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Course Syllabus

STAT 218 - 08S2 (C) Semester Two 2008
11 points, 0.0917 EFTS 14/07/2008-12/11/2008

Computational Methods in Statistics
Course Syllabus:Wednesday, 12th July 2008

Course Coordinator: Raazesh Sainudiin

0.1 About the Course

The power of modern computers has unleashed new ways of thinking about statistics and imple-
menting statistical solutions. This course introduces the student to computational techniques with
uses ranging from exploratory data analysis to statistical inference. These techniques are now
widely used and are fast becoming indispensable in the modern statistical toolkit. The course will
provide the student with a sound understanding of the computational methods, and with hands-on
experience in implementing and using them. Topics include generating random variables, Monte
Carlo integration and importance sampling, bootstrap methods, Markov chain Monte Carlo, kernel
density estimation and regression, and classification and regression trees.
Pre-requisites: STAT111 or STAT112 or MATH108 or MATH115 or MATH171

0.2 Formal Interactions

Lectures

Days: Mondays and Wednesdays Times: 1400 –1500 hours
Place: Room S6, Science Lecture Theatre
Lecturer: Raazesh Sainudiin
Purpose: To communicate the essential concepts and techniques necessary for a sound application
of computers to solve statistical problems as described in § 0.1.

You are encouraged to be actively engaged during the lectures to make the most of them. Since it is impossible
to impart knowledge to a passive audience, it is in your best interest to think of the lectures as an interactive
video game as opposed to a TV show. Please ask questions at anytime during the lectures.
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Laboratories

Days: Wednesdays OR Thursdays
Times: 1600 –1700 hours
Place: 035 (Wednesdays) and 036 (Thursdays) Erskine Building
Tutor: Zhu Sha (Joe) Email: szh41@student.canterbury.ac.nz
Purpose: To give you a taste of implementing code in a personal computer. This activity will
reinforce and complement the lectures.

0.3 Individualised Interactions & Course Communications

Lecturer: Raazesh Sainudiin, 724 Erskine Building
Email: r.sainudiin@math.canterbury.ac.nz
Office Hours: TBA
Purpose: To clarify specific topics or examples that were unclear to a student or a small group of
students during past formal interactions.
Course url: http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218

0.4 Student Evaluation

22% Laboratory Attendance and Completion of Labworks and Computer Exercises (2%× 11 Lab-
work Submissions).

Labwork submission At the end of the lab, we expect you to hand in some work. Create
a diary file named LabWeek#.txt, where # is the week number (see column 2 of Table 1), of
your laboratory work. The diary file should show what you did in each lab. For full credit
you should complete the assigned Labworks and Exercises for the given week and electroni-
cally submit the diary file at http://www.math.canterbury.ac.nz/php/resources/tools/
submit/assignment by the deadline (by midnight on the Friday of the following week).

12% Mid-semester assignment that will involve coding and/or pencil & paper

26% Term project report – 20.0% based on written report & 6% based on partly peer-reviewed oral presen-

tation. Please visit http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/
projects/Stat218StudentProjects2007.pdf to see the term projects completed by stu-
dents of STAT 218 from 2007.

40% Open book, open notes final exam.

Lecture Notes will be updated to the course web-page regularly about a week after the lecture.
Taking your own notes in class is essential. The topics may change as we may not be able to cover
such an ambitious survey of computational statistics.

http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218
http://www.math.canterbury.ac.nz/php/resources/tools/submit/assignment
http://www.math.canterbury.ac.nz/php/resources/tools/submit/assignment
http://www.math.canterbury.ac.nz/php/resources/tools/submit/assignment
http://www.math.canterbury.ac.nz/php/resources/tools/submit/assignment
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
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0.5 Time Table & Course Overview

Table 1: Time Table & Course Overview
Lec. Lab. Date Topics Section/Labworks/Simulations

1 14-07-08 Preliminaries: Set Theory, Numbers, Functions ,. . . 1.1, 1.2, 1.3

2 16-07-08 Probability 1.4, 2.1

1 16/17-07-08 Introduction to Matlab 1, 2, 3, 4, 5, 6

3 21-07-08 Probability and Conditional Probability 2.1,2.2

4 23-07-08 Cond. Probability, Independence & Bayes Theorem 2.2

2 23/24-07-08 Random variables and Expectations 7, 8, 9, 10

5 28-07-08 Random variables 3.1, 3.2

6 30-07-08 Random variables, Expectations & RNG 3.3, 3.4, 4.1, 4.2

3 30/31-07-08 Statistics & Visualisation 11, 12, 13, 14, 15, 16, 17, 18

7 04-08-08 IID RVs, Statistics, Common RVs 3.5, 5.1, 5.2, 6.1, 6.2

8 06-08-08 Common RVs & Simulation 6.1, 6.2

4 06/07-08-08 Simulation of RVs Sims: 1, 2, 3, 4 & LWs: 19, 20

9 11-08-08 Common RVs & Simulation 6.2, 6.3, 6.4

10 13-08-08 Common RV, R~V & Simulation 6.4, 6.5, 6.6

5 13/14-08-08 Implementation Sims: 5, 6, 7, 8, 9, 10, 11, 12

LWs: 21, 22, 23, 24

11 18-08-08 Common RV, R~V & Simulation 6.4, 6.5, 6.6

12 20-08-08 Rejection Sampling, Other RVs and R~Vs & Experiments 6.7, 6.8, 6.9, 6.10, 6.11

6 20/21-08-08 Simulation Sims: 13, 15, 16, 17 & LWs: 26, 27

13 08-09-08 Limits of RVs & Limit Laws in Statistics 7.1, 7.2

14 10-09-08 Limit Laws in Statistics & Point Estimation 7.2, 8.2

7 10/11-09-08 Point Estimation LWs: 30, 31

15 15-09-08 Point Estimation & Confidence Sets 8.2, 8.3, 8.4

16 17-09-08 Confidence Intervals & Likelihoods 8.4 , 8.5

8 17/18-09-08 Implementation LWs: (31), 32, 33

17 22-09-08 Maximum Likelihood Estimation 9.1

18 24-09-08 Fisher Information 9.3, 9.4

9 24/25-09-08 Implementation LWs: 34, 35, 36, 37

19 29-09-08 DF Estimation & Plug-in Estimation 10.1, 10.2

20 01-10-08 Bootstrap 11.1, 11.2

10 01/02-10-08 Implementation LWs: 39, 40, 42, 43, 45

21 06-10-08 Hypothesis Testing: size, level, power, Wald Test & p-value 12.1, 12.2, 12.4

22 08-10-08 Permutation Test & Chi-square 12.5, 12.6

11 08/09-10-08 Oral presentation preparation email oral presentation

23 13-10-08 Group Project Presentation

24 15-10-08 Group Project Presentation

12 15/16-10-08 Type-setting Written Report email written report
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Chapter 1

Introduction and Preliminaries

Lecture Notes for STAT 218 S2 2008: Computational Methods in Statistics
Raazesh Sainudiin, Dept. of Maths & Stats, University of Canterbury, Christchurch, NZ.

1.1 Computational Statistical Experiments

A statistical experimenter is a person who conducts a statistical experiment (for simplicity, from now
on, these will be called “experimenters” and “experiments”). Roughly, an experiment is an action
with an empirically observable outcome (data) that can not necessarily be predicted with certainty,
in the sense that a repetition of the experiment may result in a different outcome. Most quantitative
scientists are experimenters if they apply statistical principles to further their current understanding
or theory of an empirically observable real-world phenomenon (simply, a phenomenon). Roughly,
‘furthering’ your understanding or theory is done by improving your mathematical model (‘rigorous
cartoon’) of the phenomenon on the basis of its compatibility with the observed data or outcome
of the experiment. In this sense, an experimenter attempts to learn about a phenomenon through
the outcome of an experiment. An experimenter is often a scientist or engineer, and vice versa.

Technological advances have fundamentally inter-twined computers with most experiments today.
First, our instrumentational capacity to observe an empirical phenomenon, by means of automated
data gathering (sensing) and representation (storage and retrieval), is steadily increasing. Second,
our computational capability to process statistical information or to make decisions using such
massive data-sets is also steadily increasing. Thus, our recent technological advances are facilitating
computationally intensive statistical experiments based on possibly massive amounts of empirical
observations, in a manner that was not viable a decade ago. Hence, a successful scientist or
engineer in most specialisations today is a computational statistical experimenter, i.e. a statistical
experimenter who understands the information structures used to represent their data as well as
the statistical algorithms used to process their scientific or engineering decisions. This course is
designed to help you take the first steps along this path.

Let us first demonstrate the need for a statistical experiment. Recall that statistical inference or
learning is the process of using observations or data to infer some aspect of the distribution function
(DF) that generated it. A generic question is:

Given realisations from X1, X2, . . . , Xn ∼ some unknown DF F , how do we infer F?

Some of the concrete problems involving experiments include:

12
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• Simulation: Often, it is necessary to simulate a random variable (RV) with some specific
distribution to gain insight into its features or simulate whole systems, such as the air-traffic
queues at Heathrow Airport, to make better management decisions.

• Exploration: This is the art of (visually) exploring the observed data in order to better
understand the empirical phenomenon that generated the data. Visual explorations of simu-
lated data may provide benchmarks against which we may compare and contrast the observed
data.

• Estimation:

1. Parametric Estimation: Using samples from some unknown DF F that is parame-
terised by some unknown θ, we can estimate θ from a statistic Θ̂n called the estimator of
θ using one of several methods (maximum likelihood, moment estimation or parametric
bootstrap).

2. Non-parametric Estimation of the DF: Based on n independent and identically
distributed (IID) observations from an unknown DF F , we can estimate it under the
general assumption that F belongs to the collection all DFs.

3. Confidence Sets: We can obtain a 1 − α confidence set for the point estimates, of
the unknown parameter θ that belongs to a collection of parameters (also known as
parameter space) denoted by ΘΘ or the unknown DF F that belongs to the collection all
DFs denoted by {all DFs}.

• Testing: Based on observations from some DF F that is hypothesised as belonging to a
subset ΘΘ0 of ΘΘ called the space of null hypotheses, we will learn to test (attempt to reject)
the falsifiable null hypothesis that F belongs to a smaller collection of parameters denoted
by ΘΘ0. This smaller collection is contained in the parameter space ΘΘ.

