∗, se2
n). By a further estimation of sen :=

√
Vθ(Θ̂n) by ŝen, we can see that

Θ̂n  Normal(θ∗, ŝe2
n) on the basis of (3.22).

Proposition 7 (Normal-based Asymptotic Confidence Interval) Suppose an estimator Θ̂n

of parameter θ∗ ∈ ΘΘ ⊂ R is asymptotically normal:

Θ̂n  Normal(θ∗, ŝe2
n) .

Let the RV Z ∼ Normal(0, 1) have DF Φ and inverse DF Φ−1. Let:

zα/2 = Φ−1(1− (α/2)), that is, P (Z > zα/2) = α/2 and P (−zα/2 < Z < zα/2) = 1− α .

Then:
Pθ∗(θ∗ ∈ Cn) = P

(
θ∗ ∈ [Θ̂n − zα/2ŝen, Θ̂n + zα/2ŝen]

)
→ 1− α .

Therefore:
Cn := [C n, C n] = [Θ̂n − zα/2ŝen, Θ̂n + zα/2ŝen]

is the 1−α Normal-based asymptotic confidence interval that relies on the asymptotic normality of
the estimator Θ̂n of θ∗ ∈ ΘΘ ⊂ R.



CHAPTER 3. ESTIMATION 48

Proof: Define the centralised and scaled estimator as Zn := (bΘn − θ∗)/bsen. By assumption, Zn  Z ∼ Normal(0, 1).

Therefore,

Pθ∗ (θ∗ ∈ Cn) = Pθ∗
“
θ∗ ∈ [bΘn − zα/2 bsen, bΘn + zα/2 bsen]

”
= Pθ∗

“bΘn − zα/2 bsen ≤ θ∗ ≤ bΘn + zα/2 bsen”
= Pθ∗

“
−zα/2 bsen ≤ bΘn − θ∗ ≤ zα/2 bsen”

= Pθ∗

 
−zα/2 ≤

bΘn − θ∗bsen ≤ zα/2

!
→ Pθ∗

`
−zα/2 ≤ Z ≤ zα/2

´
= 1− α

Figure 3.7: Density and Confidence Interval of the Asymptotically Normal Point Estimator

For 95% confidence intervals, α = 0.05 and zα/2 = z0.025 = 1.96 u 2. This leads to the approx-
imate 95% confidence interval of θ̂n ± 2ŝen, where θ̂n = Θ̂n(x1, x2, . . . , xn) and x1, x2, . . . , xn
are the data or observations of the RVs X1, X2, . . . , Xn.

Example 3.5.3 (Confidence interval for θ∗ from n Bernoulli(θ∗) trials) Let X1, X2, . . . , Xn
IID∼

Bernoulli(θ∗) for some fixed but unknown parameter θ∗ ∈ ΘΘ = [0, 1]. Consider the following point
estimator of θ∗:

Θ̂n((X1, X2, . . . , Xn)) = n−1
n∑
i=1

Xi .

That is, we take the sample mean of the n IID Bernoulli(θ∗) trials to be our point estimator of
θ∗ ∈ [0, 1]. Then, this estimator is unbiased since:

Eθ∗(Θ̂n) = Eθ∗

(
n−1

n∑
i=1

Xi

)
= n−1Eθ∗

(
n∑
i=1

Xi

)
= n−1

n∑
i=1

Eθ∗(Xi) = n−1nθ∗ = θ∗ .

The above computations should remind you that the statistic:

Tn((X1, X2, . . . , Xn)) := n Θ̂n((X1, X2, . . . , Xn)) =
n∑
i=1

Xi

is the Binomial(n, θ∗) RV. The standard error sen of this estimator is:

sen =
√
Vθ∗(Θ̂n) =

√√√√Vθ∗

(
n∑
i=1

Xi

n

)
=

√√√√( n∑
i=1

1
n2
Vθ∗(Xi)

)
=
√

n

n2
Vθ∗(Xi) =

√
θ∗(1− θ∗)/n .



CHAPTER 3. ESTIMATION 49

Figure 3.8: 100 realisations of C10, C100, C1000 based on samples of size n = 10, 100 and 1000
drawn from the Bernoulli(θ∗ = 0.5) RV as per Labwork 5.0.16. The MLE θ̂n (cyan dot) and the
log-likelihood function (magenta curve) for each of the 100 replications of the experiment for each
sample size n are depicted. The approximate normal-based 95% confidence intervals with blue
boundaries are based on the exact sen =

√
θ∗(1− θ∗)/n =

√
1/4, while those with red boundaries

are based on the estimated ŝen =
√
θ̂n(1− θ̂n)/n. The fraction of times the true parameter θ∗ = 0.5

was engulfed by the exact and approximate confidence interval (empirical coverage) over the 100
replications of the experiment for each of the three sample sizes are given by the numbers after
Cvrg.= and ∼=, above each sub-plot, respectively.

Since θ∗ is unknown, we obtain the estimated standard error ŝen from the point estimate θ̂n of θ∗

on the basis of n observed data points x = (x1, x2, . . . , xn) of the experiment:

ŝen =
√
θ̂n(1− θ̂n)/n, where, θ̂n = Θ̂n((x1, x2, . . . , xn)) = n−1

n∑
i=1

xi .

By the central limit theorem, Θ̂n  Normal(θ∗, ŝen), i.e. Θ̂n is asymptotically normal. Therefore,
an asymptotically (for large sample size n) approximate 1− α normal-based confidence interval is:

θ̂n ± zα/2ŝen = θ̂n ± zα/2

√
θ̂n(1− θ̂n)

n
:=

 θ̂n − zα/2
√
θ̂n(1− θ̂n)

n
, θ̂n + zα/2

√
θ̂n(1− θ̂n)

n





CHAPTER 3. ESTIMATION 50

Finally, since biasn(Θ̂n) = 0 for any n and sen =
√
θ∗(1− θ∗)/n → 0, as n → ∞, by Proposition

4, Θ̂n
P−→ θ∗. That is Θ̂n is an asymptotically consistent estimator of θ∗. Thus, we can make

the width of the confidence interval as small as we want by making the number of observations or
sample size n as large as we can.

The confidence Interval for the coin tossing experiment in Example 3.4.4 with the observed sequence
of Bernoulli outcomes (Heads 7→ 1 and Tails 7→ 0) being (1, 0, 0, 0, 1, 1, 0, 0, 1, 0). We estimated the
probability θ∗ of observing Heads with the unbiased, asymptotically consistent estimator
Θ̂n((X1, X2, . . . , Xn)) = n−1

∑n
i=1Xi of θ∗. The point estimate of θ∗ was:

θ̂10 = Θ̂10((x1, x2, . . . , x10)) = Θ̂10((1, 0, 0, 0, 1, 1, 0, 0, 1, 0))

=
1 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 0

10
=

4
10

= 0.40 .

The normal-based confidence interval for θ∗ may not be a valid approximation here with just n = 10
samples. Nevertheless, we will compute a 95% normal-based confidence interval:

C10 = 0.40± 1.96

√
0.40(1− 0.40)

10
= 0.40± 0.3036 = [0.0964, 0.7036]

with a width of 0.6072. When I increased the sample size n of the experiment from 10 to 100 by
tossing the same coin another 90 times, I discovered that a total of 57 trials landed as Heads. Thus
my point estimate and confidence interval for θ∗ are:

θ̂100 =
57
100

= 0.57 and C100 = 0.57±1.96

√
0.57(1− 0.57)

100
= 0.57±0.0495 = [0.5205, 0.6195]

with a much smaller width of 0.0990. Thus our confidence interval shrank considerably from a width
of 0.6072 after an additional 90 Bernoulli trials.

3.5.4 Properties of the Maximum Likelihood Estimator

Next, we list some nice properties of the ML Estimator Θ̂n for the fixed and possibly unknown
θ∗ ∈ ΘΘ.

1. The ML Estimator is asymptotically consistent, i.e. Θ̂n
P−→ θ∗.

2. The ML Estimator is asymptotically normal, i.e. (Θ̂n − θ∗)/ŝen  Normal(0, 1).

3. The estimated standard error of the ML Estimator, ŝen, can usually be computed analytically
using the Fisher Information.

4. Because of the previous two properties, the 1 − α confidence interval can also be computed
analytically as Θ̂n ± zα/2ŝen.

5. The ML Estimator is equivariant, i.e. ψ̂n = g(θ̂n) is the ML Estimate of ψ∗ = g(θ∗), for
some smooth function g(θ) = ψ : ΘΘ 7→ ΨΨ.

6. We can also obtain the estimated standard error of the estimator Ψ̂n of ψ∗ ∈ ΨΨ via the Delta
Method.

7. The ML Estimator is asymptotically optimal or efficient. This means that the MLE
has the smallest variance among the well-behaved class of estimators as the sample size gets
larger.

8. ML Estimator is close to the Bayes estimator (obtained in the Bayesian inferential paradigm).



CHAPTER 3. ESTIMATION 51

3.5.5 Fisher Information

Let X1, X2, . . . , Xn
IID∼ f(X1; θ). Here, f(X1; θ) is the probability density function (pdf) or the

probability mass function (pmf) of the RV X1. Since all RVs are identically distributed, we simply
focus on X1 without loss of generality.

Definition 20 (Fisher Information) The score function of an RV X for which the density is
parameterised by θ is defined as:

S(X; θ) :=
∂logf(X; θ)

∂θ
, and Eθ(S(X; θ)) = 0 .

The Fisher Information is

In := Vθ

(
n∑
i=1

S(Xi; θ)

)
=

n∑
i=1

Vθ (S(Xi; θ)) = nI1(θ), (3.24)

where I1 is the Fisher Information of just one of the RVs Xi,e.g. X:

I1(θ) := Vθ (S(X; θ)) = Eθ
(
S2(X, θ)

)
= −Eθ

(
∂2logf(X; θ)

∂2θ

)
=

−
∑

x∈X

(
∂2 log f(x;θ)

∂2θ

)
f(x; θ) for discrete X

−
∫
x∈X

(
∂2 log f(x;θ)

∂2θ

)
f(x; θ)dx for continuous X

(3.25)

Next, we give a general method for obtaining:

1. The standard error sen(Θ̂n) of any maximum likelihood estimator Θ̂n of the possibly unknown
and fixed parameter of interest θ∗ ∈ ΘΘ, and

2. The 1− α confidence interval for θ∗.

Proposition 8 (Asymptotic Normality of the ML Estimator & Confidence Intervals) Let

Θ̂n be the maximum likelihood estimator of θ∗ ∈ ΘΘ with standard error sen :=
√
Vθ∗(Θ̂n). Under

appropriate regularity conditions, the following propositions are true:

1. The standard error sen can be approximated by the side of a square whose area is the inverse
Fisher Information at θ∗, and the distribution of Θ̂n approaches that of the Normal(θ∗, se2

n)
distribution as the samples size n gets larger. In other terms:

sen u
√

1/In(θ∗) and
Θ̂n − θ∗

sen
 Normal(0, 1)

2. The approximation holds even if we substitute the ML Estimate θ̂n for θ∗ and use the estimated

standard error ŝen instead of sen. Let ŝen =
√

1/In(θ̂n). Then:

Θ̂n − θ∗

ŝen
 Normal(0, 1)

3. Using the fact that Θ̂n  Normal(θ∗, ŝe2
n), we can construct the estimate of an approximate

Normal-based 1− α confidence interval as:

Cn = [Cn, Cn] = [θ̂n − zα/2ŝen, θ̂n + zα/2ŝen] = θ̂n ± zα/2ŝen



CHAPTER 3. ESTIMATION 52

Now, let us do an example.

Example 3.5.6 (MLE and Confidence Interval for the IID Poisson(λ) experiment) Suppose
the fixed parameter λ∗ ∈ ΛΛ = (0,∞) is unknown. Let X1, X2, . . . , Xn

IID∼ Poisson(λ∗). We want to
find the ML Estimate λ̂n of λ∗ and produce a 1− α confidence interval for λ∗.

