0.1 Permutations, Factorials and Combinations

Definition 1 (Permutations and Factorials) A permutation of n objects is an arrangement of n distinct objects in a row. For example, there are 2 permutations of the two objects $\{1,2\}$:

$$
12, \quad 21,
$$

and 6 permutations of the three objects $\{a, b, c\}$:

$$
a b c, \quad a c b, \quad b a c, \quad b c a, \quad c a b, \quad c b a .
$$

Let the number of ways to choose k objects out of n and to arrange them in a row be denoted by $p_{n, k}$. For example, we can choose two $(k=2)$ objects out of three $(n=3)$ objects, $\{a, b, c\}$, and arrange them in a row in six ways ($p_{3,2}$):

$$
a b, \quad a c, \quad b a, \quad b c, \quad c a, \quad c b .
$$

Given n objects, there are n ways to choose the left-most object, and once this choice has been made there are $n-1$ ways to select a different object to place next to the left-most one. Thus, there are $n(n-1)$ possible choices for the first two positions. Similarly, when $n>2$, there are $n-2$ choices for the third object that is distinct from the first two. Thus, there are $n(n-1)(n-2)$ possible ways to choose three distinct objects from a set of n objects and arrange them in a row. In general,

$$
p_{n, k}=n(n-1)(n-2) \ldots(n-k+1)
$$

and the total number of permutations called ' n factorial' and denoted by n ! is

$$
n!:=p_{n, n}=n(n-1)(n-2) \ldots(n-n+1)=n(n-1)(n-2) \ldots(3)(2)(1)=: \prod_{i=1}^{n} i
$$

Some factorials to bear in mind

$$
0!:=1 \quad 1!=1, \quad 2!=2, \quad 3!=6, \quad 4!=24, \quad 5!=120 \quad 10!=3,628,800
$$

When n is large we can get a good idea of n ! without laboriously carrying out the $n-1$ multiplications via Stirling's approximation (Methodus Differentialis (1730), p. 137) :

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Definition 2 (Combinations) The combinations of n objects taken k at a time are the possible choices of k different elements from a collection of n objects, disregarding order. They are called the k-combinations of the collection. The combinations of the three objects $\{a, b, c\}$ taken two at a time, called the 2-combinations of $\{a, b, c\}$, are

$$
a b, \quad a c, \quad b c
$$

and the combinations of the five objects $\{1,2,3,4,5\}$ taken three at a time, called the 3-combinations of $\{1,2,3,4,5\}$ are

$$
123, \quad 124, \quad 125, \quad 134, \quad 135, \quad 145, \quad 234, \quad 235, \quad 245, \quad 345 .
$$

The total number of k-combination of n objects, called a binomial coefficient, denoted $\binom{n}{k}$ and read " n choose k," can be obtained from $p_{n, k}=n(n-1)(n-2) \ldots(n-k+1)$ and $k!:=p_{k, k}$. Recall that $p_{n, k}$ is the number of ways to choose the first k objects from the set of n objects and arrange them in a row with regard to order. Since we want to disregard order and each k-combination appears exactly $p_{k, k}$ or k ! times among the $p_{n, k}$ many permutations, we perform a division:

$$
\binom{n}{k}:=\frac{p_{n, k}}{p_{k, k}}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1)(k-2) \ldots 21} .
$$

Binomial coefficients are often called "Pascal's Triangle" and attributed to Blaise Pascal's Traité du Triangle Arithmétique from 1653, but they have many "fathers". There are earlier treatises of the binomial coefficients including Szu-yüan Yü-chien ("The Precious Mirror of the Four Elements") by the Chinese mathematician Chu Shih-Chieh in 1303, and in an ancient Hindu classic, Pingala's Chandaḥśāstra, due to Halāyudha (10-th century AD).