• Learning: Supervised, unsupervised learning, classification and regression . . .

The statistical experiment and the basic objects that make it mathematically definitive and in-
ternally consistent are introduced later. The precursor to an experiment is a mathematical model
for probability in the ‘real world’ called the probability model. This arises from an axiomatic sys-
tem based on more fundamental objects, such as sample space, outcomes, events, probability, the
addition rule for mutually exclusive events, the definition of conditional probability, limits, real
number system, and random variables. These objects in turn build on the set theory, so a refresher
in set theory is our first stop. Then, we will introduce the probability model via the intuition be-
hind this construction, and various useful notions associated with continuous and discrete random
variables, such as distribution, density & mass functions, and moments. Commonly encountered
random variables will serve as examples. We will learn to simulate from these random variables
and visualise the realisations. We will visit the most elementary limit theorems before conducting
our own computational statistical experiments involving estimation, testing and learning.

1.2 Elementary Set Theory

A set is a collection of distinct objects. We write a set by enclosing its elements with curly braces.
For example, we denote a set of the two objects ◦ and • by:

{◦, •} .
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Sometimes, we give names to sets. For instance, we might call the first example set A and write:

A = {◦, •} .

We do not care about the order of elements within a set, i.e. A = {◦, •} = {•, ◦}. We do not allow
a set to contain multiple copies of any of its elements unless the copies are distinguishable, say by
labels. So, B = {◦, •, •} is not a set unless the two copies of • in B are labelled or marked to make
them distinct, e.g. B = {◦, •̃, •′}. Names for sets that arise in a mathematical discourse are given
upper-case letters (A,B,C,D, . . .). Special symbols are reserved for commonly encountered sets.

Here is the set GG of twenty two Greek lower-case alphabets that we may encounter later:

GG = { α, β, γ, δ, ε, ζ, η, θ, κ, λ, µ, ν, ξ, π, ρ, σ, τ , υ, φ, χ, ψ, ω } .

They are respectively named alpha, beta, gamma, delta, epsilon, zeta, eta, theta, kappa, lambda,
mu, nu, xi, pi, rho, sigma, tau, upsilon, phi, chi, psi and omega. LHS and RHS are abbreviations
for objects on the Left and Right Hand Sides, respectively, of some binary relation. By the notation:

LHS := RHS ,

we mean that LHS is equal, by definition, to RHS.

The set which does not contain any element (the collection of nothing) is called the empty set:

∅ := { } .

We say an element b belongs to a set B, or simply that b belongs to B or that b is an element of
B, if b is one of the elements that make up the set B, and write:

b ∈ B .

When b does not belong to B, we write:

b /∈ B .

For our example set A = {◦, •}, ? /∈ A but • ∈ A.

We say that a set C is a subset of another set D and write:

C ⊂ D

if every element of C is also an element of D. By this definition, any set is a subset of itself.

We say that two sets C and D are equal (as sets) and write C = D ‘if and only if’ (⇐⇒ ) every
element of C is also an element of D, and every element of D is also an element of C. This definition
of set equality is notationally summarised as follows:

C = D ⇐⇒ C ⊂ D,D ⊂ C .

When two sets C and D are not equal by the above definition, we say that C is not equal to D
and write:

C 6= D .

The union of two sets C and D, written as C ∪D, is the set of elements that belong to C or D.
We can formally express our definition of set union as:

C ∪D := {x : x ∈ C or x ∈ D} .
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When a colon (:) appears inside a set, it stands for ‘such that’. Thus, the above expression is read
as ‘C union D is equal by definition to the set of all elements x, such that x belongs to C or x
belongs to D.’

Similarly, the intersection of two sets C and D, written as C ∩ D, is the set of elements that
belong to both C and D. Formally:

C ∩D := {x : x ∈ C and x ∈ D} .

The set-difference or difference of two sets C and D, written as C \D, is the set of elements in C
that do not belong to D. Formally:

C \D := {x : x ∈ C and x /∈ D} .

When a universal set, e.g. U is well-defined, the complement of a given set B denoted by Bc is
the set of all elements of U that don’t belong to B, i.e.:

Bc := U \B .

We say two sets C and D are disjoint if they have no elements in common, i.e. C ∩D = ∅.

Figure 1.1: Universal set Ω, a set A such that A ⊂ Ω (read: A is a subset of Ω or A is contained in
Ω), another set B with B ⊂ Ω, the set A \B (read: A (set)minus B or A that is not in B), the set
A∩B (read: A intersection B), the set A∪B (read: A union B) and the set Ac (read: complement
of A) which is defined as Ω \A
.

Classwork 1 Suppose we are given a universal set U , and three of its subsets, A, B and C. Also
suppose that A ⊂ B ⊂ C. Find the circumstances, if any, under which each of the following
statements is true (T) and justify your answer:

(1) C ⊂ B T when B = C (2) A ⊂ C T by assumption
(3) C ⊂ ∅ T when A = B = C = ∅ (4) ∅ ⊂ A T always
(5) C ⊂ U T by assumption (6) U ⊂ A T when A = B = C = U
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1.3 Natural Numbers, Integers and Rational Numbers

We denote the number of elements in a set named B by:

#B := Number of elements in the set B .

In fact, the Hindu-Arab numerals we have inherited are based on this intuition of the size of a
collection. The elements of the set of natural numbers:

N := {1, 2, 3, 4, . . .} ,may be defined using # as follows:

1 := #{?} = #{•} = #{α} = #{{•}} = #{{•, •′}} = . . . ,

2 := #{?′, ?} = #{•, ◦} = #{α, ω} = #{{◦}, {α, ?, •}} = . . . ,

...

For our example sets, A = {◦, •} and the set of Greek alphabets GG, #A = 2 and #GG = 22. The
number zero may be defined as the size of an empty set:

0 := #∅ = #{}

The set of non-negative integers is:

Z+ := N ∪ {0} = {0, 1, 2, 3, . . .} .

A product set is the Cartesian product (×) of two or more possibly distinct sets:

A×B := {(a, b) : a ∈ A and b ∈ B}

For example, if A = {◦, •} and B = {?}, then A×B = {(◦, ?), (•, ?)}. Elements of A×B are called
ordered pairs.

The binary arithmetic operation of addition (+) between a pair of non-negative integers c, d ∈ Z+

can be defined via sizes of disjoint sets. Suppose, c = #C, d = #D and C ∩D = ∅, then:

c+ d = #C + #D := #(C ∪D) .

For example, if A = {◦, •} and B = {?}, then A∩B = ∅ and #A+#B = #(A∪B) ⇐⇒ 2+1 = 3.

The binary arithmetic operation of multiplication (·) between a pair of non-negative integers
c, d ∈ Z+ can be defined via sizes of product sets. Suppose, c = #C, d = #D, then:

c · d = #C ·#D := #(C ×D) .

For example, if A = {◦, •} and B = {?}, then #A ·#B = #(A×B) ⇐⇒ 2 · 1 = 2.

More generally, a product set of A1, A2, . . . , Am is:

A1 ×A2 × · · · ×Am := {(a1, a2, . . . , am) : a1 ∈ A1, a2 ∈ A2, . . . , am ∈ Am}

Elements of an m-product set are called ordered m-tuples. When we take the product of the
same set we abbreviate as follows:

Am := A×A× · · · ×A︸ ︷︷ ︸
m times

:= {(a1, a2, . . . , am) : a1 ∈ A, a2 ∈ A, . . . , am ∈ A}
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Classwork 2 1. Let A = {◦, •}. What are the elements of A2? 2. Suppose #A = 2 and #B = 3.
What is #(A×B)? 3. Suppose #A1 = s1,#A2 = s2, . . . ,#Am = sm. What is #(A1 ×A2 × · · · ×
Am)?

Now, let’s recall the definition of a function. A function is a “mapping” that associates each
element in some set X (the domain) to exactly one element in some set Y (the range). Two
different elements in X can be mapped to or associated with the same element in Y, and not every
element in Y needs to be mapped. Suppose x ∈ X. Then we say f(x) = y ∈ Y is the image of x.
To emphasise that f is a function from X 3 x to Y 3 y, we write:

f(x) = y : X 7→ Y .

And for some y ∈ Y, we call the set:

f [−1](y) := {x ∈ X : f(x) = y} ⊂ X ,

the pre-image or inverse image of y, and

f [−1] := f [−1](y ∈ Y) = X ⊂ X ,

as the inverse of f .

Figure 1.2: A function f (“father of”) from X (a set of children) to Y (their fathers) and its inverse
(“children of”).

We motivated the non-negative integers Z+ via the size of a set. With the notion of two directions
(+ and −) and the magnitude of the current position from the origin zero (0) of a dynamic entity,
we can motivate the set of integers:

Z := {. . . ,−3,−2,−1, 0,+1,+2,+3, . . .} .

The integers with a minus or negative sign (−) before them are called negative integers and those
with a plus or positive sign (+) before them are called positive integers. Conventionally, + signs
are dropped. Some examples of functions you may have encountered are arithmetic operations
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such as addition (+), subtraction (−), multiplication (·) and division (/) of ordered pairs
of integers. The reader is assumed to be familiar with such arithmetic operations with pairs of
integers. Every integer is either positive, negative, or zero. In terms of this we define the notion
of order. We say an integer a is less than an integer b and write a < b if b − a is positive. We
say an integer a is less than or equal to an integer b and write a ≤ b if b− a is positive or zero.
Finally, we say that a is greater than b and write a > b if b < a. Similarly, a is greater than equal
to b, i.e. a ≥ b, if b ≤ a. The set of integers are well-ordered, i.e., for every integer a there is a
next largest integer a+ 1.

Classwork 3 Consider the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. Try to set up the
arithmetic operation of addition as a function. The domain for addition is the Cartesian product
of Z:

Z2 := Z× Z := {(a, b) : a ∈ Z, b ∈ Z}

What is its range ?
+ : Z× Z 7→

Figure 1.3: A pictorial depiction of addition and its inverse. The domain is plotted in orthogonal
Cartesian coordinates.