The MLE can be obtained as follows:

The likelihood function is:

L(λ) := L(x1, x2, . . . , xn;λ) =
n∏
i=1

f(xi;λ) =
n∏
i=1

e−λ
λxi
xi!

Hence, the log-likelihood function is:

`(θ) := log(L(λ)) = log

(
n∏
i=1

e−λ
λxi

xi!

)
=

n∑
i=1

log
(
e−λ

λxi

xi!

)
=

n∑
i=1

(
log(e−λ) + log(λxi)− log(xi!)

)
=

n∑
i=1

(−λ+ xi log(λ)− log(xi!)) =
n∑
i=1

−λ+
n∑
i=1

xi log(λ)−
n∑
i=1

log(xi!)

= n(−λ) + log(λ)

(
n∑
i=1

xi

)
−

n∑
i=1

log(xi!)

Next, take the derivative of `(λ):

∂

∂λ
`(λ) =

∂

∂λ

(
n(−λ) + log(λ)

(
n∑
i=1

xi

)
−

n∑
i=1

log(xi!)

)
= n(−1) +

1
λ

(
n∑
i=1

xi

)
+ 0

and set it equal to 0 to solve for λ, as follows:

0 = n(−1) +
1
λ

(
n∑
i=1

xi

)
+ 0 ⇐⇒ n =

1
λ

(
n∑
i=1

xi

)
⇐⇒ λ =

1
n

(
n∑
i=1

xi

)
= xn

Finally, the ML Estimator of λ∗ is Λ̂n = Xn and the ML estimate is λ̂n = xn.

Now, we want an 1 − α confidence interval for λ∗ using the ŝen u
√

1/In(λ̂n) that is based
on the Fisher Information In(λ) = nI1(λ) given in (3.24). We need I1 given in (3.25). Since
X1, X2, . . . , Xn ∼ Poisson(λ), we have discrete RVs:

I1 = −
∑
x∈X

(
∂2 log(f(x;λ))

∂2λ

)
f(x;λ) = −

∞∑
x=0

(
∂2 log(f(x;λ))

∂2λ

)
f(x;λ)

First find

∂2 log(f(x;λ))
∂2λ

=
∂

∂λ

(
∂

∂λ
log (f(x;λ))

)
=

∂

∂λ

(
∂

∂λ
log
(
e−λ

λx

x!

))
=

∂

∂λ

(
∂

∂λ
(−λ+ x log(λ)− log(x!))

)
=

∂

∂λ

(
−1 +

x

λ
− 0
)

= − x

λ2

Now, substitute the above expression into the right-hand side of I1 to obtain:

I1 = −
∞∑
x=0

(
− x

λ2

)
f(x;λ) =

1
λ2

∞∑
x=0

(x) f(x;λ) =
1
λ2

∞∑
x=0

(x) e−λ
λx

x!
=

1
λ2
Eλ(X) =

1
λ2
λ =

1
λ



CHAPTER 3. ESTIMATION 53

In the third-to-last step above, we recognise the sum as the expectation of the Poisson(λ) RV X,
namely Eλ(X) = λ. Therefore, the estimated standard error is:

ŝen u
√

1/In(λ̂n) =
√

1/(nI1(λ̂n)) =
√

1/(n(1/λ̂n)) =
√
λ̂n/n

and the approximate 1− α confidence interval is

λ̂n ± zα/2ŝen = λ̂n ± zα/2
√
λ̂n/n

Thus, using the MLE and the estimated standard error via the Fisher Information, we can carry
out point estimation and confidence interval construction in most parametric families of RVs
encountered in typical engineering applications.

Example 3.5.7 (This was Homework 3.5.5 of Assignment 10 ) Suppose X1, X2, . . . , Xn
IID∼

Bernoulli(θ∗). Also, suppose that θ∗ ∈ ΘΘ = [0, 1] is unknown. We have already shown in Exam-
ple 3.4.4 that the ML estimator of θ∗ is θ̂n = Xn. Using the identity:

ŝen =
1√
In(θ̂n)

(1) we can compute ŝen(Θ̂n), the estimated standard error of the unknown parameter θ∗ as follows:

ŝen(Θ̂n) =
1√
In(θ̂n)

=
1√

nI1(θ̂n)
.

So, we need to first compute I1(θ), the Fisher Information of one sample. Due to (3.25) and the
fact that the Bernoulli(θ∗) distributed RV X is discrete with probability mass function f(x; θ) =
θx(1− θ)1−x, for x ∈ X := {0, 1}, we have,

I1(θ) = −Eθ
(
∂2logf(X; θ)

∂2θ

)
= −

∑
x∈X={0,1}

(
∂2 log

(
θx(1− θ)1−x)
∂2θ

)
θx(1− θ)1−x

Next, let us compute,

∂2 log
(
θx(1− θ)1−x)
∂2θ

:=
∂

∂θ

(
∂

∂θ

(
log
(
θx(1− θ)1−x))) =

∂

∂θ

(
∂

∂θ
(x log(θ) + (1− x) log(1− θ))

)
=

∂

∂θ

(
xθ−1 + (1− x)(1− θ)−1(−1)

)
=

∂

∂θ

(
xθ−1 − (1− x)(1− θ)−1

)
= x(−1)θ−1−1 − (1− x)(−1)(1− θ)−1−1(−1) = −xθ−2 − (1− x)(1− θ)−2

Now, we compute the expectation I1, i.e. the sum over the two possible values of x ∈ {0, 1},

I1(θ) = −
∑

x∈X={0,1}

(
∂2 log

(
θx(1− θ)1−x)
∂2θ

)
θx(1− θ)1−x

= −
((
−0 θ−2 − (1− 0)(1− θ)−2

)
θ0(1− θ)1−0 +

(
−1 θ−2 − (1− 1)(1− θ)−2

)
θ1(1− θ)1−1

)
= −

((
0− 1(1− θ)−2

)
1 (1− θ)1 +

(
−θ−2 − 0

)
θ1 1

)
= (1− θ)−2(1− θ)1 + θ−2θ1

= (1− θ)−1 + θ−1 =
1

1− θ
+

1
θ

=
θ

θ(1− θ)
+

1− θ
θ(1− θ)

=
θ + (1− θ)
θ(1− θ)

=
1

θ(1− θ)



CHAPTER 3. ESTIMATION 54

Therefore, the desired estimated standard error of our estimator, can be obtained by substituting
the ML estimate θ̂n = xn := n−1

∑n
i=1 xi of the unknown θ∗ as follows:

ŝen(θ̂n) =
1√
In(θ̂n)

=
1√

nI1(θ̂n)
=
√

1
n 1bθn(1−bθn)

=

√
θ̂n(1− θ̂n)

n
=

√
xn(1− xn)

n
.

(2) Using ŝen(θ̂n) we can construct an approximate 95% confidence interval Cn for θ∗, due to the
asymptotic normality of the ML estimator of θ∗, as follows:

Cn = θ̂n ± 1.96

√
θ̂n(1− θ̂n)

n
= xn ± 1.96

√
xn(1− xn)

n

Recall that Cn is the realisation of a random set based on your observed samples or data x1, x2, . . . , xn.
Furthermore, Cn’s construction procedure ensures the engulfing of the unknown θ∗ with probability
approaching 0.95 as the sample size n gets large.

(3) Flip any New Zealand coin as identically and independently as possible exactly 30 times and
record the outcomes (1 for heads and 0 for tails). Report the ML point estimate and the 95%
confidence interval from your data. Do you think that the way you have flipped your coin and the
outcomes you have witnessed can hint at the fairness (θ∗ = 0.5) or unfairness (θ∗ 6= 0.5) of the
coin. Write a couple of sentences to make your case. [Take the time to flip coins this many times
in a row, if you have not done so already. Be honest and really do it. I flipped an American quarter
100 times to produce the data in Example 3.5.3].

Example 3.5.8 (This was Homework 3.5.6 of Assignment 10 ) Let us get our hands dirty
with a continuous RV next. Let X1, X2, . . . , Xn

IID∼ Exponential(λ∗). We saw that the ML estimator
of λ∗ ∈ ΛΛ = (0,∞) is Λ̂n = 1/Xn and its ML estimate is λ̂n = 1/xn, where x1, x2, . . . , xn are our
observed data.

(1) Let us obtain the Fisher Information In for this experiment to find the standard error:

ŝen(Λ̂n) =
1√

In(λ̂n)
=

1√
nI1(λ̂n)

and construct an approximate 95% confidence interval for λ∗ using the asymptotic normality of its
ML estimator Λ̂n.

So, we need to first compute I1(θ), the Fisher Information of one sample. Due to (3.25) and
the fact that the Exponential(λ∗) distributed RV X is continuous with probability density function
f(x;λ) = λe−λx, for x ∈ X := [0,∞), we have,

I1(θ) = −Eθ
(
∂2logf(X; θ)

∂2θ

)
= −

∫
x∈X=[0,∞)

(
∂2 log

(
λe−λx

)
∂2λ

)
λe−λx dx

Let us compute the above integrand next.

∂2 log
(
λe−λx

)
∂2λ

:=
∂

∂λ

(
∂

∂λ

(
log
(
λe−λx

)))
=

∂

∂λ

(
∂

∂λ

(
log(λ) + log(e−λx

))
=

∂

∂λ

(
∂

∂λ
(log(λ)− λx)

)
=

∂

∂λ

(
λ−1 − x

)
= −λ−2 − 0 = − 1

λ2



CHAPTER 3. ESTIMATION 55

Now, let us evaluate the integral by recalling that the expectation of the constant 1 is 1 for any
RV X governed by some parameter, say θ. For instance when X is a continuous RV, Eθ(1) =∫
x∈X 1 f(x; θ) =

∫
x∈X f(x; θ) = 1. Therefore, the Fisher Information of one sample is

I1(θ) = −
∫
x∈X=[0,∞)

(
∂2 log

(
λe−λx

)
∂2λ

)
λe−λx dx = −

∫ ∞
0

(
− 1
λ2

)
λe−λx dx

= −
(
− 1
λ2

)∫ ∞
0

λe−λx dx =
1
λ2

1 =
1
λ2

Now, we can compute the desired estimated standard error, by substituting in the ML estimate
λ̂n = 1/(xn) := 1/ (

∑n
i=1 xi) of λ∗, as follows:

ŝen(Λ̂n) =
1√

In(λ̂n)
=

1√
nI1(λ̂n)

=
1√
n 1bλ2

n

=
λ̂n√
n

=
1√
n xn

Using ŝen(λ̂n) we can construct an approximate 95% confidence interval Cn for λ∗, due to the
asymptotic normality of the ML estimator of λ∗, as follows:

Cn = λ̂n ± 1.96
λ̂n√
n

=
1
xn
± 1.96

1√
n xn

(2) Recall labwork 2.2.2 where you modeled the arrival of buses using Exponential(λ∗ = 0.1) dis-
tributed inter-arrival time with a mean of 1/λ∗ = 10 minutes. Using the data of these seven
inter-arrival times at your ID-seeded bus stop and pretending that you do not know the true λ∗,
report (2.a) the ML estimate of λ∗, (2.b) 95% confidence interval for it and (2.c) whether the true
value λ∗ = 1/10 is engulfed by your confidence interval.