If the magnitude of the entity’s position is measured in units (e.g. meters) that can be rationally
divided into q pieces with q ∈ N, then we have the set of rational numbers:

Q := {p/q : p ∈ Z, q ∈ Z \ {0}}

The expressions p/q and p′/q′ denote the same rational number if and only if p · q′ = p′ · q. Every
rational number has a unique irreducible expression p/q, where q is positive and as small as possible.
For example, 1/2, 2/4, 3/6, and 1001/2002 are different expressions for the same rational number
whose irreducible unique expression is 1/2.

Addition and multiplication are defined for rational numbers by:

p

q
+
p′

q′
=
p · q′ + p′ · q

q · q′
and

p

q
· p
′

q′
=
p · p′

q · q′
.

The rational numbers form a field under the operations of addition and multiplication defined above
in terms of addition and multiplication over integers. This means that the following properties are
satisfied:
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1. Addition and multiplication are each commutative

a+ b = b+ a, a · b = b · a ,

and associative
a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c .

2. Multiplication distributes over addition

a · (b+ c) = (a · b) + (a · c) .

3. 0 is the additive identity and 1 is the multiplicative identity

0 + a = a and 1 · a = a .

4. Every rational number a has a negative, a+ (−a) = 0 and every non-zero rational number a
has a reciprocal, a · 1/a = 1.

The field axioms imply the usual laws of arithmetic and allow subtraction and division to be defined
in terms of addition and multiplication as follows:

p

q
− p′

q′
:=

p

q
+
−p′

q′
and

p

q
/
p′

q′
:=

p

q
· q
′

p′
, provided p′ 6= 0 .

We will see later that the theory of finite fields is necessary for the study of pseudo-random number
generators (PRNGs) and PRNGs are the heart-beat of randomness and statistics with computers.

1.4 Real Numbers

Unlike rational numbers which are expressible in their reduced forms by p/q, it is fairly tricky to
define or express real numbers. It is possible to define real numbers formally and constructively
via equivalence classes of Cauchy sequence of rational numbers. For this all we need are notions of
(1) infinity, (2) sequence of rational numbers and (3) distance between any two rational numbers
in an infinite sequence of them. These are topics usually covered in an introductory course in real
analysis and are necessary for a firm foundation in computational statistics. Instead of a formal
constructive definition of real numbers, we give a more concrete one via decimal expansions. See
Donald E. Knuth’s treatment [Art of Computer Programming, Vol. I, Fundamental Algorithms,
3rd Ed., 1997, pp. 21-25] for a fuller story. A real number is a numerical quantity x that has a
decimal expansion:

x = n+ 0.d1d2d3 . . . , where, each di ∈ {0, 1, . . . , 9}, n ∈ Z ,

and the sequence 0.d1d2d3 . . . does not terminate with infinitely many consecutive 9s. By the above
decimal representation, the following arbitrarily accurate enclosure of the real number x by rational
numbers is implied:

n+
d1

10
+

d2

100
+ · · ·+ dk

10k
=: xk ≤ x < xk := n+

d1

10
+

d2

100
+ · · ·+ dk

10k
+

1
10k

for every k ∈ N. Thus, rational arithmetic (+,−, ·, /) can be extended with arbitrary precision to
any ordered pair of real numbers x and y by operations on their rational enclosures x, x and y, y.
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Some examples of real numbers that are not rational (irrational numbers) are:
√

2 = 1.41421356237309 . . .the side length of a square with area of 2 units

π = 3.14159265358979 . . .the ratio of the circumference to diameter of a circle

e = 2.71828182845904 . . .Euler’s constant

We can think of π as being enclosed by the following pairs of rational numbers:

3 +
1
10

=: π1 ≤π < π1 := 3 +
1
10

+
1

101

3 +
1
10

+
4

100
=: π2 ≤π < π2 := 3 +

1
10

+
4

100
+

1
100

3 +
1
10

+
4

100
+

1
103

=: π3 ≤π < π3 := 3 +
1
10

+
4

100
+

1
103

+
1

103

...

3.14159265358979 =: π14 ≤π < π14 := 3.14159265358979 +
1

1014

...

Think of the real number system as the continuum of points that make up a line, as shown in
Figure 1.4.

Figure 1.4: A depiction of the real line segment [−10, 10].

Let y and z be two real numbers such that y ≤ z. Then, the closed interval [y, z] is the set of
real numbers x such that y ≤ x ≤ z:

[y, z] := {x : y ≤ x ≤ z} .

The half-open interval (y, z] or [y, z) and the open interval (y, z) are defined analogously:

(y, z] := {x : y < x ≤ z} ,
[y, z) := {x : y ≤ x < z} ,
(y, z) := {x : y < x < z} .

We also allow y to be minus infinity (denoted −∞) or z to be infinity (denoted ∞) at an open
endpoint of an interval, meaning that there is no lower or upper bound. With this allowance we
get the set of real numbers R := (−∞,∞), the non-negative real numbers R+ := [0,∞) and
the positive real numbers R>0(0,∞) and .

R := (−∞,∞) = {x : −∞ < x <∞} ,
R+ := [0,∞) = {x : 0 ≤ x <∞} ,

R>0 := [0,∞) = {x : 0 < x <∞} .
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For a positive real number b ∈ R>0 and an integer n ∈ Z, the n-th power or exponent of b is:

b0 = 1, bn = bn−1 · b if n > 0, bn = bn+1/b if n < 0 .

The following laws of exponents hold by mathematical induction when m,n ∈ Z:

bm+n = bm · bn, (bm)n = bm·n .

If y ∈ R and m ∈ N, the unique positive real number z ∈ R>0 such that zm = y is called the m-th
root of y and denoted by m

√
y, i.e.,

zm = y =⇒ z = m
√
y .

For a rational number r = p/q ∈ Q, we define the r-th power of b ∈ R as follows:

br = bp/q := q
√
bp

The laws of exponents hold for this definition and different expressions for the same rational number
r = ap/aq yield the same power, i.e., bp/q = bap/aq. Recall that a real number x = n+0.d1d2d3 . . . ∈
R can be arbitrarily precisely enclosed by the rational numbers xk := n+ d1

10 + d2
100 + · · ·+ dk

10k
and

xk := n+ d1
10 + d2

100 + · · ·+ dk
10k

+ 1
10k

by increasing k. Suppose first that b > 1. Then, using rational
powers, we can enclose bx,

b
n+

d1
10

+
d2
100

+···+ dk
10k =: bxk ≤ bx < bxk := b

n+
d1
10

+
d2
100

+···+ dk
10k

+ 1

10k ,

within an interval of width b
n+

d1
10

+
d2
100

+···+ dk
10k

(
b

1

10k − 1
)
< bn+1(b − 1)/10k. By taking a large

enough k we can evaluate bx to any accuracy. Finally, when b < 1 we define bx := (1/b)x and when
b = 0, bx := 1.

Suppose y ∈ R>0 and b ∈ R \ {1} then the real number x such that y = bx is called the logarithm
of y to the base b and we write this as:

y = bx ⇐⇒ x = logb y

The definition implies:
x = logb(b

x) = blogb x ,

and the laws of exponents imply:

logb(xy) = logb x+ logb y, if x > 0, y > 0 and
logb (cy) = y logb c, if c > 0 .

The common logarithm is log10(y), the binary logarithm is log2(y) and the natural logarithm
is loge(y), where e is the Euler’s constant. Since we will mostly work with loge(y) we use log(y) to
mean loge(y). You are assumed to be familiar with trigonometric functions (sin(x), cos(x), tan(x),
. . .). We sometimes denote the special power function ey by exp(y).

Familiar extremal elements of a set of real numbers, say A, are the following:

maxA := greatest element in A

For example, max{1, 4,−9, 345} = 4, max[−93.8889, 1002.786] = 1002.786.

minA := least element in A
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For example, min{1, 4,−9, 345} = −9, min[−93.8889, 1002.786] = −93.8889. We need a slightly
more sophisticated notion for the extremal elements of a set A that may not belong to A. We say
that a real number x is a lower bound for a non-empty set of real numbers A, provided x ≤ a
for every a ∈ A. We say that the set A is bounded below if it has at least one lower bound. A
lower bound is the greatest lower bound if it is at least as large as any other lower bound. The
greatest lower bound of a set of real numbers A is called the infimum of A and is denoted by:

inf A := greatest lower bound of A

For example, inf(0, 1) = 0 and inf{10.333 ∪ [−99, 1001.33)} = −99. We similarly define the least
upper bound of a non-empty set of real numbers A to be the supremum of A and denote it as:

supA := least upper bound of A

For example, sup(0, 1) = 1 and sup{10.333 ∪ [−99, 1001.33)} = 1001.33. By convention, we define
inf ∅ := ∞, sup ∅ := −∞. Finally, if a set A is not bounded below then inf A := −∞ and if a set
A is not bounded above then supA :=∞.
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Symbol Meaning
A = {?, ◦, •} A is a set containing the elements ?, ◦ and •
◦ ∈ A ◦ belongs to A or ◦ is an element of A
A 3 ◦ ◦ belongs to A or ◦ is an element of A
� /∈ A � does not belong to A
#A Size of the set A, for e.g. #{?, ◦, •,�} = 4
N The set of natural numbers {1, 2, 3, . . .}
Z+ The set of non-negative integers {0, 1, 2, 3, . . .}
∅ Empty set or the collection of nothing or {}
A ⊂ B A is a subset of B or A is contained by B, e.g. A = {◦}, B = {•}
A ⊃ B A is a superset of B or A contains B e.g. A = {◦, ?, •}, B = {◦, •}
A = B A equals B, i.e. A ⊂ B and B ⊂ A
Q =⇒ R Statement Q implies statement R or If Q then R

Q ⇐⇒ R Q =⇒ R and R =⇒ Q

{x : x satisfies property R} The set of all x such that x satisfies property R
A ∪B A union B, i.e. {x : x ∈ A or x ∈ B}
A ∩B A intersection B, i.e. {x : x ∈ A and x ∈ B}
A \B A minus B, i.e. {x : x ∈ A and x /∈ B}
A := B A is equal to B by definition
A =: B B is equal to A by definition
Ac A complement, i.e. {x : x ∈ U, the universal set, but x /∈ A}
A1 ×A2 × · · · ×Am The m-product set {(a1, a2, . . . , am) : a1 ∈ A1, a2 ∈ A2, . . . , am ∈ Am}
Am The m-product set {(a1, a2, . . . , am) : a1 ∈ A, a2 ∈ A, . . . , am ∈ A}
f := f(x) = y : X 7→ Y A function f from domain X to range Y
f [−1](y) Inverse image of y
f [−1] := f [−1](y ∈ Y) = X ⊂ X Inverse of f
Z := {. . . ,−2,−1, 0, 1, 2, . . .} Integers
a < b or a ≤ b a is less than b or a is less than or equal to b
a > b or a ≥ b a is greater than b or a is greater than or equal to b
Q Rational numbers
(x, y) the open interval (x, y), i.e. {r : x < r < y}
[x, y] the closed interval (x, y), i.e. {r : x ≤ r ≤ y}
(x, y] the half-open interval (x, y], i.e. {r : x < r ≤ y}
[x, y) the half-open interval [x, y), i.e. {r : x ≤ r < y}
R := (−∞,∞) Real numbers, i.e. {r : −∞ < r <∞}
R+ := [0,∞) Real numbers, i.e. {r : 0 ≤ r <∞}
R>0 := (0,∞) Real numbers, i.e. {r : 0 < r <∞}

Table 1.1: Symbol Table: Sets and Numbers
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1.5 Introduction to Matlab

We use Matlab to perform computations and visualisations. Matlab is a numerical computing
environment and programming language that is optimised for vector and matrix processing. STAT
218/313 students will have access to Maths & Stats Department’s computers that are licensed to
run Matlab. You can remotely connect to these machines from home by following instructions at
http://www.math.canterbury.ac.nz/php/resources/compdocs/remote.

Labwork 1 (Basics of Matlab) Let us familiarize ourselves with Matlab in this session. First,
you need to launch Matlab from your terminal. Since this is system dependent, ask your tutor
for help. The command window within the Matlab window is where you need to type commands.
Here is a minimal set of commands you need to familiarize yourself with in this session.

1. Type the following command to add 2 numbers in the command window right after the com-
mand prompt >> .

>> 13+24

Upon hitting Enter or Return on your keyboard, you should see:

ans =

37

The summand 37 of 13 and 24 is stored in the default variable called ans which is short for
answer.

2. We can write comments in Matlab following the % character. All the characters in a given
line that follow the percent character % are ignored by Matlab. It is very helpful to comment
what is being done in the code. You won’t get full credit without sufficient comments in your
coding assignments. For example we could have added the comment to the previous addition.
To save space in these notes, we suppress the blank lines and excessive line breaks present in
Matlab’s command window.

>> 13+24 % adding 13 to 24 using the binary arithmetic operator +

ans = 37

3. You can create or reopen a diary file in Matlab to record your work. Everything you
typed or input and the corresponding output in the command window will be recorded in
the diary file. You can create or reopen a diary file by typing diary filename.txt in the
command window. When you have finished recording, simply type diary off in the command
window to turn off the diary file. The diary file with .txt extension is simply a text-file.
It can be edited in different editors after the diary is turned off in Matlab. You need to type
diary LabWeek1.txt to start recording your work for electronic submission (see Section 0.4).

>> diary blah.txt % start a diary file named blah.txt

>> 3+56

ans = 59

>> diary off % turn off the current diary file blah.txt

http://www.math.canterbury.ac.nz/php/resources/compdocs/remote
http://www.math.canterbury.ac.nz/php/resources/compdocs/remote
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>> type blah.txt % this allows you to see the contents of blah.txt

3+56

ans = 59

diary off

>> diary blah.txt % reopen the existing diary file blah.txt

>> 45-54

ans = -9

>> diary off % turn off the current diary file blah.txt again

>> type blah.txt % see its contents

3+56

ans = 59

diary off

45-54

ans = -9

diary off

4. Let’s learn to store values in variables of our choice. Type the following at the command
prompt :

>> VariableCalledX = 12

Upon hitting enter you should see that the number 12 has been assigned to the variable named
VariableCalledX :

VariableCalledX = 12

5. Matlab stores default value for some variables, such as pi (π), i and j (complex numbers).

>> pi

ans = 3.1416

>> i

ans = 0 + 1.0000i

>> j

ans = 0 + 1.0000i

All predefined symbols (variables, constants, function names, operators, etc) in Matlab are
written in lower-case. Therefore, it is a good practice to name the variable you define using
upper and mixed case letters in order to prevent an unintended overwrite of some predefined
Matlab symbol.

6. We could have stored the sum of 13 and 24 in the variable X, by entering:

>> X = 13 + 24

X = 37

7. Similarly, you can store the outcome of multiplication (via operation * ), subtraction (via
operation -), division (via / ) and exponentiation (via ˆ )of any two numbers of your choice
in a variable name of your choice. Evaluate the following expressions in Matlab:

p = 45.89 ∗ 1.00009 d = 89.0/23.3454
m = 5376.0− 6.00 p = 20.5

8. You may compose the elementary operations to obtain rational expressions by using paren-
thesis to specify the order of the operations. To obtain

√
2, you can type the following into

Matlab’s command window.
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>> 2^(1/2)

ans = 1.4142

The omission of parenthesis about 1/2 means something else and you get the following output:

>> 2^1/2

ans = 1

Matlab first takes the 1st power of 2 and then divides it by 2 using its default precedence rules
for binary operators in the absence of parenthesis. The order of operations or default prece-
dence rule for arithmetic operations is 1. brackets or parentheses; 2. exponents (powers and
roots); 3. division and multiplication; 4. addition and subtraction. The mnemonic bedmas
can be handy. When in doubt, use parenthesis to force the intended order of operations.

9. When you try to divide by 0, matlab returns Inf for infinity.

>> 10/0

ans = Inf

10. We can clear the value we have assigned to a particular variable and reuse it. We demonstrate
it by the following commands and their output:

>> X

X = 37

>> clear X

>> X

??? Undefined function or variable ’X’.

Entering X after clearing it gives the above self-explanatory error message preceded by ???.

11. We can suppress the output on the screen by ending the command with a semi-colon. Take a
look at the simple command that sets X to sin(3.145678) with and without the ‘;’ at the end:

>> X = sin(3.145678)

X = -0.0041

>> X = sin(3.145678);

12. If you do not understand a Matlab function or command then type help or doc followed by
the function or command. For example:

>> help sin

SIN Sine of argument in radians.

SIN(X) is the sine of the elements of X.

See also asin, sind.

Overloaded methods:

darray/sin

Reference page in Help browser

doc sin

>> doc sin

It is a good idea to use the help files before you ask your tutor.

13. Set the variable x to equal 17.13 and evaluate cos(x), log(x), exp(x), arccos(x), abs(x), sign(x)
using the matlab commands cos, log, exp, acos, abs, sign, respectively. Read the help files
to understand what each function does.
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14. When we work with real numbers (floating-point numbers) or really large numbers, we might
want the output to be displayed in concise notation. This can be controlled in Matlab using
the format command with the short or long options with/without e for scientific notation.
format compact is used for getting compacted output and format returns the default format.
For example:

>> format compact

>> Y=15;

>> Y = Y + acos(-1)

Y = 18.1416

>> format short

>> Y

Y = 18.1416

>> format short e

>> Y

Y = 1.8142e+001

>> format long

>> Y

Y = 18.141592653589793

>> format long e

>> Y

Y = 1.814159265358979e+001

>> format

>> Y

Y = 18.1416

15. Finally, to quit from Matlab just type quit or exit at the prompt.

>> quit

16. An M-file is a special text file with a .m extension that contains a set of code or instructions
in Matlab. In this course we will be using two types of M-files: script and function files.
A script file is simply a list of commands that we want executed and saves us from retyping
code modules we are pleased with. A function file allows us to write specific tasks as functions
with input and output. These functions can be called from other script files, function files or
command window. We will see such examples shortly.

By now, you are expected to be familiar with arithmetic operations, simple function evaluations,
format control, starting and stopping a diary file and launching and quitting Matlab.

1.6 Permutations, Factorials and Combinations

Definition 1 (Permutations and Factorials) A permutation of n objects is an arrangement
of n distinct objects in a row. For example, there are 2 permutations of the two objects {1, 2}:

12, 21 ,

and 6 permutations of the three objects {a, b, c}:

abc, acb, bac, bca, cab, cba .

Let the number of ways to choose k objects out of n and to arrange them in a row be denoted by
pn,k. For example, we can choose two (k = 2) objects out of three (n = 3) objects, {a, b, c}, and
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arrange them in a row in six ways (p3,2):

ab, ac, ba, bc, ca, cb .

Given n objects, there are n ways to choose the left-most object, and once this choice has been made
there are n− 1 ways to select a different object to place next to the left-most one. Thus, there are
n(n− 1) possible choices for the first two positions. Similarly, when n > 2, there are n− 2 choices
for the third object that is distinct from the first two. Thus, there are n(n− 1)(n− 2) possible ways
to choose three distinct objects from a set of n objects and arrange them in a row. In general,

pn,k = n(n− 1)(n− 2) . . . (n− k + 1)

and the total number of permutations called ‘n factorial’ and denoted by n! is

n! := pn,n = n(n− 1)(n− 2) . . . (n− n+ 1) = n(n− 1)(n− 2) . . . (3) (2) (1) =:
n∏
i=1

i .

Some factorials to bear in mind

0! := 1 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120 10! = 3, 628, 800 .

When n is large we can get a good idea of n! without laboriously carrying out the n−1 multiplications via Stirling’s approximation

(Methodus Differentialis (1730), p. 137) :

n! u
√

2πn
“n
e

”n
.

Definition 2 (Combinations) The combinations of n objects taken k at a time are the possible
choices of k different elements from a collection of n objects, disregarding order. They are called
the k-combinations of the collection. The combinations of the three objects {a, b, c} taken two at a
time, called the 2-combinations of {a, b, c}, are

ab, ac, bc ,

and the combinations of the five objects {1, 2, 3, 4, 5} taken three at a time, called the 3-combinations
of {1, 2, 3, 4, 5} are

123, 124, 125, 134, 135, 145, 234, 235, 245, 345 .