3.5.9 Delta Method

A more general estimation problem of interest concerns some function of the parameter θ ∈ ΘΘ, say
g(θ) = ψ : ΘΘ 7→ ΨΨ. So, g(θ) = ψ is a function from the parameter space ΘΘ to ΨΨ. Thus, we are
not only interested in estimating the fixed and possibly unknown θ∗ ∈ ΘΘ using the ML estimator
Θ̂n and its ML estimate θ̂n, but also in estimating ψ∗ = g(θ∗) ∈ ΨΨ via an estimator Ψ̂n and its
estimate ψ̂n. We exploit the equivariance property of the ML estimator Θ̂n of θ∗ and use the Delta
method to find the following analytically:

1. The ML estimator of ψ∗ = g(θ∗) ∈ ΨΨ is

Ψ̂n = g(Θ̂n)

and its point estimate is

ψ̂n = g(θ̂n)

2. Suppose g(θ) = ψ : ΘΘ 7→ ΨΨ is any smooth function of θ, i.e. g is differentiable, and
g′(θ) := ∂

∂θg(θ) 6= 0. Then, the distribution of the ML estimator Ψ̂n is asymptotically

Normal(ψ∗, ŝen(Ψ̂n)
2
), i.e.:

Ψ̂n − ψ∗

ŝen(Ψ̂n)
 Normal(0, 1)



CHAPTER 3. ESTIMATION 56

where the standard error ŝen(Ψ̂n) of the ML estimator Ψ̂n of the unknown quantity ψ∗ ∈ ΨΨ
can be obtained from the standard error ŝen(Θ̂n) of the ML estimator Θ̂n of the parameter
θ∗ ∈ ΘΘ, as follows:

ŝen(Ψ̂n) = |g′(θ̂n)|ŝen(Θ̂n)

3. Using Normal(ψ∗, ŝen(Ψ̂n)
2
), we can construct the estimate of an approximate Normal-based

1− α confidence interval for ψ∗ ∈ ΨΨ:

Cn = [Cn, Cn] = ψ̂n ± zα/2ŝen(ψ̂n)

Let us do an example next.

Example 3.5.10 Let X1, X2, . . . , Xn
IID∼ Bernoulli(θ∗). Let ψ = g(θ) = log(θ/(1 − θ)). Suppose

we are interested in producing a point estimate and confidence interval for ψ∗ = g(θ∗). We can use
the Delta method as follows:

First, the estimated standard error of the ML estimator of θ∗, as shown in Example 3.5.7, is

ŝen(Θ̂n) =

√
θ̂n(1− θ̂n)

n
.

The ML estimator of ψ∗ is:
Ψ̂n = log(Θ̂n/(1− Θ̂n))

and the ML estimate of ψ∗ is:
ψ̂n = log(θ̂n/(1− θ̂n)) .

Since, g′(θ) = 1/(θ(1− θ)), by the Delta method, the estimated standard error of the ML estimator
of ψ∗ is:

ŝen(Ψ̂n) = |g′(θ̂n)|(ŝen(Θ̂n)) =
1

θ̂n(1− θ̂n)

√
θ̂n(1− θ̂n)

n
=

1√
nθ̂n(1− θ̂n)

=
1√

nxn(1− xn)
.

An approximate 95% confidence interval for ψ∗ = log(θ∗/(1− θ∗)) is:

ψ̂n ±
1.96√

nθ̂n(1− θ̂n)
= log(θ̂n/(1− θ̂n))± 1.96√

nθ̂n(1− θ̂n)
= log(xn/(1− xn))± 1.96√

nxn(1− xn)
.

Example 3.5.11 (This was Homework 3.5.8 of Assignment 10 ) Let us try the Delta method
on a continuous RV. Let X1, X2, . . . , Xn

IID∼ Normal(µ∗, σ∗2). Suppose that µ∗ is known and σ∗ is
unknown. Let us derive the ML estimate ψ̂n of ψ∗ = log(σ∗) and a 95% confidence interval for it
in 6 steps.



CHAPTER 3. ESTIMATION 57

(1) First let us find the log-likelihood function `(σ)

`(σ) := log(L(σ)) := log(L(x1, x2, . . . , xn;σ)) = log

(
n∏
i=1

f(xi;σ)

)
=

n∑
i=1

log (f(xi;σ))

=
n∑
i=1

log
(

1
σ
√

2π
exp

(
− 1

2σ2
(xi − µ)2

))
∵ f(xi;σ) in (2.7) is pdf of Normal(µ, σ2) RV with known µ

=
n∑
i=1

(
log
(

1
σ
√

2π

)
+ log

(
exp

(
− 1

2σ2
(xi − µ)2

)))

=
n∑
i=1

log
(

1
σ
√

2π

)
+

n∑
i=1

(
− 1

2σ2
(xi − µ)2

)
= n log

(
1

σ
√

2π

)
+
(
− 1

2σ2

) n∑
i=1

(xi − µ)2

= n

(
log
(

1√
2π

)
+ log

(
1
σ

))
−
(

1
2σ2

) n∑
i=1

(xi − µ)2

= n log
(√

2π
−1
)

+ n log
(
σ−1

)
−
(

1
2σ2

) n∑
i=1

(xi − µ)2

= −n log
(√

2π
)
− n log (σ)−

(
1

2σ2

) n∑
i=1

(xi − µ)2

(2) Let us find its derivative with respect to the unknown parameter σ next.

∂

∂σ
`(σ) :=

∂

∂σ

(
−n log

(√
2π
)
− n log (σ)−

(
1

2σ2

) n∑
i=1

(xi − µ)2

)

=
∂

∂σ

(
−n log

(√
2π
))
− ∂

∂σ
(n log (σ))− ∂

∂σ

((
1

2σ2

) n∑
i=1

(xi − µ)2

)

= 0− n ∂

∂σ
(log(σ))−

(
1
2

n∑
i=1

(xi − µ)2

)
∂

∂σ

(
σ−2

)
= −nσ−1 −

(
1
2

n∑
i=1

(xi − µ)2

)(
−2σ−3

)
= −nσ−1 + σ−3

n∑
i=1

(xi − µ)2

(3) Now, let us set the derivative equal to 0 and solve for σ.

0 = −nσ−1 + σ−3
n∑
i=1

(xi − µ)2 ⇐⇒ nσ−1 = σ−3
n∑
i=1

(xi − µ)2 ⇐⇒ nσ−1σ+3 =
n∑
i=1

(xi − µ)2

⇐⇒ nσ−1+3 =
n∑
i=1

(xi − µ)2 ⇐⇒ nσ2 =
n∑
i=1

(xi − µ)2

⇐⇒ σ2 =

(
n∑
i=1

(xi − µ)2

)
/n ⇐⇒ σ =

√√√√ n∑
i=1

(xi − µ)2/n

Finally, we set the solution, i.e. the maximiser of the concave-down log-likelihood function of σ with
a known and fixed µ∗ as our ML estimate σ̂n =

√∑n
i=1(xi − µ∗)2/n. Analogously, the ML estimator

of σ∗ is Σ̂n =
√∑n

i=1(Xi − µ∗)2/n. Don’t confuse Σ, the upper-case sigma, with
∑n

i=1©i, the
summation over some ©i’s. This is usually clear from the context.



CHAPTER 3. ESTIMATION 58

(4) Next, let us get the estimated standard error ŝen for the estimator of σ∗ via Fisher Information.
The Log-likelihood function of σ, based on one sample from the Normal(µ, σ2) RV with known µ is,

log f(x;σ) = log
(

1
σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

))
= − log

(√
2π
)
− log (σ)−

(
1

2σ2

)
(x− µ)2

Therefore, in much the same way as in part (2) earlier,

∂2 log f(x;σ)
∂2σ

:=
∂

∂σ

(
∂

∂σ

(
− log

(√
2π
)
− log (σ)−

(
1

2σ2

)
(x− µ)2

))
=

∂

∂σ

(
−σ−1 + σ−3(x− µ)2

)
= σ−2 − 3σ−4(x− µ)2

Now, we compute the Fisher Information of one sample as an expectation of the continuous RV X

over X = (−∞,∞) with density f(x;σ),

I1(σ) = −
∫
x∈X=(−∞,∞)

(
∂2 log f(x;σ)

∂2λ

)
f(x;σ) dx = −

∫ ∞
−∞

(
σ−2 − 3σ−4(x− µ)2

)
f(x;σ) dx

=
∫ ∞
−∞
−σ−2f(x;σ) dx+

∫ ∞
−∞

3σ−4(x− µ)2f(x;σ) dx

= −σ−2

∫ ∞
−∞

f(x;σ) dx+ 3σ−4

∫ ∞
−∞

(x− µ)2f(x;σ) dx

= −σ−2 + 3σ−4σ2 ∵ σ2 = V (X) = E(X − E(X))2 =
∫ ∞
−∞

(x− µ)2f(x;σ) dx

= −σ−2 + 3σ−4+2 = −σ−2 + 3σ−2 = 2σ−2

Therefore, the estimated standard error of the estimator of the unknown σ∗ is

ŝen(Σ̂n) =
1√

In(σ̂n)
=

1√
nI1(σ̂n)

=
1√

n2σ−2
=

σ√
2n

.

(5) Given that ψ = g(σ) = log(σ), we derive the estimated standard error of ψ∗ = log(σ∗) via the
Delta method as follows:

ŝen(Ψ̂n) = |g′(σ)|ŝen(Σ̂n) =
∣∣∣∣ ∂∂σ log(σ)

∣∣∣∣ σ√
2n

=
1
σ

σ√
2n

=
1√
2n

.

(6) Finally, the 95% confidence interval for ψ∗ is ψ̂n ± 1.96ŝen(Ψ̂n) = log(σ̂n)± 1.96 1√
2n

.

3.5.12 Confidence Sets for Multiparameter Models

We will extend the Fisher Information and Delta method to models with more than one parameter:

X1, X2, . . . , Xn
IID∼ f(x; θ∗), θ∗ := (θ∗1, θ

∗
2, . . . , θ

∗
k) ∈ ΘΘ ⊂ Rk .

Let, the ML estimator of the fixed and possibly unknown vector-valued parameter θ∗ be:

Θ̂n :=
(

Θ̂1,n, Θ̂2,n, . . . , Θ̂k,n

)
, Θ̂n := Θ̂n(X1, X2, . . . , Xn) : Xn 7→ ΘΘ

and the ML estimate based on n observations x1, x2, . . . , xn be:

θ̂n :=
(
θ̂1,n, θ̂2,n, . . . , θ̂k,n

)
, θ̂n := θ̂n(x1, x2, . . . , xn) ∈ ΘΘ .



CHAPTER 3. ESTIMATION 59

Let the log-likelihood function and its Hessian matrix H = (Hi,j)i,j=1,2,...,k of partial derivatives
be:

`n(θ) := `n(θ1, θ2, . . . , θk) :=
n∑
i=1

log(f(xi; (θ1, θ2, . . . , θk))), Hi,j :=
∂

∂θi

∂

∂θj
`n(θ1, θ2, . . . , θk) ,

respectively, provided the log-likelihood function is sufficiently smooth.

Definition 21 (Fisher Information Matrix) The Fisher Information matrix is:

In(θ) := In(θ1, θ2, . . . , θk) = −


Eθ(H1,1) Eθ(H1,2) · · · Eθ(H1,k)
Eθ(H2,1) Eθ(H2,2) · · · Eθ(H2,k)

...
...

. . .
...

Eθ(Hk,1) Eθ(Hk,2) · · · Eθ(Hk,k)

 (3.26)

and its matrix inverse is denoted by I−1
n (θ).

Proposition 9 (Asymptotic Normality of MLE in Multiparameter Models) Let

X1, X2, . . . , Xn
IID∼ f(x1; θ∗1, θ

∗
2, . . . , θ

∗
k), θ∗ = (θ∗1, θ

∗
2, . . . , θ

∗
k) ∈ ΘΘ ⊂ Rk ,

for some fixed and possibly unknown θ∗ ∈ ΘΘ ⊂ Rk. Then, under appropriate regularity conditions:

Θ̂n :=
(

Θ̂1,n, Θ̂2,n, . . . , Θ̂k,n

)
 Normal(θ∗, I−1

n )

In other words, the vector-valued estimator Θ̂n converges in distribution to the multivariate Normal
distribution centred at the unknown parameter θ∗ with the variance-covariance matrix given by
inverse Fisher Information matrix I−1

n . Furthermore, let I−1
n (j, j) denote the jth diagonal entry of

I−1
n . In this case:

Θ̂j,n − θ∗j√
I−1
n (j, j)

 Normal(0, 1)

and the approximate covariance of Θ̂i,n and Θ̂j,n is:

Cov(Θi,n,Θj,n) u I−1
n (i, j) .