The total number of k-combination of n objects, called a binomial coefficient, denoted
(
n
k

)
and

read “n choose k,” can be obtained from pn,k = n(n− 1)(n− 2) . . . (n−k+ 1) and k! := pk,k. Recall
that pn,k is the number of ways to choose the first k objects from the set of n objects and arrange
them in a row with regard to order. Since we want to disregard order and each k-combination
appears exactly pk,k or k! times among the pn,k many permutations, we perform a division:(

n

k

)
:=

pn,k
pk,k

=
n(n− 1)(n− 2) . . . (n− k + 1)

k(k − 1)(k − 2) . . . 2 1
.

Binomial coefficients are often called “Pascal’s Triangle” (Blaise Pascal, Traité du Triangle Arithmétique 1653), but they have

many “fathers”. There are earlier treatises of the binomial coefficients including Szu-yüan Yü-chien (“The Precious Mirror

of the Four Elements”) by the Chinese mathematician Chu Shih-Chieh in 1303, and in an ancient Hindu classic, Piṅgala’s

Chandah. śāstra, due to Halāyudha (10-th century AD).
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1.7 Array, Sequence, Limit, . . .

In this section we will study a basic data structure in Matlab called an array of numbers. Arrays
are finite sequences and they can be processed easily in Matlab. The notion of infinite sequences
lead to limits, one of the most fundamental concepts in mathematics.

For any natural number n, we write

〈x1:n〉 := x1, x2, . . . , xn−1, xn

to represent the finite sequence of real numbers x1, x2, . . . , xn−1, xn. For two integers m and n
such that m ≤ n, we write

〈xm:n〉 := xm, xm+1, . . . , xn−1, xn

to represent the finite sequence of real numbers xm, xm+1, . . . , xn−1, xn. In mathematical anal-
ysis, finite sequences and their countably infinite counterparts play a fundamental role in limiting
processes. Given an integer m, we denote an infinite sequence or simply a sequence as:

〈xm:∞〉 := xm, xm+1, xm+2, xm+3, . . . .

Given index set I which may be finite or infinite in size, a sequence can either be seen as a set of
ordered pairs:

{(i, xi) : i ∈ I} ,

or as a function that maps the index set to the set of real numbers:

x(i) = xi : I 7→ {xi : i ∈ I} ,

The finite sequence 〈xm:n〉 has I = {m,m+ 1,m+ 2,m+ 3, . . . , n} as its index set while an infinite
sequence 〈xm:∞〉 has I = {m,m+ 1,m+ 2,m+ 3, . . .} as its index set. A sub-sequence 〈xj:k〉 of
a finite sequence 〈xm:n〉 or an infinite sequence 〈xm:∞〉 is:

〈xj:k〉 = xj , xj+1, . . . , xk−1, xk where, m ≤ j ≤ k ≤ n <∞ .

A rectangular arrangement of m · n real numbers in m rows and n columns is called an m × n
matrix. The ‘m× n’ represents the size of the matrix. We use bold upper-case letters to denote
matrices, for e.g:

X =


x1,1 x1,2 . . . x1,n−1 x1,n

x2,1 x2,2 . . . x2,n−1 x2,n
...

...
. . .

...
...

xm−1,1 xm−1,2 . . . xm−1,n−1 xm−1,n

xm,1 xm,2 . . . xm,n−1 xm,n


Matrices with only one row or only one column are called vectors. An 1×n matrix is called a row
vector since there is only one row and an m× 1 matrix is called a column vector since there is
only one column. We use bold-face lowercase letters to denote row and column vectors.

A row vector x =
[
x1 x2 . . . xn

]
= (x1, x2, . . . , xn)

and a column vector y =


y1

y2
...

ym−1

ym

 =
[
y1 y2 . . . ym

]′ = (y1, y2, . . . , ym)′ .
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The superscripting by ′ is the transpose operation and simply means that the rows and columns
are exchanged. Thus the transpose of the matrix X is:

X′ =


x1,1 x2,1 . . . xm−1,1 xm,1
x1,2 x2,2 . . . xm−1,2 xm,2

...
...

. . .
...

...
x1,n−1 x2,n−1 . . . xm−1,n−1 xm,n−1

x1,n x2,n . . . xm−1,n xm,n


In linear algebra and calculus, it is natural to think of vectors and matrices as points (ordered
m-tuples) and ordered collection of points in Cartesian co-ordinates. We assume that the reader
has heard of operations with matrices and vectors such as matrix multiplication, determinants,
transposes, etc. Such concepts will be introduced as they are needed in the sequel.
Finite sequences, vectors and matrices can be represented in a computer by an elementary data
structure called an array.

Labwork 2 (Sequences as arrays) Let us learn to represent, visualise and operate finite se-
quences as Matlab arrays. Try out the commands and read the comments for clarification.

>> a = [17] % Declare the sequence of one element 17 in array a

a = 17

>> % Declare the sequence of 10 numbers in array b

>> b=[-1.4508 0.6636 -1.4768 -1.2455 -0.8235 1.1254 -0.4093 0.1199 0.2043 -0.8236]

b =

-1.4508 0.6636 -1.4768 -1.2455 -0.8235 1.1254 -0.4093 0.1199 0.2043 -0.8236

>> c = [1 2 3] % Declare the sequence of 3 consecutive numbers 1,2,3

z = 1 2 3

>> % linspace(x1, x2, n) generates n points linearly spaced between x1 and x2

>> r = linspace(1, 3, 3) % Declare sequence r = c using linspace

r = 1 2 3

>> s1 = 1:10 % declare an array s1 starting at 1, ending by 10, in increments of 1

s = 1 2 3 4 5 6 7 8 9 10

>> s2 = 1:2:10 % declare an array s2 starting at 1, ending by 10, in increments of 2

s = 1 3 5 7 9

>> s2(3) % obtain the third element of the finite sequence s2

ans = 5

>> s2(2:4) % obtain the subsequence from second to fourth elements of the finite sequence s2

ans = 3 5 7

We may visualise (as per Figure 2) the finite sequences 〈b1:n〉 stored in the array b as the set
of ordered pairs {(1, b1), (2, b2), . . . , (10, bn)} representing the function b(i) = bi : {1, 2, . . . , n} 7→
{b1, b2, . . . , bn} via point plot and stem plot using Matlab’s plot and stem commands, respec-
tively.

>> display(b) % display the array b in memory

b =

-1.4508 0.6636 -1.4768 -1.2455 -0.8235 1.1254 -0.4093 0.1199 0.2043 -0.8236

>> plot(b,’o’) % point plot of ordered pairs (1,b(1)), (2,b(2)), ..., (10,b(10))

>> stem(b) % stem plot of ordered pairs (1,b(1)), (2,b(2)), ..., (10,b(10))

>> plot(b,’-o’) % point plot of ordered pairs (1,b(1)), (2,b(2)), ..., (10,b(10)) connected by lines

Labwork 3 (Vectors and matrices as arrays) Let us learn to represent, visualise and operate
vectors as Matlab arrays. Syntactically, a vector is stored in an array exactly in the same way
we stored a finite sequence. However, mathematically, we think of a vector as an ordered m-tuple
that can be visualised as a point in Cartesian co-ordinates. Try out the commands and read the
comments for clarification.
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Figure 1.5: Point plot and stem plot of the finite sequence 〈b1:10〉 declared as an array.
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>> a = [1 2] % an 1 X 2 row vector

>> z = [1 2 3] % Declare an 1 X 3 row vector z with three numbers

z = 1 2 3

>> % linspace(x1, x2, n) generates n points linearly spaced between x1 and x2

>> r = linspace(1, 3, 3) % Declare an 1 X 3 row vector r = z using linspace

r = 1 2 3

>> c = [1; 2; 3] % Declare a 3 X 1 column vector c with three numbers. Semicolons delineate columns

c =

1

2

3

>> rT = r’ % The column vector (1,2,3)’ by taking the transpose of r via r’

rT =

1

2

3

>> y = [1 1 1] % y is a sequence or row vector of 3 1’s

y = 1 1 1

>> ones(1,10) % ones(m,n) is an m X n matrix of ones. Useful when m or n is large.

ans = 1 1 1 1 1 1 1 1 1 1

We can use two dimensional arrays to represent matrices. Some useful built-in commands to
generate standard matrices are:

>> Z=zeros(2,10) % the 2 X 10 matrix of zeros

Z =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

>> O=ones(4,5) % the 4 X 5 matrix of ones

O =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

>> E=eye(4) % the 4 X 4 identity matrix

E =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

We can also perform operations with arrays representing vectors, finite sequences, or matrices.
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>> y % the array y is

y = 1 1 1

>> z % the array z is

z = 1 2 3

>> x = y + z % x is the sum of vectors y and z (with same size 1 X 3)

x = 2 3 4

>> y = y * 2 % y is updated to 2 * y (each term of y is multiplied by 2)

y = 2 2 2

>> p = z .* y % p is the vector obtained by term-by-term product of z and y

p = 2 4 6

>> d = z ./ y % d is the vector obtained by term-by-term division of z and y

d = 0.5000 1.0000 1.5000

>> t=linspace(-10,10,4) % t has 4 numbers equally-spaced between -10 and 10

t = -10.0000 -3.3333 3.3333 10.0000

>> s = sin(t) % s is a vector obtained from the term-wise sin of the vector t

s = 0.5440 0.1906 -0.1906 -0.5440

>> sSq = sin(t) .^ 2 % sSq is an array obtained from term-wise squaring ( .^ 2) of the sin(t) array

sSq = 0.2960 0.0363 0.0363 0.2960

>> cSq = cos(t) .^ 2 % cSq is an array obtained from term-wise squaring ( .^ 2) of the cos(t) array

cSq = 0.7040 0.9637 0.9637 0.7040

>> sSq + cSq % we can add the two arrays sSq and cSq to get the array of 1’s

ans = 1 1 1 1

>> n = sin(t) .^2 + cos(t) .^2 % we can directly do term-wise operation sin^2(t) + cos^2(t) of t as well

n = 1 1 1 1

>> t2 = (-10:6.666665:10) % t2 is similar to t above but with ’:’ syntax of (start:increment:stop)

t2 = -10.0000 -3.3333 3.3333 10.0000

Similarly, operations can be performed with matrices.

>> (O+O) .^ (1/2) % term-by-term square root of the matrix obtained by adding O=ones(4,5) to itself

ans =

1.4142 1.4142 1.4142 1.4142 1.4142

1.4142 1.4142 1.4142 1.4142 1.4142

1.4142 1.4142 1.4142 1.4142 1.4142

1.4142 1.4142 1.4142 1.4142 1.4142

We can access specific rows or columns of a matrix as follows:

>> % declare a 3 X 3 array A of row vectors

>> A = [0.2760 0.4984 0.7513; 0.6797 0.9597 0.2551; 0.1626 0.5853 0.6991]

A =

0.2760 0.4984 0.7513

0.6797 0.9597 0.2551

0.1626 0.5853 0.6991

>> A(2,:) % access the second row of A

ans =

0.6797 0.9597 0.2551

>> B = A(2:3,:) % store the second and third rows of A in matrix B

B =

0.6797 0.9597 0.2551

0.1626 0.5853 0.6991

>> C = A(:,[1 3]) % store the first and third columns of A in matrix C

C =

0.2760 0.7513

0.6797 0.2551

Labwork 4 (Plotting a function as points of ordered pairs in two arrays) Next we plot the
function sin(x) from several ordered pairs (xi, sin(xi)). Here xi’s are from the domain [−2π, 2π].
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We use the plot function in Matlab. Create an M-file called MySineWave.m and copy the follow-
ing commands in it. By entering MySineWave in the command window you should be able to run
the script and see the figure in the figure window.

SineWave.m
x = linspace(-2*pi,2*pi,100); % x has 100 points equally spaced in [-2*pi, 2*pi]

y = sin(x); % y is the term-wise sin of x, ie sin of every number in x is in y, resp.

plot(x,y,’.’); % plot x versus y as dots should appear in the Figure window

xlabel(’x’); % label x-axis with the single quote enclosed string x

ylabel(’sin(x)’,’FontSize’,16); % label y-axis with the single quote enclosed string

title(’Sine Wave in [-2 pi, 2 pi]’,’FontSize’,16); % give a title; click Figure window to see changes

set(gca,’XTick’,-8:1:8,’FontSize’,16) % change the range and size of X-axis ticks

% you can go to the Figure window’s File menu to print/save the plot

The plot was saved as an encapsulated postscript file from the File menu of the Figure window and
is displayed below.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

x

si
n(

x)

Sine Wave in [−2 pi, 2 pi]

Figure 1.6: A plot of the sine wave over [−2π, 2π]

Let us first recall some elementary ideas from real analysis.

Definition 3 (Convergent sequence of real numbers) A sequence of real numbers 〈xi〉∞i=1 :=
x1, x2, . . . is said to converge to a limit a ∈ R and denoted by:

lim
i→∞

xi = a ,

if for every natural number m ∈ N, a natural number Nm ∈ N exists such that for every j ≥ Nm,
|xj − a| ≤ 1

m .

Example 1 Let 〈xi〉∞i=1 = 17, 17, 17, . . .. Then limi→∞ xi = 17. This is because for every m ∈ N,
we can take Nm = 1 and satisfy the definition of the limit, i.e.:

for every j ≥ Nm = 1, |xj − 17| = |17− 17| = 0 ≤ 1
m

.

Example 2 Let 〈xi〉∞i=1 = 1
1 ,

1
2 ,

1
3 , . . ., i.e. xi = 1

i , then limi→∞ xi = 0. This is because for every
m ∈ N, we can take Nm = m and satisfy the definition of the limit, i.e.:

for every j ≥ Nm = m, |xj − 0| =
∣∣∣∣1j − 0

∣∣∣∣ =
1
j
≤ 1
m

.
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However, several other sequences also approach the limit 0. Some such sequences that approach
the limit 0 from the right are:

〈x1:∞〉 =
1
1
,
1
4
,
1
9
, . . . and 〈x1:∞〉 =

1
1
,
1
8
,

1
27
, . . . ,

and some that approach the limit 0 from the left are:

〈x1:∞〉 = −1
1
,−1

2
,−1

3
, . . . and 〈x1:∞〉 = −1

1
,−1

4
,−1

9
, . . . ,

and finally some that approach 0 from either side are:

〈x1:∞〉 = −1
1
,+

1
2
,−1

3
, . . . and 〈x1:∞〉 = −1

1
,+

1
4
,−1

9
. . . .

When we do not particularly care about the specifics of a sequence of real numbers 〈x1:∞〉, in terms
of the exact values it takes for each i, but we are only interested that it converges to a limit a we
write:

x→ a

and say that x approaches a. If we are only interested in those sequences that converge to the limit
a from the right or left, we write:

x→ a+ or x→ a−

and say x approaches a from the right or left, respectively.

Definition 4 (Limits of Functions) We say a function f(x) : R 7→ R has a limit L ∈ R as x
approaches a and write:

lim
x→a

f(x) = L ,

provided f(x) is arbitrarily close to L for all values of x that are sufficiently close to, but not equal
to, a. We say that f has a right limit LR or left limit LL as x approaches a from the left or
right, and write:

lim
x→a+

f(x) = LR or lim
x→a−

f(x) = LL ,

provided f(x) is arbitrarily close to LR or LL for all values of x that are sufficiently close to, but
not equal to, a from the right of a or the left of a, respectively. When the limit is not an element
of R or when the left and right limits are distinct, we say that the limit does not exist.

Example 3 Consider the function f(x) = 1
x2 . Then

lim
x→1

f(x) = lim
x→1

1
x2

= 1

exists since the limit 1 ∈ R, and the right and left limits are the same:

lim
x→1+

f(x) = lim
x→1+

1
x2

= 1 and lim
x→1−

f(x) = lim
x→1−

1
x2

= 1 .

However, the following limit does not exist:

lim
x→0

f(x) = lim
x→0

1
x2

=∞

since ∞ /∈ R.
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Example 4 The limit of f(x) = (1 + x)
1
x as x approaches 0 exists and it is the Euler’s constant e

:
lim
x→0

f(x) = lim
x→0

(1 + x)
1
x = e u 2.71828 .

Notice that the above limit exists despite the fact that f(0) = (1 + 0)
1
0 itself is undefined and does

not exist.

Example 5 For f(x) = x3−1
x−1 , this limit exists:

lim
x→1

f(x) = lim
x→1

x3 − 1
x− 1

= lim
x→1

(x− 1)(x2 + x+ 1)
(x− 1)

= lim
x→1

x2 + x+ 1 = 3

despite the fact that f(1) = 13−1
1−1 = 0

0 itself is undefined and does not exist.

Next we look at some examples of limits at infinity.

Example 6 The limit of f(n) =
(
1− λ

n

)n
as n approaches ∞ exists and it is e−λ :

lim
n→∞

f(n) = lim
n→∞

(
1− λ

n

)n
= e−λ .

Example 7 The limit of f(n) =
(
1− λ

n

)−α
, for some α > 0, as n approaches ∞ exists and it is 1

:

lim
n→∞

f(n) = lim
n→∞

(
1− λ

n

)−α
= 1 .

Definition 5 (Continuity of a function) We say a real-valued function f(x) : D 7→ R with the
domain D ⊂ R is right continuous or left continuous at a point a ∈ D, provided:

lim
x→a+

f(x) = f(a) or lim
x→a−

f(x) = f(a) ,

respectively. We say f is continuous at a ∈ D, provided:

lim
x→a+

f(x) = f(a) = lim
x→a−

f(x) .

Finally, f is said to be continuous if f is continuous at every a ∈ D.

Example 8 Let us reconsider the function f(x) = (1 + x)
1
x : R 7→ R. Clearly, f(x) is continuous

at 1, since:
lim
x→1

f(x) = lim
x→1

(1 + x)
1
x = 2 = f(1) = (1 + 1)

1
1 ,

but it is not continuous at 0, since:

lim
x→0

f(x) = lim
x→0

(1 + x)
1
x = e u 2.71828 6= f(0) = (1 + 0)

1
0 .

Thus, f(x) is not a continuous function over R.
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1.8 Elementary Number Theory

We introduce basic notions that we need from elementary number theory here. These notions
include integer functions and modular arithmetic as they will be needed later on.

For any real number x:

bxc := max{y : y ∈ Z and y ≤ x}, i.e., the greatest integer less than or equal to x (the floor of x),

dxe := min{y : y ∈ Z and y ≥ x}, i.e., the least integer greater than or equal to x (the ceiling of x).

Example 9

b1c = 1, d1e = 1, b17.8c = 17, b−17.8c = −18, d
√

2e = 2, bπc = 3, d 1
10100

e = 1.

Labwork 5 We can use Matlab functions floor and ceil to compute bxc and dxe, respectively.
Also, the argument x to these functions can be an array.

>> sqrt(2) % the square root of 2 is

ans = 1.4142

>> ceil(sqrt(2)) % ceiling of square root of 2

ans = 2

>> floor(-17.8) % floor of -17.8

ans = -18

>> ceil([1 sqrt(2) pi -17.8 1/(10^100)]) %the ceiling of each element of an array

ans = 1 2 4 -17 1

>> floor([1 sqrt(2) pi -17.8 1/(10^100)]) % the floor of each element of an array

ans = 1 1 3 -18 0

Classwork 4 Convince yourself of the following formulae. Use examples, plots and/or formal
arguments.

dxe = bxc ⇐⇒ x ∈ Z
dxe = bxc+ 1 ⇐⇒ x /∈ Z
b−xc = −dxe

x− 1 < bxc ≤ x ≤ dxe < x+ 1

Let us define modular arithmetic next. Suppose x and y are any real numbers, i.e. x, y ∈ R, we
define the binary operation called “x mod y” as:

x mod y :=

{
x− ybx/yc if y 6= 0
x if y = 0



Chapter 2

Probability Model

The mathematical model for probability or the probability model is an axiomatic system that may
be motivated by the intuitive idea of ‘long-term relative frequency’. If the axioms and definitions
are intuitively motivated, the probability model simply follows from the application of logic to
these axioms and definitions. No attempt to define probability in the real world is made. However,
the application of probability models to real-world problems through statistical experiments has a
fruitful track record. In fact, you are here for exactly this reason.