Now, let us look at a way of obtaining ML estimates and confidence sets for functions of θ. Suppose
the real-valued function g(θ) = ψ : ΘΘ 7→ ΨΨ maps points in the k-dimensional parameter space
ΘΘ ⊂ Rk to points in ΨΨ ⊂ R. Let the gradient of g be

5g(θ) := 5g(θ1, θ2, . . . , θk) =


∂
∂θ1

g(θ1, θ2, . . . , θk)
∂
∂θ2

g(θ1, θ2, . . . , θk)
...

∂
∂θk

g(θ1, θ2, . . . , θk)

 .

Proposition 10 (Multiparameter Delta Method) Suppose:

1. X1, X2, . . . , Xn
IID∼ f(x1; θ∗1, θ

∗
2, . . . , θ

∗
k), θ∗ = (θ∗1, θ

∗
2, . . . , θ

∗
k) ∈ ΘΘ ⊂ Rk,



CHAPTER 3. ESTIMATION 60

2. Let Θ̂n be a ML estimator of θ∗ ∈ ΘΘ and let θ̂n be its ML estimate, and

3. Let g(θ) = ψ : ΘΘ 7→ ΨΨ ⊂ R be a smooth function such that 5g(θ̂n) 6= 0.

Then:

1. Ψ̂n = g(Θ̂n) is the ML estimator and ψ̂n = g(θ̂n) is the ML estimate of of ψ∗ = g(θ∗) ∈ ΨΨ,

2. The standard error of the ML estimator of ψ∗ is:

ŝen(Ψ̂n) =

√(
5g(θ̂n)

)T
I−1
n (θ̂n)

(
5g(θ̂n)

)
,

3. The ML estimator of ψ∗ is asymptotically normal, i.e.:

Ψ̂n − ψ∗

ŝen(Ψ̂n)
 Normal(0, 1) ,

4. And a 1− α confidence interval for ψ∗ is:

ψ̂n ± zα/2ŝen(Ψ̂n)

Let us put the theory to practice in the problem of estimating the coefficient of variation from
samples of size n from an RV.

Example 3.5.13 (Estimating the Coefficient of Variation of a Normal(µ∗, σ∗2) RV) Let

ψ∗ = g(µ∗, σ∗) = σ∗/µ∗, X1, X2, . . . , Xn
IID∼ Normal(µ∗, σ∗2) .

We do not know the fixed parameters (µ∗, σ∗) and are interested in estimating the coefficient of
variation ψ∗ based on n IID samples x1, x2, . . . , xn. We have already seen that the ML estimates
of µ∗ and σ∗ are:

µ̂n = xn :=
1
n

n∑
i=1

xi, σ̂n = sn :=

√√√√ 1
n

n∑
i=1

(xi − µ̂n)2 .

Thus, the ML estimate of ψ∗ = σ∗/µ∗ is:

ψ̂n =
σ̂n
µ̂n

=
sn
xn

We can now derive the standard error of the ML estimator Ψ̂n by first computing In(µ, σ), I−1
n (µ, σ),

and 5g(µ, σ). A careful computation shows that:

In(µ, σ) =

[
n
σ2 0
0 2n

σ2

]
, I−1

n (µ, σ) =
1
n

[
σ2 0
0 σ2

2

]
, 5g(µ, σ) =

(
− σ
µ2

1
µ

)
.

Therefore, the standard error of interest is:

ŝen(Ψ̂n) =

√(
5g(θ̂n)

)T
I−1
n (θ̂n)

(
5g(θ̂n)

)
=

1√
n

√
1
µ̂4
n

+
σ̂2
n

2µ̂2
n

and the 95% confidence interval for the unknown coefficient of variation ψ∗ is:

ψ̂n ± zα/2ŝen(Ψ̂n) =
sn
xn
± zα/2

(
1√
n

√
1
µ̂4
n

+
σ̂2
n

2µ̂2
n

)
Let us apply these results to n = 100 simulated samples from Normal(100, 102) as follows.



CHAPTER 3. ESTIMATION 61

CoeffOfVarNormal.m
n=100; % sample size

Mustar=100; % true mean

Sigmastar=10; % true standard deviation

rand(’twister’,67345); Us=rand(1,100); % draw some Uniform(0,1) samples

x=arrayfun(@(u)(Sample1NormalByNewRap(u,Mustar,Sigmastar^2)),Us); % get normal samples

Muhat=mean(x) % sample mean is MLE of Mustar

Sigmahat=std(x) % sample standard deviation is MLE for Sigmastar

Psihat=Sigmahat/Muhat % MLE of coefficient of variation std/mean

Sehat = sqrt((1/Muhat^4)+(Sigmahat^2/(2*Muhat^2)))/sqrt(n) % standar error estimate

ConfInt95=[Psihat-1.96*Sehat, Psihat+1.96*Sehat] % 1.96 since 1-alpha=0.95

>> CoeffOfVarNormal

Muhat = 100.3117

Sigmahat = 10.9800

Psihat = 0.1095

Sehat = 0.0077

ConfInt95 = 0.0943 0.1246

3.5.14 Parametric Bootstrap for Confidence Sets

The bootstrap is a statistical method for estimating standard errors and confidence sets of statis-
tics, such as estimators. This is based on computationally intensive simulation and is much eas-
ier than the the variance calculation based on Fisher Information and/or the Delta method. Let
Tn := Tn((X1, X2, . . . , Xn)) be a statistic (i.e. any function of the data X1, X2, . . . , Xn

IID∼ F (x; θ∗)).
Suppose we want to know its variance Vθ∗(Tn). If our statistic Tn is one with an analytically un-
known variance, then we can use the bootstrap to estimate it. The bootstrap concept has the
following two basic steps:

Step 1: Estimate Vθ∗(Tn) with Vbθn(Tn), where θ̂n is an estimate of θ∗ based on maximum likelihood
or the method of moments.

Step 2: Approximate Vbθn(Tn) using simulated data from the “Bootstrap World.”

For example, if Tn = Xn, the sample mean, then in Step 1, Vbθn(Tn) = n−1
∑n

i=1(xi − xn) is the
sample variance. Thus, in this case, Step 1 is enough. However, when the statistic Tn is more
complicated, say Tn = X̃n = F [−1](0.5), the sample median, then we may not be able to write
down a simple expression for Vbθn(Tn) and may need Step 2 of the bootstrap.

Real World Data come from F (θ∗) =⇒ X1, X2, . . . , Xn =⇒ Tn((X1, X2, . . . , Xn)) = tn

Bootstrap World Data come from F (θ̂n) =⇒ X•1 , X
•
2 , . . . , X

•
n =⇒ Tn((X•1 , X

•
2 , . . . , X

•
n)) = t•n

To simulate X•1 , X
•
2 , . . . , X

•
n from F (θ̂n), we must have a simulation algorithm that allows us to

draw IID samples from F (θ), for instance the inversion sampler. In summary, the algorithm for
Bootstrap Variance Estimation is:

Step 1: Draw X•1 , X
•
2 , . . . , X

•
n ∼ F (θ̂n)

Step 2: Compute t•n = Tn((X•1 , X
•
2 , . . . , X

•
n))

Step 3: Repeat Step 1 and Step 2 B times, for some large B, say B ≥ 1000, to get t•n,1, t
•
n,2, . . . , t

•
n,B

Step 4: We can estimate the bootstrap confidence intervals in several ways:



CHAPTER 3. ESTIMATION 62

(a) The 1− α normal-based bootstrap confidence interval is:

Cn = [Tn − zα/2ŝeboot, Tn + zα/2ŝeboot] ,

where the bootstrap-based standard error estimate is:

ŝeboot =
√
vboot =

√√√√ 1
B

B∑
b=1

(
t•n,b −

1
B

B∑
r=1

t•n,r

)2

(b) The 1− α percentile-based bootstrap confidence interval:

Cn = [Ĝ•
−1

n (α/2), Ĝ•
−1

n (1− α/2)],

where Ĝ•n is the empirical DF of the bootstrapped t•n,1, t
•
n,2, . . . , t

•
n,B and Ĝ•

−1

n (q) is the
qth sample quantile (3.9) of t•n,1, t

•
n,2, . . . , t

•
n,B.

Let us apply the bootstrap method to the previous problem of estimating the standard error of the
coefficient of variation from n = 100 samples from Normal(100, 102) RV. The confidence intervals
from bootstrap-based methods are similar to those from the Delta method.

CoeffOfVarNormalBoot.m
n=100; Mustar=100; Sigmastar=10; % sample size, true mean and standard deviation

rand(’twister’,67345);

x=arrayfun(@(u)(Sample1NormalByNewRap(u,Mustar,Sigmastar^2)),rand(n,1)); % normal samples

Muhat=mean(x) Sigmahat=std(x) Psihat=Sigmahat/Muhat % MLE of Mustar, Sigmastar and Psistar

Sehat = sqrt((1/Muhat^4)+(Sigmahat^2/(2*Muhat^2)))/sqrt(n) % standard error estimate

% 95% Confidence interval by Delta Method

ConfInt95DeltaMethod=[Psihat-1.96*Sehat, Psihat+1.96*Sehat] % 1.96 since 1-alpha=0.95

B = 1000; % B is number of bootstrap replications

% Step 1: draw n IID samples in Bootstrap World from Normal(Muhat,Sigmahat^2)

xBoot = arrayfun(@(u)(Sample1NormalByNewRap(u,Muhat,Sigmahat^2)),rand(n,B));

% Step 2: % Compute Bootstrapped Statistic Psihat

PsihatBoot = std(xBoot) ./ mean(xBoot);

% 95% Normal based Confidence Interval

SehatBoot = std(PsihatBoot); % std of PsihatBoot

ConfInt95BootNormal = [Psihat-1.96*SehatBoot, Psihat+1.96*SehatBoot] % 1-alpha=0.95

% 95% Percentile based Confidence Interval

ConfInt95BootPercentile = ...

[qthSampleQuantile(0.025,sort(PsihatBoot)),qthSampleQuantile(0.975,sort(PsihatBoot))]

>> CoeffOfVarNormal

Muhat = 100.3117

Sigmahat = 10.9800

Psihat = 0.1095

Sehat = 0.0077

ConfInt95DeltaMethod = 0.0943 0.1246

ConfInt95BootNormal = 0.0943 0.1246

ConfInt95BootPercentile = 0.0946 0.1249



CHAPTER 3. ESTIMATION 63

3.6 Non-parametric Estimation

So far, we have been interested in some estimation problems involved in parametric experiments.
In parametric experiments, the parameter space ΘΘ can have many dimensions, but these are finite.
For example, in the n IID Bernoulli experiment, which is:

X1, . . . , Xn
IID∼ Bernoulli(θ), θ ∈ ΘΘ = [0, 1] ⊂ R1 ,

the parameter space ΘΘ has dimension 1. Similarly, in the n IID Normal(µ, σ2) and the n IID
Lognormal(λ, ζ), experiments:

X1, . . . , Xn
IID∼ Normal(µ, σ2), (µ, σ2) ∈ ΘΘ = (−∞,+∞)× (0,+∞) ⊂ R2

X1, . . . , Xn
IID∼ Lognormal(λ, ζ), (λ, ζ) ∈ ΘΘ = (0,+∞)× (0,+∞) ⊂ R2

the parameter space is of dimension 2.