2.1 Probability

Idea 1 (The long-term relative frequency (LTRF) idea) Suppose we are interested in the
fairness of a coin, i.e. if landing Heads has the same “probability” as landing Tails. We can toss
it n times and call N(H, n) the fraction of times we observed Heads out of n tosses. Suppose that
after conducting the tossing experiment 1000 times, we rarely observed Heads, e.g. 9 out of the 1000
tosses, then N(H, 1000) = 9/1000 = 0.009. Suppose we continued the number of tosses to a million
and found that this number approached closer to 0.1, or, more generally, N(H, n)→ 0.1 as n→∞.
We might, at least intuitively, think that the coin is unfair and has a lower “probability” of 0.1 of
landing Heads. We might think that it is fair had we observed N(H, n) → 0.5 as n → ∞. Other
crucial assumptions that we have made here are:

1. Something Happens: Each time we toss a coin, we are certain to observe Heads or Tails,
denoted by H ∪ T. The probability that “something happens” is 1. More formally:

N(H ∪ T, n) =
n

n
= 1.

This is an intuitively reasonable assumption that simply says that one of the possible outcomes
is certain to occur, provided the coin is not so thick that it can land on or even roll along its
circumference.

2. Addition Rule: Heads and Tails are mutually exclusive events in any given toss of a coin,
i.e. they cannot occur simultaneously. The intersection of mutually exclusive events is the
empty set and is denoted by H ∩ T = ∅. The event H ∪ T, namely that the event that “coin
lands Heads or coin lands Tails” satisfies:

N(H ∪ T, n) = N(H, n) +N(T, n).

37
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3. The coin-tossing experiment is repeatedly performed in an independent manner, i.e. the
outcome of any individual coin-toss does not affect that of another. This is an intuitively
reasonable assumption since the coin has no memory and the coin is tossed identically each
time.

We will use the LTRF idea more generally to motivate a mathematical model of probability called
probability model. Suppose A is an event associated with some experiment E, so that A either
does or does not occur when the experiment is performed. We want the probability that event A
occurs in a specific performance of E, denoted by P(A), to intuitively mean the following: if one
were to perform a super-experiment E∞ by independently repeating the experiment E and recording
N(A,n), the fraction of times A occurs in the first n performances of E within the super-experiment
E∞. Then the LTRF idea suggests:

N(A,n) :=
Number of times A occurs

n = Number of performances of E
→ P(A), as n→∞ (2.1)

First, we need some definitions. We will set the scene for them with the following example.

Experiment 1 (The Bernoulli Experiment Enθ ; Toss a coin n times) Suppose our experi-
ment entails tossing a coin n times and recording H for Heads and T for Tails. When n = 3, one
possible outcome of this experiment is HHT, ie. a Head followed by another Head and then a Tail.
Seven other outcomes are possible. Below, we refer to this experiment by the symbol E3

θ. More
generally, we refer to the experiment of tossing a coin n times as Enθ and sometimes refer to E1

θ by
Eθ for simplicity. The reason for the θ subscrip will become apparent as we develop the theory.

Definition 6 (Sample space, sample point or outcome and event) The sample space is
the set of all possible outcomes of an experiment. It is denoted by Ω (the Greek upper-case letter
Omega). A particular element of Ω is called a sample point or outcome generally denoted by ω
(the Greek lower-case omega), and a sequence of possibly distinct outcomes is generally denoted by
ω1, ω2, . . .. An event is a (measurable) subset of the sample space.

The sample space for “toss a coin three times” experiment E3
θ is:

Ω = {H, T}3 = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} ,

with a particular sample point or outcome ω = HTH, and another distinct outcome ω′ = HHH. An
event, say A, that ‘at least two Heads occur’ is the following subset of Ω:

A = {HHH, HHT, HTH, THH} .

Another event, say B, that ‘no Heads occur’ is:

B = TTT

Note that the event B is also an outcome or sample point. Another interesting event is the empty
set ∅ ⊂ Ω. The event that ‘nothing in the sample space occurs’ is ∅.

Classwork 5 Can you think of a graphical way to enumerate the outcomes of the E3
θ ? Draw a

diagram of this under the caption of Figure 2.1, using the caption as a hint (in other words, draw
your own Figure 2.1).
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Figure 2.1: A binary tree whose leaves are all possible outcomes.

Algorithm 1 List Ω for “Toss a Coin Three Times” experiment E3
θ

1: input: nothing
2: output: print/list all outcomes of E3

θ

3: initialize: SampleSpace1Toss = {H, T} {SampleSpace1Toss[1] = H and SampleSpace1Toss[2] = T}
4: for i = 1 to 2 do
5: for j = 1 to 2 do
6: for k = 1 to 2 do
7: Print SampleSpace1Toss[i] SampleSpace1Toss[j] SampleSpace1Toss[k]

Print “ , ” {print a comma character to delimit outcomes}
8: end for
9: end for

10: end for

In Labwork 6 we implement Algorithm 1 to print all the outcomes. The algorithm uses for loops
to reach the leaves (outcomes of E3

θ) of the binary tree.

Labwork 6 Let’s write a Matlab code in a script file named OutcomesOf3Tosses.m that imple-
ments Algorithm 1 to print all the outcomes of E3

θ. You need to go to the File menu and create a
new file named OutcomesOf3Tosses.m Run it in the command window.

>> type OutcomesOf3Tosses.m

SampleSpace1Toss=’HT’; % declare a string vector or character array

% SampleSpace1Toss is the name of the char array

SampleSpace1Toss(1); % access the first element ’H’ this way

SampleSpace1Toss(2); % access the second element ’T’ this way

% Now let’s write the routine for listing the sample space of ’toss 3 times’

w=’ ’; % declare w to be the character ’ ’

for i = 1:1:2 % for loop for variable i = start:increment:end

for j = 1:1:2 % for loop for variable j

for k = 1:1:2 % for loop for variable j

% next we concatenate using strcat -- strcat(’A’,’B’,’C’,’D’) concatenates the 4 char arrays

x = strcat(SampleSpace1Toss(i),SampleSpace1Toss(j),SampleSpace1Toss(k),’ , ’); % ’ ,’ delimited outcome

w = strcat(w,x); % recursively store the outcomes in a new array w

end

end

end

w % print w at the end of the three for loops

>> lab1work4

>> SampleSpace1Toss(1)

ans = H

>> SampleSpace1Toss(2)

ans = T
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>> w

w = HHH ,HHT ,HTH ,HTT ,THH ,THT ,TTH ,TTT ,

Now, we are finally ready to define probability.

Definition 7 (Probability) Let E be an experiment with sample space Ω. Let F denote a suitable
collection of events in Ω that satisfy the following conditions:

1. It (the collection) contains the sample space: Ω ∈ F .

2. It is closed under complementation: A ∈ F =⇒ Ac ∈ F .

3. It is closed under countable unions: A1, A2, . . . ∈ F =⇒
⋃
i

Ai := A1 ∪A2 ∪ · · · ∈ F .

Formally, this collection of events is called a sigma field or a sigma algebra. Our experiment E

has a sample space Ω and a collection of events F that satisfy the three condition.

Given a double, e.g. (Ω,F), probability is just a function P which assigns each event A ∈ F a
number P(A) in the real interval [0, 1], i.e. P : F 7→ [0, 1] , such that:

1. The ‘Something Happens’ axiom holds, i.e. P(Ω) = 1 .

2. The ‘Addition Rule’ axiom holds, i.e. for events A and B:

A ∩B = ∅ =⇒ P(A ∪B) = P(A) + P(B) .

2.1.1 Consequences of our Definition of Probability

It is important to realize that we accept the ‘addition rule’ as an axiom in our mathematical
definition of probability (or our probability model) and we do not prove this rule. However, the
facts which are stated (with proofs) below, are logical consequences of our definition of probability:

1. For any event A, P(Ac) = 1−P(A) .

Proof: One line proof.

LHSz }| {
P(A) + P(Ac) =|{z}

+ rule ∵A∩Ac=∅

P(A ∪Ac) =|{z}
A∪Ac=Ω

P(Ω) =|{z}
∵ P(Ω)=1

RHSz}|{
1 =⇒|{z}

LHS−P(A) & RHS−P(A)

P(Ac) = 1−P(A)

• If A = Ω then Ac = Ωc = ∅ and P(∅) = 1−P(Ω) = 1− 1 = 0 .

2. For any two events A and B, we have the inclusion-exclusion principle:

P(A ∪B) = P(A) + P(B)−P(A ∩B) .
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Proof: Since:

A = (A \B) ∪ (A ∩B) and (A \B) ∩ (A ∩B) = ∅,
A ∪B = (A \B) ∪B and (A \B) ∩B = ∅

the addition rule implies that:

P(A) = P(A \B) + P(A ∩B)

P(A ∪B) = P(A \B) + P(B)

Substituting the first equality above into the second, we get:

P(A ∪B) = P(A \B) + P(B) = P(A)−P(A ∩B) + P(B)

3. For a sequence of mutually disjoint events A1, A2, A3, . . . , An:

Ai ∩Aj = ∅ for any i,j =⇒ P(A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An) .

Proof: If A1, A2, A3 are mutually disjoint events, then A1 ∪ A2 is disjoint from A3. Thus, two applications of the

addition rule for disjoint events yields:

P(A1 ∪A2 ∪A3) = P((A1 ∪A2) ∪A3) =|{z}
+ rule

P(A1 ∪A2) + P(A3) =|{z}
+ rule

P(A1) + P(A2) + P(A3)

The n-event case follows by mathematical induction.

We have formally defined the probability model specified by the probability triple (Ω,F ,P)
that can be used to model an experiment E.

Next, let us take a detour into how one might interpret it in the real world. The following is an
adaptation from Williams D, Weighing the Odds: A Course in Probability and Statistics, Cambridge
University Press, 2001, which henceforth is abbreviated as WD2001.

Probability Model Real-world Interpretation
Sample space Ω Set of all outcomes of an experiment
Sample point ω Possible outcome of an experiment
(No counterpart) Actual outcome ω? of an experiment
Event A, a (suitable) subset of Ω The real-world event corresponding to A

occurs if and only if ω? ∈ A
P(A), a number between 0 and 1 Probability that A will occur for an

experiment yet to be performed

Events in Probability Model Real-world Interpretation
Sample space Ω The certain even ‘something happens’
The ∅ of Ω The impossible event ‘nothing happens’
The intersection A ∩B ‘Both A and B occur’
A1 ∩A2 ∩ · · · ∩An ‘All of the events A1, A2, . . . , An occur simultaneously’
The union A ∪B ‘At least one of A and B occurs’
A1 ∪A2 ∪ · · · ∪An ‘At least one of the events A1, A2, . . . , An occurs’
Ac, the complement of A ‘A does not occur’
A \B ‘A occurs, but B does not occur’
A ⊂ B ‘If A occurs, then B must occur’
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Example 10 Consider the ‘Toss a coin once’ experiment E1
θ (or simply Eθ). What is its sample

space Ω and a reasonable collection of events F that underpin this experiment ?