An experiment with an infinite dimensional parameter space ΘΘ is said to be non-parametric .
Next we consider a non-parametric experiment in which n IID samples are drawn according to
some fixed and possibly unknown DF F ∗ from the space of All Distribution Functions:

X1, X2, . . . , Xn
IID∼ F ∗, F ∗ ∈ ΘΘ = {All DFs} := {F (x;F ) : F is a DF }

where the DF F (x;F ) is indexed or parameterised by itself. Thus, the parameter space ΘΘ =
{All DFs} is the infinite dimensional space of All DFs. In this section, we look at estimation
problems in non-parametric experiments with an infinite dimensional parameter space. That is, we
want to estimate the DF F ∗ from which our IID data are drawn.

The next proposition is often referred to as the fundamental theorem of statistics and is at the
heart of non-parametric inference, empirical processes, and computationally intensive bootstrap
techniques.

Figure 3.9: Plots of ten distinct ECDFs F̂n based on 10 sets of n IID samples from Uniform(0, 1)
RV X, as n increases from 10 to 100 to 1000. The DF F (x) = x over [0, 1] is shown in red. The
script of Labwork 5.0.17 was used to generate this plot.

Proposition 11 (Gilvenko-Cantelli Theorem) Let X1, X2, . . . , Xn
IID∼ F ∗. Then:

sup
x
|F̂n(x)− F ∗(x)| P−→ 0 .



CHAPTER 3. ESTIMATION 64

Heuristic Interpretation of the Gilvenko-Cantelli Theorem: As the sample size n increases,
the empirical distribution function F̂n converges to the true DF F ∗ in probability, as shown in
Figure 3.9.

Proposition 12 (The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality) Let X1, X2, . . . , Xn
IID∼

F ∗. Then, for any ε > 0:

P

(
sup
x
|F̂n(x)− F ∗(x)| > ε

)
≤ 2 exp (−2nε2) (3.27)

Recall that sup(A) or supremum of a set A ⊂ R is the least upper bound of every element in A.

3.6.1 Estimating DF

Let X1, X2, . . . , Xn
IID∼ F ∗, where F ∗ is some particular DF in the space of all possible DFs,

i.e. the experiment is non-parametric. Then, based on the data sequence X1, X2, . . . , Xn we want
to estimate F ∗.

For any fixed value of x, the expectation and variance of the empirical DF (3.8) are:

E
(
F̂n(x)

)
= F ∗(x) =⇒ biasn

(
F̂n(x)

)
= 0 (3.28)

V
(
F̂n(x)

)
=

F ∗(x)(1− F ∗(x))
n

=⇒ lim
n→∞

sen
(
F̂n(x)

)
= 0 (3.29)

Therefore, by Proposition 4, the empirical DF evaluated at x, i.e. F̂n(x) is an asymptotically
consistent estimator of the DF evaluated at x, i.e. F ∗(x). More formally, (3.28) and (3.29), by
Proposition 4, imply that for any fixed value of x:

F̂n(x) P−→ F ∗(x) .

We are interested in a point estimate of the entire DF F ∗, i.e. F ∗(x) over all x. A point estimator
Tn = Tn(X1, X2, . . . , Xn) of a fixed and possibly unknown F ∈ {All DFs} is the empirical DF F̂n.
This estimator has an asymptotically desirable property:

sup
x
|F̂n(x)− F ∗(x)| P−→ 0

because of the Gilvenko-Cantelli theorem in Proposition 11. Thus, we can simply use F̂n, based on
the realized data (x1, x2, . . . , xn), as a point estimate of F ∗.

On the basis of the DKW inequality (3.27), we can obtain a 1 − α confidence set or confidence
interval Cn(x) := [C n(x), C n(x)] about our point estimate of F :

C n(x) = max{F̂n(x)− εn, 0},
C n(x) = min{F̂n(x) + εn, 1},

εn =

√
1

2n
log
(

2
α

)
. (3.30)

It follows from (3.27) that for any fixed and possibly unknown F ∗:

P
(
C n(x) ≤ F ∗(x) ≤ C n(x)

)
≥ 1− α .

Let us look at a simple example next.



CHAPTER 3. ESTIMATION 65

Labwork 3.6.2 (Estimating the DF of Uniform(0, 1) RV) Consider the problem of estimating
the DF of Uniform(0, 1) RV U on the basis of n=10 samples. We use the function ECDF of Lab-
work 5.0.11 and Matlab’s built-in function stairs to render the plots. Figure 3.10 was generated
by PlotUniformECDFsConfBands.m given below.

PlotUniformECDFsConfBands.m
% script PlotUniformECDFsConfBands.m to plot the ECDF from 10 and 100 samples

% from Uniform(0,1) RV

rand(’twister’,76534); % initialize the Uniform(0,1) Sampler

N = 3; % 10^N is the maximum number of samples from Uniform(0,1) RV

u = rand(1,10^N); % generate 1000 samples from Uniform(0,1) RV U

% plot the ECDF from the first 10 samples using the function ECDF

for i=1:N

SampleSize=10^i;

subplot(1,N,i)

% Get the x and y coordinates of SampleSize-based ECDF in x1 and y1 and

% plot the ECDF using the function ECDF

if (i==1) [x1 y1] = ECDF(u(1:SampleSize),2,0.2,0.2);

else

[x1 y1] = ECDF(u(1:SampleSize),0,0.1,0.1);

stairs(x1,y1,’k’);

end

% Note PlotFlag is 1 and the plot range of x-axis is

% incremented by 0.1 or 0.2 on either side due to last 2 parameters to ECDF

% being 0.1 or 0.2

Alpha=0.05; % set alpha to 5% for instance

Epsn = sqrt((1/(2*SampleSize))*log(2/Alpha)); % epsilon_n for the confidence band

hold on;

stairs(x1,max(y1-Epsn,zeros(1,length(y1))),’g’); % lower band plot

stairs(x1,min(y1+Epsn,ones(1,length(y1))),’g’); % upper band plot

axis([-0.1 1.1 -0.1 1.1]);

axis square;

x=[0:0.001:1];

plot(x,x,’r’); % plot the DF of Uniform(0,1) RV in red

LabelString=[’n=’ num2str(SampleSize)];

text(0.75,0.05,LabelString)

hold off;

end

Figure 3.10: The empirical DFs F̂ (1)
n from sample size n = 10, 100, 1000 (black), is the point

estimate of the fixed and known DF F (x) = x, x ∈ [0, 1] of Uniform(0, 1) RV (red). The 95%
confidence band for each F̂n are depicted by green lines.

0 0.5 1

0

0.2

0.4

0.6

0.8

1

n=10

0 0.5 1

0

0.2

0.4

0.6

0.8

1

n=100

0 0.5 1

0

0.2

0.4

0.6

0.8

1

n=1000

Next we look at a more interesting example involving real-world data.

Example 3.6.3 First take a look at Data 5.0.18 to understand how the web login times to our
Maths & Stats Department’s web server (or requests to our WWW server) were generated. Fig-
ure 3.11 shows the login times in units of seconds over a 24 hour period starting at 0357 hours



CHAPTER 3. ESTIMATION 66

and 30 seconds (just before 4:00AM) on October 1st, 2007 (red line) and on October 2nd, 2007
(magenta). If we assume that some fixed and unknown DF F (1) specifies the distribution of login

Figure 3.11: The empirical DFs F̂ (1)
n1 with n1 = 56485, for the web log times starting October 1,

and F̂
(2)
n2 with n2 = 53966, for the web log times starting October 2. Their 95% confidence bands

are indicated by the green.

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time t in seconds

E
C

D
F

   
 F

^ (t
)

24−Hour Web Log Times of Maths & Stats Dept. Server at Univ. of Canterbury, NZ

 

 

Starting 10\01\0357\30
Starting 10\02\0357\30

times for October 1st data and another DF F (2) for October 2nd data, then the non-parametric
point estimates of F (1) and F (2) are simply the empirical DFs F̂

(1)
n1 with n1 = 56485 and F̂

(2)
n2

with n2 = 53966, respectively, as depicted in Figure 3.11. See the script of WebLogDataProc.m in
Data 5.0.18 to appreciate how the ECDF plots in Figure 3.11 were made.

3.6.4 Plug-in Estimators

Recall from Section 3.2 that a statistical functional is simply any function of the DF F . For
example, the median T (F ) = F [−1](1/2) is a statistical functional. The idea behind the plug-in
estimator for a statistical functional is simple: just plug-in the point estimate F̂n instead of the
unknown DF F ∗ to estimate the statistical functional of interest.

Definition 22 (Plug-in Estimator) The plug-in estimator T̂n(X1, . . . , Xn) : Xn 7→ Tn of a sta-
tistical functional of interest T (F ∗) is defined by:

T̂n(X1, . . . , Xn) = T (F̂n) .

Labwork 3.6.5 (Plug-in Estimate for Median of Web Login Data) Compute the plug-in es-
timates for the median for each of the data arrays:

WebLogSeconds20071001035730 and WebLogSeconds20071002035730



CHAPTER 3. ESTIMATION 67

that can be loaded into memory by following the commands in the first 13 lines of the script file
WebLogDataProc.m of Data 5.0.18.

Note that any statistical functional can be estimated using the plug-in estimator. However, to
produce a 1− α confidence set for the plug-in point estimate, we need bootstrap methods.

3.6.6 Non-parametric Bootstrap for Confidence Sets

The bootstrap is a statistical method for estimating standard errors and confidence sets of statis-
tics, such as estimators.

Let Tn := Tn((X1, X2, . . . , Xn)) be a statistic, i.e. any function of the data X1, X2, . . . , Xn
IID∼ F ∗.

Suppose we want to know its variance VF ∗(Tn), which clearly depends on the fixed and possibly
unknown DF F ∗. If our statistic Tn is one with an analytically unknown variance, then we can use
the bootstrap to estimate it. The bootstrap idea has the following two basic steps:

Step 1: Estimate VF ∗(Tn) with V bFn(Tn).

Step 2: Approximate V bFn(Tn) using simulated data from the “Bootstrap World.”

For example, if Tn = Xn, in Step 1, V bFn(Tn) = s2
n/n, where s2

n = n−1
∑n

i=1(xi − xn) is the sample
variance and xn is the sample mean. In this case, Step 1 is enough. However, when the statistic
Tn is more complicated (e.g. Tn = X̃n = F [−1](0.5)), the sample median, then we may not be able
to find a simple expression for V bFn(Tn) and may need Step 2 of the bootstrap.

Real World Data come from F =⇒ X1, X2, . . . , Xn =⇒ Tn((X1, X2, . . . , Xn)) = tn

Bootstrap World Data come from F̂n =⇒ X•1 , X
•
2 , . . . , X

•
n =⇒ Tn((X•1 , X

•
2 , . . . , X

•
n)) = t•n

Observe that drawing an observation from the ECDF F̂n is equivalent to drawing one point at
random from the original data (think of the indices [n] := {1, 2, . . . , n} of the original data
X1, X2, . . . , Xn being drawn according to the equi-probable de Moivre(1/n, 1/n, . . . , 1/n) RV on
[n]). Thus, to simulate X•1 , X

•
2 , . . . , X

•
n from F̂n, it is enough to drawn n observations with replace-

ment from X1, X2, . . . , Xn.

In summary, the algorithm for Bootstrap Variance Estimation is:

Step 1: Draw X•1 , X
•
2 , . . . , X

•
n ∼ F̂n

Step 2: Compute t•n = Tn((X•1 , X
•
2 , . . . , X

•
n))

Step 3: Repeat Step 1 and Step 2 B times, for some large B, say B > 1000, to get t•n,1, t
•
n,2, . . . , t

•
n,B

Step 4: Several ways of estimating the bootstrap confidence intervals are possible:

(a) The 1− α Normal-based bootstrap confidence interval is:

Cn = [Tn − zα/2ŝeboot, Tn + zα/2ŝeboot] ,

where the bootstrap-based standard error estimate is:

ŝeboot =
√
vboot =

√√√√ 1
B

B∑
b=1

(
t•n,b −

1
B

B∑
r=1

t•n,r

)2



CHAPTER 3. ESTIMATION 68

(b) The 1− α percentile-based bootstrap confidence interval is:

Cn = [Ĝ•
−1

n (α/2), Ĝ•
−1

n (1− α/2)],

where Ĝ•n is the empirical DF of the bootstrapped t•n,1, t
•
n,2, . . . , t

•
n,B and Ĝ•

−1

n (q) is the
qth sample quantile (3.9) of t•n,1, t

•
n,2, . . . , t

•
n,B.

Labwork 3.6.7 Implement the above algorithm in Matlab to estimate the bootstrap-based stan-
dard error of the plug-in estimate for the median of n IID observations from some chosen DF F ∗.
Choices for F ∗ include Exponential(λ∗ = 1) or Lognormal(0, 1).

Labwork 3.6.8 (Confidence Interval for Median Estimate of Web Login Data) Find the
95% Normal-based bootstrap confidence interval as well as the 95% percentile-based bootstrap con-
fidence interval for our plug-in estimate of the median for each of the data arrays:

WebLogSeconds20071001035730 and WebLogSeconds20071002035730 .

Once again, the arrays can be loaded into memory by following the commands in the first 13 lines of
the script file WebLogDataProc.m of Section 5.0.18. Produce four intervals (two for each data-set).
Do the confidence intervals for the medians for the two days intersect?

>> WebLogDataProc % load in the data

>> Medianhat = median(WebLogSeconds20071001035730) % plug-in estimate of median

Medianhat = 37416

>> % store the length of data array

>> K=length(WebLogSeconds20071001035730)

K = 56485

>> B= 1000 % Number of Bootstrap replications

B = 1000

>> BootstrappedDataSet = WebLogSeconds20071001035730([ceil(K*rand(K,B))]);

>> size(BootstrappedDataSet) % dimension of the BootstrappedDataSet

ans = 56485 1000

>> BootstrappedMedians=median(BootstrappedDataSet); % get the statistic in Bootstrap world

>> % 95% Normal based Confidence Interval

>> SehatBoot = std(BootstrappedMedians); % std of BootstrappedMedians

>> % 95% C.I. for median from Normal approximation

>> ConfInt95BootNormal = [Medianhat-1.96*SehatBoot, Medianhat+1.96*SehatBoot]

ConfInt95BootNormal = 37242 37590

>> % 95% Percentile based Confidence Interval

ConfInt95BootPercentile = ...

[qthSampleQuantile(0.025,sort(BootstrappedMedians)),...

qthSampleQuantile(0.975,sort(BootstrappedMedians))]

ConfInt95BootPercentile = 37239 37554



Chapter 4

Hypothesis Testing

The subset of all posable hypotheses that remain falsifiable is the space of scientific hypothe-
ses. Roughly, a falsifiable hypothesis is one for which a statistical experiment can be designed to
produce data that an experimenter can use to falsify or reject it. In the statistical decision prob-
lem of hypothesis testing, we are interested in empirically falsifying a scientific hypothesis, i.e. we
attempt to reject an hypothesis on the basis of empirical observations or data. Usually, the hy-
pothesis we attempt to reject is called the null hypothesis or H0 and its complement is called the
alternative hypothesis or H1. For example, consider the following two hypotheses:

Null Hypothesis H0: The average waiting time at an Orbiter bus stop is 10 minutes.
Alternative Hypothesis H1: The average waiting time at an Orbiter bus stop is not 10 minutes.

Suppose, we have observations of n waiting times x1, x2, . . . , xn and are willing to assume a para-
metric model, say,

X1, X2, . . . , Xn
IID∼ Exponential(λ∗)

with an unknown and fixed λ∗ ∈ ΛΛ = (0,∞). Since the parameter λ of an Exponential(λ) RV is
the reciprocal of the mean waiting time, we can formalise the above hypothesis testing problem of
H0 versus H1 as follows:

H0 : λ∗ = λ0 = 1/10 versus H1 : λ∗ 6= λ0 = 1/10

For instance, if the sample mean xn is much smaller or much larger than 10 minutes then we may
be inclined to reject the null hypothesis that the average waiting time is 10 minutes. We will learn
to formally test hypotheses in the sequel.

More generally, suppose X1, X2, . . . , Xn
IID∼ F (x1; θ∗), with an unknown and fixed θ∗ ∈ ΘΘ. Let

us partition the parameter space ΘΘ into ΘΘ0, the null parameter space, and ΘΘ1, the alternative
parameter space, ie,

ΘΘ0 ∪ΘΘ1 = ΘΘ, and ΘΘ0 ∩ΘΘ1 = ∅ .

Then, we can formalise testing the null hypothesis versus the alternative as follows:

H0 : θ∗ ∈ ΘΘ0 versus H1 : θ∗ ⊂ ΘΘ1 .

The basic idea involves finding an appropriate rejection region XR within the data space X and
rejecting H0 if the observed data (x1, x2, . . . , xn) falls inside the rejection region XR,

If (x1, x2, . . . , xn) ∈ XR ⊂ X then reject H0 else fail to reject H0.

Typically, the rejection region XR is of the form:

XR := {x : T (x) > c}

69



CHAPTER 4. HYPOTHESIS TESTING 70

where, T is the test statistic and c is the critical value. Thus, the problem of finding XR boils
down to that of finding T and c that are appropriate. Once the rejection region is defined, the
possible outcomes of a hypothesis test are summarised in the following table.

Table 4.1: Outcomes of an hypothesis test.
Fail to Reject H0 Reject H0

H0 is True OK Type I Error
H1 is True Type II Error OK

Definition 23 (Power, Size and Level of a Test) The power function of a test with rejec-
tion region XR is

β(θ) := Pθ(x ∈ XR) . (4.1)

That is, β(θ), the power of the test at the parameter value θ, is the probability that the observed
data x, whose distribution is specified by θ, will fall in the rejection region XR.

The size of a test with rejection region XR is

α := sup
θ∈ΘΘ0

β(θ) := sup
θ∈ΘΘ0

Pθ(x ∈ XR) . (4.2)

A test is said to have level
P
α if its size α is less than or equal to

P
α, i.e.:

P
α ≥ α := sup

θ∈ΘΘ0

β(θ) := sup
θ∈ΘΘ0

Pθ(x ∈ XR) . (4.3)

Let us familiarize ourselves with some terminology in hypothesis testing next.

Table 4.2: Some terminology in hypothesis testing.
ΘΘ Test: H0 versus H1 Nomenclature

ΘΘ ⊂ Rm,m ≥ 1 H0 : θ∗ = θ0 versus H1 : θ∗ 6= θ1 Simple Hypothesis Test
ΘΘ ⊂ Rm,m ≥ 1 H0 : θ∗ ∈ ΘΘ0 versus H1 : θ∗ ∈ ΘΘ1 Composite Hypothesis Test

ΘΘ ⊂ R1 H0 : θ∗ = θ0 versus H1 : θ∗ 6= θ0 Two-sided Hypothesis Test
ΘΘ ⊂ R1 H0 : θ∗ ≥ θ0 versus H1 : θ∗ < θ0 One-sided Hypothesis Test
ΘΘ ⊂ R1 H0 : θ∗ ≤ θ0 versus H1 : θ∗ > θ0 One-sided Hypothesis Test



Chapter 5

Appendix

Labwork 5.0.9 Here are the functions to evaluate the pdf and DF of a Normal(µ, σ2) RV X at a given x.

NormalPdf.m
function fx = NormalPdf(x,Mu,SigmaSq)

% Returns the Pdf of Normal(Mu, SigmaSq), at x,

% where Mu=mean and SigmaSq = Variance

%

% Usage: fx = NormalPdf(x,Mu,SigmaSq)

if SigmaSq <= 0

error(’Variance must be > 0’)

return

end

Den = ((x-Mu).^2)/(2*SigmaSq);

Fac = sqrt(2*pi)*sqrt(SigmaSq);

fx = (1/Fac)*exp(-Den);

NormalCdf.m
function Fx = NormalCdf(x,Mu,SigmaSq)

% Returns the Cdf of Normal(Mu, SigmaSq), at x,

% where Mu=mean and SigmaSq = Variance using

% MATLAB’s error function erf

%

% Usage: Fx = NormalCdf(x,Mu,SigmaSq)

if SigmaSq <= 0

error(’Variance must be > 0’)

return

end

Arg2Erf = (x-Mu)/sqrt(SigmaSq*2);

Fx = 0.5*erf(Arg2Erf)+0.5;

Plots of the pdf and DF of several Normally distributed RVs depicted in Figure 2.5 were generated using the following script

file:

PlotPdfCdfNormal.m
% PlotPdfCdfNormal.m script file

% Plot of some pdf’s and cdf’s of the Normal(mu,SigmaSq) RV X

%

x=[-6:0.0001:6]; % points from the subset [-5,5] of the support of X

subplot(1,2,1) % first plot of a 1 by 2 array of plots

plot(x,NormalPdf(x,0,1),’r’) % pdf of RV Z ~ Normal(0,1)

hold % to superimpose plots

71



CHAPTER 5. APPENDIX 72

plot(x,NormalPdf(x,0,1/10),’b’) % pdf of RV X ~ Normal(0,1/10)

plot(x,NormalPdf(x,0,1/100),’m’) % pdf of RV X ~ Normal(0,1/100)

plot(x,NormalPdf(x,-3,1),’r--’) % pdf of RV Z ~ Normal(-3,1)

plot(x,NormalPdf(x,-3,1/10),’b--’) % pdf of RV X ~ Normal(-3,1/10)

plot(x,NormalPdf(x,-3,1/100),’m--’) % pdf of RV X ~ Normal(-3,1/100)

xlabel(’x’)

ylabel(’f(x; \mu, \sigma^2)’)

legend(’f(x;0,1)’,’f(x;0,10^{-1})’,’f(x;0,10^{-2})’,’f(x;-3,1)’,’f(x;-3,10^{-1})’,’f(x;-3,10^{-2})’)

subplot(1,2,2) % second plot of a 1 by 2 array of plots

plot(x,NormalCdf(x,0,1),’r’) % DF of RV Z ~ Normal(0,1)

hold % to superimpose plots

plot(x,NormalCdf(x,0,1/10),’b’) % DF of RV X ~ Normal(0,1/10)

plot(x,NormalCdf(x,0,1/100),’m’) % DF of RV X ~ Normal(0,1/100)

plot(x,NormalCdf(x,-3,1),’r--’) % DF of RV Z ~ Normal(-3,1)

plot(x,NormalCdf(x,-3,1/10),’b--’) % DF of RV X ~ Normal(-3,1/10)

plot(x,NormalCdf(x,-3,1/100),’m--’) % DF of RV X ~ Normal(-3,1/100)

xlabel(’x’)

ylabel(’F(x; \mu, \sigma^2)’)

legend(’F(x;0,1)’,’F(x;0,10^{-1})’,’F(x;0,10^{-2})’,’F(x;-3,1)’,’F(x;-3,10^{-1})’,’F(x;-3,10^{-2})’)

Labwork 5.0.10 Here are the functions to evaluate the pdf and DF of an Exponential(λ) RV X ata given x (point or a

vector).

ExponentialPdf.m
function fx = ExponentialPdf(x,Lambda)

% Returns the Pdf of Exponential(Lambda) RV at x,

% where Lambda = rate parameter

%

% Usage: fx = ExponentialPdf(x,Lambda)

if Lambda <= 0

error(’Rate parameter Lambda must be > 0’)

return

end

fx = Lambda * exp(-Lambda * x);

ExponentialCdf.m
function Fx = ExponentialCdf(x,Lambda)

% Returns the Cdf of Exponential(Lambda) RV at x,

% where Lambda = rate parameter

%

% Usage: Fx = ExponentialCdf(x,Lambda)

if Lambda <= 0

error(’Rate parameter Lambda must be > 0’)

return

end

Fx = 1.0 - exp(-Lambda * x);

Plots of the pdf and DF of several Exponentially distributed RVs at four axes scales that are depicted in Figure 2.3 were

generated using the following script file:

PlotPdfCdfExponential.m
% PlotPdfCdfExponential.m script file

% Plot of some pdf’s and cdf’s of the Exponential(Lambda) RV X

%

x=[0:0.0001:100]; % points from the subset [0,100] of the support of X

subplot(2,4,1) % first plot of a 1 by 2 array of plots

plot(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

plot(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

plot(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

xlabel(’x’)



CHAPTER 5. APPENDIX 73

ylabel(’f(x; \lambda)’)

legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,2,0,10])

title(’Standard Cartesian Scale’)

hold off

subplot(2,4,2)

semilogx(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogx(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

semilogx(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’f(x; \lambda)’)

%legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,100,0,10])

title(’semilog(x) Scale’)

hold off

subplot(2,4,3)

semilogy(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogy(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

semilogy(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

%xlabel(’x’);

%ylabel(’f(x; \lambda)’);

%legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,100,0,1000000])

title(’semilog(y) Scale’)

hold off

x=[ [0:0.001:1] [1.001:1:100000]]; % points from the subset [0,100] of the support of X

subplot(2,4,4)

loglog(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

loglog(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

loglog(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’f(x; \lambda)’)

%legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,100000,0,1000000])

title(’loglog Scale’)

hold off

x=[0:0.0001:100]; % points from the subset [0,100] of the support of X

subplot(2,4,5) % second plot of a 1 by 2 array of plots

plot(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

plot(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

plot(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

xlabel(’x’)

ylabel(’F(x; \lambda)’)

legend(’F(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,10,0,1])

hold off

subplot(2,4,6) % second plot of a 1 by 2 array of plots

semilogx(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogx(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

semilogx(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)



CHAPTER 5. APPENDIX 74

%xlabel(’x’)

%ylabel(’F(x; \lambda)’)

%legend(’F(x;1)’,’F(x;10)’,’F(x;10^{-1})’)

axis square

axis([0,100,0,1])

%title(’semilog(x) Scale’)

hold off

subplot(2,4,7)

semilogy(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogy(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

semilogy(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

%xlabel(’x’);

%ylabel(’F(x; \lambda)’);

%legend(’F(x;1)’,’F(x;10)’,’F(x;10^{-1})’)

axis square

axis([0,10,0,1])

%title(’semilog(y) Scale’)

hold off

x=[ [0:0.001:1] [1.001:1:100000]]; % points from the subset of the support of X

subplot(2,4,8)

loglog(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

loglog(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

loglog(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’F(x; \lambda)’)

%legend(’F(x;1)’,’F(x;10)’,’F(x;10^{-1})’)

axis square

axis([0,100000,0,1])

%title(’loglog Scale’)

hold off

Labwork 5.0.11 A Matlab function to plot the empirical DF (3.8) of n user-specified samples. Read the following M-file

for the algorithm:

ECDF.m
function [x1 y1] = ECDF(x, PlotFlag, LoxD, HixD)

% return the x1 and y1 values of empirical CDF

% based on samples in array x of RV X

% plot empirical CDF if PlotFlag is >= 1

%

% Call Syntax: [x1 y1] = ECDF(x, PlotFlag, LoxD,HixD);

% Input : x = samples from a RV X (a vector),

% PlotFlag is a number controlling plot (Y/N, marker-size)

% LoxD is a number by which the x-axis plot range is extended to the left

% HixD is a number by which the x-aixs plot range is extended to the right

% Output : [x1 y1] & empirical CDF Plot IF PlotFlag >= 1

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

R=length(x); % assume x is a vector and R = Number of samples in x

x1=zeros(1,R+2);

y1=zeros(1,R+2); % initialize y to null vectors

for i=1:1:R % loop to append to x and y axis values of plot

y1(i+1)=i/R; % append equi-increments of 1/R to y

end % end of for loop

x1(2:R+1)=sort(x); % sorting the sample values

x1(1)=x1(2)-LoxD; x1(R+2)=x1(R+1)+HixD; % padding x for emp CDF to start at min(x) and end at max(x)

y1(1)=0; y1(R+2)=1; % padding y so emp CDF start at y=0 and end at y=1

% to make a ECDF plot for large number of points set the PlotFlag<1 and use

% MATLAB’s plot function on the x and y values returned by ECDF -- stairs(x,y)



CHAPTER 5. APPENDIX 75

if PlotFlag >= 1 % Plot customized empirical CDF if PlotFlag >= 1

%newplot;

MSz=10/PlotFlag; % set Markersize MSz for dots and circles in ECDF plot

% When PlotFlag is large MSz is small and the

% Markers effectively disappear in the ecdf plot

R=length(x1); % update R = Number of samples in x

hold on % hold plot for superimposing plots

for i=1:1:R-1

if(i>1 && i ~= R-1)

plot([x1(i),x1(i+1)],[y1(i),y1(i)],’k o -’,’MarkerSize’,MSz)

end

if (i< R-1)

plot(x1(i+1),y1(i+1),’k .’,’MarkerSize’,2.5*MSz)

end

plot([x1(i),x1(i+1)],[y1(i),y1(i)],’k -’)

plot([x1(i+1),x1(i+1)], [y1(i),y1(i+1)],’k -’)

end

hold off;

end

Ideally, this function needs to be rewritten using primitives such as Matlab’s line commands.

Labwork 5.0.12 Let us implement Algorithm 6 as the following Matlab function:

qthSampleQuantile.m
function qthSQ = qthSampleQuantile(q, SortedXs)

%

% return the q-th Sample Quantile from Sorted array of Xs

%

% Call Syntax: qthSQ = qthSampleQuantile(q, SortedXs);

%

% Input : q = quantile of interest, NOTE: 0 <= q <= 1

% SortedXs = sorted real data points in ascending order

% Output : q-th Sample Quantile, ie, inverse ECDF evaluated at q

% store the length of the the sorted data array SortedXs in n

N = length(SortedXs);

Nminus1TimesQ = (N-1)*q; % store (N-1)*q in a variable

Index = floor(Nminus1TimesQ); % store its floor in a C-style Index variable

Delta = Nminus1TimesQ - Index;

if Index == N-1

qthSQ = SortedXs(Index+1);

else

qthSQ = (1.0-Delta)*SortedXs(Index+1) + Delta*SortedXs(Index+2);

end

Labwork 5.0.13 Figure 3.5 was made with the following script file.

LevyDensityPlot.m
x=linspace(-9,9,1500);y=x;

[X, Y]=meshgrid(x,y);

Z1 = (cos((0*X)+1) + 2*cos((1*X)+2) + 3*cos((2*X)+3) + 4*cos((3*X)+4) + 5*cos((4*X)+5));

Z2 = (cos((2*Y)+1) + 2*cos((3*Y)+2) + 3*cos((4*Y)+3) + 4*cos((5*Y)+4) + 5*cos((6*Y)+5));

Temp=50;

Z = exp(-(Z1 .* Z2 + (X + 1.42513) .^2 + (Y + 0.80032) .^ 2)/Temp);

mesh(X,Y,Z)

caxis([0, 10]);

rotate3d on

Labwork 5.0.14 The negative of the Levy density (??) is encoded in the following M-file as a function to be passed to

Matlab’s fminsearch.



CHAPTER 5. APPENDIX 76

NegLevyDensity.m
function NegLevyFunVal = NegLevyDensity(parameters);

X=parameters(1); Y=parameters(2); Temp=50.0;

Z1 = (cos((0*X)+1) + 2*cos((1*X)+2) + 3*cos((2*X)+3) + 4*cos((3*X)+4) + 5*cos((4*X)+5));

Z2 = (cos((2*Y)+1) + 2*cos((3*Y)+2) + 3*cos((4*Y)+3) + 4*cos((5*Y)+4) + 5*cos((6*Y)+5));

NegLevyFunVal = -exp(-(Z1 .* Z2 + (X + 1.42513) .^2 + (Y + 0.80032) .^ 2)/Temp);

Labwork 5.0.15 Figure 3.6 was made with the following script file.

LogNormalLogLklPlot.m
% Plots the log likelihood of LogNormal(lambd, zeta),

% for observed data vector x IIDLogNormal(lambd,zeta),

rand(’twister’,001);

x=exp(arrayfun(@(u)(Sample1NormalByNewRap(u,10.36,0.26^2)),rand(1,100)));

% log likelihood function

lambda=linspace(5,15.0,200);

zeta=linspace(0.1, 2,200);

[LAMBDA, ZETA]=meshgrid(lambda,zeta);

LAMBDA3=repmat(LAMBDA,[1 1 length(x)]);

ZETA3=repmat(ZETA,[1 1 length(x)]);

xx=zeros([1 1 length(x)]);xx(:)=x;

x3=repmat(xx,[length(lambda) length(zeta) 1]);

%l = -sum(log((1 ./ (sqrt(2*pi)*zeta) .* x) .* exp((-1/(2*zeta^2))*(log(x)-lambda).^2)));

LOGLKL = sum(log((1 ./ (sqrt(2*pi)*ZETA3) .* x3) .* exp((-1/(2*ZETA3.^2)).*(log(x3)-LAMBDA3).^2)),3);

LOGLKL(LOGLKL<0)=NaN;

caxis([0 0.1]*10^3);colorbar

axis([0 15 0 2 0 0.1*10^3])

clf; meshc(LAMBDA, ZETA, LOGLKL);

rotate3d on;

Labwork 5.0.16 Figure 3.8 was made with the following script file.

BernoulliMLEConsistency.m
clf;%clear any figures

rand(’twister’,736343); % initialize the Uniform(0,1) Sampler

N = 3; % 10^N is the maximum number of samples from RV

J = 100; % number of Replications for each n

u = rand(J,10^N); % generate 10X10^N samples from Uniform(0,1) RV U

p=0.5; % set p for the Bernoulli(p) trials

PS=[0:0.001:1]; % sample some values for p on [0,1] to plot likelihood

for i=1:N

if(i==1) Pmin=0.; Pmax=1.0; Ymin=-70; Ymax=-10; Y=linspace(Ymin,Ymax,J); end

if(i==2) Pmin=0.; Pmax=1.0; Ymin=-550; Ymax=-75; Y=linspace(Ymin,Ymax,J); end

if(i==3) Pmin=0.3; Pmax=0.8; Ymin=-900; Ymax=-700; Y=linspace(Ymin,Ymax,J); end

n=10^i;% n= sample size, ie, number of Bernoulli trials

subplot(1,N,i)

if(i==1) axis([Pmin Pmax Ymin -2]); end

if(i==2) axis([Pmin Pmax Ymin -60]); end

if(i==3) axis([Pmin Pmax Ymin -685]); end

EmpCovSEhat=0; % track empirical coverage for SEhat

EmpCovSE=0; % track empirical coverage for exact SE

for j=1:J

% transform the Uniform(0,1) samples to n Bernoulli(p) samples

x=floor(u(j,1:n)+p);

s = sum(x); % statistic s is the sum of x_i’s

% display the outcomes and their sum

%display(x)

%display(s)

MLE=s/n; % Analyticaly MLE is s/n

se = sqrt((1-p)*p/n); % standard error from known p

sehat = sqrt((1-MLE)*MLE/n); % estimated standard error from MLE p



CHAPTER 5. APPENDIX 77

Zalphaby2 = 1.96; % for 95% CI

if(abs(MLE-p)<=2*sehat) EmpCovSEhat=EmpCovSEhat+1; end

line([MLE-2*sehat MLE+2*sehat],[Y(j) Y(j)],’Marker’,’+’,’LineStyle’,’:’,’LineWidth’,1,’Color’,[1 .0 .0])

if(abs(MLE-p)<=2*se) EmpCovSE=EmpCovSE+1; end

line([MLE-2*se MLE+2*se],[Y(j) Y(j)],’Marker’,’+’,’LineStyle’,’-’)

% l is the Log Likelihood of data x as a function of parameter p

l=@(p)sum(log(p ^ s * (1-p)^(n-s)));

hold on;

% plot the Log Likelihood function and MLE

semilogx(PS,arrayfun(l,PS),’m’,’LineWidth’,1);

hold on; plot([MLE],[Y(j)],’.’,’Color’,’c’); % plot MLE

end

hold on;

line([p p], [Ymin, l(p)],’LineStyle’,’:’,’Marker’,’none’,’Color’,’k’,’LineWidth’,2)

%axis([-0.1 1.1]);

%axis square;

LabelString=[’n=’ num2str(n) ’ ’ ’Cvrg.=’ num2str(EmpCovSE) ’/’ num2str(J) ...

’ ~=’ num2str(EmpCovSEhat) ’/’ num2str(J)];

%text(0.75,0.05,LabelString)

title(LabelString)

hold off;

end

Labwork 5.0.17 The following script was used to generate the Figure 3.9.

GilvenkoCantelliUnif01.m
% from Uniform(0,1) RV

rand(’twister’,76534); % initialize the Uniform(0,1) Sampler

N = 3; % 10^N is the maximum number of samples from Uniform(0,1) RV

u = rand(10,10^N); % generate 10 X 10^N samples from Uniform(0,1) RV U

x=[0:0.001:1];

% plot the ECDF from the first 10 samples using the function ECDF

for i=1:N

SampleSize=10^i;

subplot(1,N,i)

plot(x,x,’r’,’LineWidth’,2); % plot the DF of Uniform(0,1) RV in red

% Get the x and y coordinates of SampleSize-based ECDF in x1 and y1 and

% plot the ECDF using the function ECDF

for j=1:10

hold on;

if (i==1) [x1 y1] = ECDF(u(j,1:SampleSize),2.5,0.2,0.2);

else

[x1 y1] = ECDF(u(j,1:SampleSize),0,0.1,0.1);

stairs(x1,y1,’k’);

end

end

% % Note PlotFlag is 1 and the plot range of x-axis is

% % incremented by 0.1 or 0.2 on either side due to last 2 parameters to ECDF

% % being 0.1 or 0.2

% Alpha=0.05; % set alpha to 5% for instance

% Epsn = sqrt((1/(2*SampleSize))*log(2/Alpha)); % epsilon_n for the confidence band

hold on;

% stairs(x1,max(y1-Epsn,zeros(1,length(y1))),’g’); % lower band plot

% stairs(x1,min(y1+Epsn,ones(1,length(y1))),’g’); % upper band plot

axis([-0.1 1.1 -0.1 1.1]);

%axis square;

LabelString=[’n=’ num2str(SampleSize)];

text(0.75,0.05,LabelString)

hold off;

end

Data 5.0.18 (Our Maths & Stats Dept. Web Logs) We assume access to a Unix terminal (Linux, Mas OS X, Sun Solaris,

etc). We show how to get your hands dirty with web logs that track among others, every IP address and its time of login to



CHAPTER 5. APPENDIX 78

our department web server over the world-wide-web. The raw text files of web logs may be manipulated but they are typically

huge files and need some Unix command-line utilities.

rsa64@mathopt03:~> cd October010203WebLogs/

rsa64@mathopt03:~/October010203WebLogs> ls -al

-rw-r--r--+ 1 rsa64 math 7527169 2007-10-04 09:38 access-07_log.2

-rw-r--r--+ 1 rsa64 math 7727745 2007-10-04 09:38 access-07_log.3

The files are quite large over 7.5 MB each. So we need to compress it. We use the gzip and gunzip utility in any Unix

environment to compress and decompress these large text files of web logs. After compression the file sizes are more reasonable.

rsa64@mathopt03:~/October010203WebLogs> gzip access-07_log.3

rsa64@mathopt03:~/October010203WebLogs> gzip access-07_log.2

rsa64@mathopt03:~/October010203WebLogs> ls -al

-rw-r--r--+ 1 rsa64 math 657913 2007-10-04 09:38 access-07_log.2.gz

-rw-r--r--+ 1 rsa64 math 700320 2007-10-04 09:38 access-07_log.3.gz

Next we show you some entries in the very tail end of one of these files:

rsa64@mathopt03:~/October010203WebLogs> zcat access-07_log.3.gz | tail .

.

.

66.228.166.160 - - [02/Oct/2007:03:55:27 +1300] "GET / HTTP/1.0" 200 10133

192.197.69.29 - - [02/Oct/2007:03:55:27 +1300] "GET /images/uc/list.gif HTTP/1.1" 200 44

.

.

.

65.55.208.20 - - [02/Oct/2007:03:57:00 +1300] "GET /MATH371/07/S1/C/ HTTP/1.0" 200 9689

For confidentiality reasons we may not be able to make the raw data publicly available. Also, we are only interested in the inter-

login time at our department’s web-server. So we can “pipe” the output of zcat which cancatenates the contents of a zipped

file to the terminal using the pipe command | into another command-line utility called awk which is a pattern scanning and

processing language to pull out the date information alone. We further pipe the output of awk into a stream editor called sed to

get the time output in numbers formatted as Year month day hour minute seconds or YYYY MM DD HH MM SS. Finally, we can

obtain the login times to our web-server for 2 full 24 hour cycles. The first log file begins at 03 57 30 hours on 01/Oct/2007

while the second log file begins at 03 57 30 hours on 02/Oct/2007, as shown in the output below (only the beginning and ending

of each file is shown).

rsa64@mathopt03:~/October010203WebLogs> zcat access-07_log.3.gz | grep ’ 200 ’

| awk ’{ print \$4}’ | sed -e ’s/\[\([0-9]\{2\}\)\/\([a-Z]\{3\}\)\/\([0-9]\{4\}\)

:\([0-9]\{2\}\): \([0-9]\{2\}\):\([0-9]\{2\}\)/\3 10 \1 \4 \5 \6/’

2007 10 01 03 57 40

2007 10 01 03 57 41

.

.

.

2007 10 02 03 56 46

2007 10 02 03 57 00

rsa64@mathopt03:~/October010203WebLogs> zcat access-07_log.2.gz | grep ’ 200 ’

| awk ’{ print \$4}’| sed -e ’s/\[\([0-9]\{2\}\)\/\([a-Z]\{3\}\)\/\([0-9]\{4\}\)

:\([0-9]\{2\}\):\([0-9]\{2\}\):\([0-9]\{2\}\)/\3 10 \1 \4 \5 \6/’

2007 10 02 03 57 48

2007 10 02 03 58 31

.

.

.

2007 10 03 03 56 21

2007 10 03 03 56 52



CHAPTER 5. APPENDIX 79

Finally, there are 56485 and 53966 logins for the two 24-hour cycles, starting 01/Oct and 01/Oct, respectively. We can eas-

ily get these counts by further piping the previous output into the line counting utility wc with the -l option. All the Unix

command-line tools mentioned earlier can be learned by typing man followed by the tool-name, for eg. type man sed to learn

about the usage of sed ata Unix command shell. We further pipe the output of login times for the two 24-hour cycles starting

01/Oct and 02/Oct in format YYYY MM DD HH MM SS to | sed -e ’s/2007 10 //’ > WebLogTimes20071001035730.dat and ...

> WebLogTimes20071002035730.dat, respectively to strip away the redundant information on YYYY MM , namely 2007 10 , and

only save the relevant information of DD HH MM SS in files named WebLogTimes20071001035730.dat and WebLogTimes20071002035730.dat,

respectively. These two files have the data of interest to us. Note that the size of these two uncompressed final data files in

plain text are smaller than the compressed raw web log files we started out from.

rsa64@mathopt03:~/October010203WebLogs> ls -al

-rw-r--r--+ 1 rsa64 math 677820 2007-10-05 15:36 WebLogTimes20071001035730.dat

-rw-r--r--+ 1 rsa64 math 647592 2007-10-05 15:36 WebLogTimes20071002035730.dat

-rw-r--r--+ 1 rsa64 math 657913 2007-10-04 09:38 access-07_log.2.gz

-rw-r--r--+ 1 rsa64 math 700320 2007-10-04 09:38 access-07_log.3.gz

Now that we have been familiarized with the data of login times to our web-server over 2 24-hour cycles, let us do some

statistics. The log files and basic scripts are courtesy of the Department’s computer systems administrators Paul Brouwers

and Steve Gourdie. This data processing activity was shared in such detail to show you that statistics is only meaningful when

the data and the process that generated it are clear to the experimenter. Let us process the data and visualize the empirical

distribution functions using the following script:

WebLogDataProc.m
load WebLogTimes20071001035730.dat % read data from first file

% multiply day (October 1) by 24*60*60 seconds, hour by 60*60 seconds,

% minute by 60 seconds and seconds by 1, to rescale time in units of seconds

SecondsScale1 = [24*60*60; 60*60; 60; 1;];

StartTime1 = [1 3 57 30] * SecondsScale1; % find start time in seconds scale

%now convert time in Day/Hours/Minutes/Seconds format to seconds scale from

%the start time

WebLogSeconds20071001035730 = WebLogTimes20071001035730 * SecondsScale1 - StartTime1;

% repeat the data entry process above on the second file

load WebLogTimes20071002035730.dat %

SecondsScale1 = [24*60*60; 60*60; 60; 1;];

StartTime2 = [2 3 57 30] * SecondsScale1;

WebLogSeconds20071002035730 = WebLogTimes20071002035730 * SecondsScale1 - StartTime2;

% calling a more efficient ECDF function for empirical DF’s

[x1 y1]=ECDF(WebLogSeconds20071001035730,0,0,0);

[x2 y2]=ECDF(WebLogSeconds20071002035730,0,0,0);

stairs(x1,y1,’r’,’linewidth’,1) % draw the empirical DF for first dataset

hold on;

stairs(x2,y2,’b’) % draw empirical cdf for second dataset

% set plot labels and legends and title

xlabel(’time t in seconds’)

ylabel(’ECDF F^\^(t)’)

grid on

legend(’Starting 10\01\0357\30’, ’Starting 10\02\0357\30’)

title(’24-Hour Web Log Times of Maths & Stats Dept. Server at Univ. of Canterbury, NZ’)

%To draw the confidence bands

Alpha=0.05; % set alpha

% compute epsilon_n for first dataset of size 56485

Epsn1 = sqrt((1/(2*56485))*log(2/Alpha));

stairs(x1,max(y1-Epsn1,zeros(1,length(y1))),’g’) % lower 1-alpha confidence band

stairs(x1,min(y1+Epsn1,ones(1,length(y1))),’g’) % upper 1-alpha confidence band

% compute epsilon_n for second dataset of size 53966

Epsn2 = sqrt((1/(2*53966))*log(2/Alpha));

stairs(x2,max(y2-Epsn2,zeros(1,length(y2))),’g’) % lower 1-alpha confidence band

stairs(x2,min(y2+Epsn2,ones(1,length(y2))),’g’) % upper 1-alpha confidence band


	Introduction and Preliminaries
	Computational Statistical Experiments
	Expectations and their Properties

	Simulation
	Inversion Sampler for Continuous Random Variables
	Some Simulations of Continuous Random Variables
	Inversion Sampler for Discrete Random Variables
	Some Simulations of Discrete Random Variables

	Estimation
	Introduction
	Statistics
	Convergence of Random Variables
	Point Estimation
	Some Properties of Point Estimators
	Moment Estimator (MME)
	Maximum Likelihood Estimator (MLE)

	Confidence Sets
	Properties of the Maximum Likelihood Estimator
	Fisher Information
	Delta Method
	Confidence Sets for Multiparameter Models
	Parametric Bootstrap for Confidence Sets

	Non-parametric Estimation
	Estimating DF
	Plug-in Estimators
	Non-parametric Bootstrap for Confidence Sets


	Hypothesis Testing
	Appendix