Ω = {H, T}, F = {H, T,Ω, ∅} ,

A function that will satisfy the definition of probability for this collection of events F and assign
P(H) = θ is summarized below. First assume that the above F is a sigma-algebra. Draw a picture
for P with arrows that map elements in the domain F given above to elements in its range.

Event A ∈ F P : F 7→ [0, 1] P(A) ∈ [0, 1]
Ω = {H, T} • −→ 1

T • −→ 1− θ
H • −→ θ

∅ • −→ 0

Classwork 6 Note that F ′ = {Ω, ∅} is also a sigma algebra of the sample space Ω = {H, T}. Can
you think of a probability for the collection F ′?

Event A ∈ F ′ P : F ′ 7→ [0, 1] P(A) ∈ [0, 1]
Ω = {H, T} • −→

∅• −→

Thus, F and F ′ are two distinct sigma algebras over our Ω = {H, T}. Moreover, F ′ ⊂ F and is called a sub sigma algebra.

Try to show that {Ω, ∅} is the smallest possible sigma algebra over all possible sigma algebras over any given sample space Ω

(think of intersecting an arbitrary family of sigma algebras)?

2.2 Conditional Probability

Next, we define conditional probability and the notion of independence of events. We use the LTRF
idea to motivate the definition.

Idea 2 (LTRF intuition for conditional probability) Let A and B be any two events associ-
ated with our experiment E with P(A) 6= 0. The ‘conditional probability that B occurs given that A
occurs’ denoted by P(B|A) is again intuitively underpinned by the super-experiment E∞ which is
the ‘independent’ repitition of our original experiment E ‘infinitely’ often. The LTRF idea is that
P(B|A) is the long-term proportion of those experiments on which A occurs that B also occurs.

Recall that N(A,n) as defined in (2.1) is the fraction of times A occurs out of n independent
repetitions of our experiment E (ie. the experiment En). If A∩B is the event that ‘A and B occur
simultaneously’, then we intuitively want

P(B|A) “→ ”
N(A ∩B,n)
N(A,n)

=
N(A ∩B,n)/n
N(A,n)/n

=
P(A ∩B)

P(A)

as our En → E∞. So, we define conditional probability as we want.

Definition 8 (Conditional Probability) Suppose we are given an experiment E with a triple
(Ω,F , P ). Let A and B be events, ie. A,B ∈ F , such that P(A) 6= 0. Then, we define the
conditional probability of B given A by,

P(B|A) :=
P(A ∩B)

P(A)
. (2.2)
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Note that for a fixed event A ∈ F with P(A) > 0 and any event B ∈ F , the conditional probability
P(B|A) is a probability as in Definition 7, ie. a function:

P(B|A) : F → [0, 1]

that assigns to each B ∈ F a number in the interval [0, 1], such that,

1. P(Ω|A) = 1 Meaning ‘Something Happens given the event A happens’

2. The ‘Addition Rule’ axiom holds, ie. for events B1, B2 ∈ F ,

B1 ∩B2 = ∅ implies P(B1 ∪B2|A) = P(B1|A) + P(B2|A) .

Example 11 (Wasserman03, p. 11) A medical test for a disease D has outcomes + and −. the
probabilities are:

Have Disease (D) Don’t have disease (Dc)
Test positive (+) 0.009 0.099
Test negative (−) 0.001 0.891

Using the definition of conditional probability, we can compute the conditional probability that you
test positive given that you have the disease:

P(+|D) =
P(+ ∩D)

P(D)
=

0.009
0.009 + 0.001

= 0.9 ,

and the conditional probability that you test negative given that you don’t have the disease:

P(−|Dc) =
P(− ∩Dc)

P(Dc)
=

0.891
0.099 + 0.891

u 0.9 .

Thus, the test is quite accurate since sick people test positive 90% of the time and healthy people
test negative 90% of the time.

Classwork 7 Now, suppose you go for a test and and test positive. What is the probability that
you have the disease ?

P(D|+) =
P(D ∩+)

P(+)
=

0.009
0.009 + 0.099

u 0.08

Most people who are not used to the definition of conditional probability would intuitively associate a number much bigger than

0.08 for the answer. Interpret conditional probability in terms of the meaning of the numbers that appear in the numerator

and denominator of the above calculations.

Next we look at one of the most elegant applications of the definition of conditional probability
along with the addition rule for a partition of Ω.

Proposition 1 (Bayes’ Theorem, 1763) Suppose the events A1, A2, . . . , Ak ∈ F , with P(Ah) >
0 for each h ∈ {1, 2, . . . , k}, partition the sample space Ω, ie. they are mutually exclusive (disjoint)
and exhaustive events with positive probability:

Ai ∩Aj = ∅, for any distinct i, j ∈ {1, 2, . . . , k},
k⋃

h=1

Ah = Ω, P(Ah) > 0
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Thus, precisely one of the Ah’s will occur on any performance of our experiment E.

Let B ∈ F be some event with P(B) > 0, then

P(Ah|B) =
P(B|Ah)P(Ah)∑k
h=1 P(B|Ah)P(Ah)

(2.3)

Proof: We apply elementary set theory, the definition of conditional probability k + 2 times and the addition rule once:

P(Ah|B) =
P(Ah ∩B)

P(B)
=

P(B ∩Ah)

P(B)
=

P(B|Ah)P(Ah)

P(B)

=
P(B|Ah)P(Ah)

P
“Sk

h=1(B ∩Ah)
” =

P(B|Ah)P(Ah)Pk
h=1 P (B ∩Ah)

=
P(B|Ah)P(Ah)Pk
h=1 P(B|Ah)P(Ah)

The operations done to the denominator in the proof above:

P(B) =
k∑

h=1

P(B|Ah)P(Ah) (2.4)

is also called ‘the law of total probability’. We call P(Ah) the prior probability of Ah and
P(Ah|B) the posterior probability of Ah.

Example 12 (Wasserman2003 p.12) Suppose Larry divides his email into three categories: A1 =
“spam”, A2 = “low priority”, and A3 = “high priority”. From previous experience, he finds that
P(A1) = 0.7, P(A2) = 0.2 and P(A3) = 0.1. Note that P(A1 ∪ A2 ∪ A3) = P(Ω) = 0.7 + 0.2 +
0.1 = 1. Let B be the event that the email contains the word “free.” From previous experience,
P(B|A1) = 0.9, P(B|A2) = 0.01 and P(B|A3) = 0.01. Note that P(B|A1)+P(B|A2)+P(B|A3) =
0.9 + 0.01 + 0.01 6= 1. Now, suppose Larry receives an email with the word “free.” What is the
probability that it is “spam,” “low priority,” and “high priority” ?

P(A1|B) =
P(B|A1)P(A1)

P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)
= 0.9×0.7

(0.9×0.7)+(0.01×0.2)+(0.01×0.1)
= 0.63

0.633
u 0.995

P(A2|B) =
P(B|A2)P(A2)

P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)
= 0.01×0.2

(0.9×0.7)+(0.01×0.2)+(0.01×0.1)
= 0.002

0.633
u 0.003

P(A3|B) =
P(B|A3)P(A3)

P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)
= 0.01×0.1

(0.9×0.7)+(0.01×0.2)+(0.01×0.1)
= 0.001

0.633
u 0.002

Note that P(A1|B) + P(A2|B) + P(A3|B) = 0.995 + 0.003 + 0.002 = 1.

2.2.1 Independence and Dependence

Definition 9 (Independence of two events) Any two events A and B are said to be indepen-
dent if and only if

P(A ∩B) = P(A)P(B) . (2.5)

Let us make sense of this definition in terms of our previous definitions. When P(A) = 0 or
P(B) = 0, both sides of the above equality are 0. If P(A) 6= 0, then rearranging the above equation
we get:

P(A ∩B)
P(A)

= P(B) .
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But, the LHS is P(B|A) by definition 2.2, and thus for independent events A and B, we get:

P(B|A) = P(B) .

This says that information about the occurrence of A does not affect the occurrence of B. If
P(B) 6= 0, then an analogous argument:

P(A ∩B) = P(A)P(B) ⇐⇒ P(B ∩A) = P(A)P(B) ⇐⇒
P(B ∩A)

P(B)
= P(A) ⇐⇒ P(A|B) = P(A) ,

says that information about the occurrence of B does not affect the occurrence of A. Therefore, the
probability of their joint occurence P(A∩B) is simply the product of their individual probabilities
P(A)P(B).

Definition 10 (Independence of a sequence of events) We say that a finite or infinite se-
quence of events A1, A2, . . . are independent if whenever i1, i2, . . . , ik are distinct elements from the
set of indices N, such that Ai1 , Ai2 , . . . , Aik are defined (elements of F), then

P(Ai1 ∩Ai2 . . . ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik)

Example 13 Let us consider the ‘toss a fair coin three times’ experiment E3
θ=0.5 where we toss the

coin with P(H) = θ = 0.5 and P(T) = 1− θ = 0.5 three times in an independent and identical
manner. Then the probability of each outcome ω ∈ {H, T}3 is the same, i.e. P(ω) = 1

2 ·
1
2 ·

1
2 = 1

8 .

Table 2.1: The 8 ω’s in the sample space Ω of the experiment E3
θ are given in the first row above.

ω: HHH HHT HTH HTT THH THT TTH TTT

P(ω): 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8



Chapter 3

Random Variables

It can be be inconvenient to work with a set of outcomes Ω upon which arithmetic is not possible.
We are often measuring our outcomes with subsets of real numbers. Some examples include:

Experiment Possible measured outcomes
Counting the number of typos up to now Z+ := {0, 1, 2, . . .} ⊂ R

Length in centi-meters of some shells on New Brighton beach (0,+∞) ⊂ R
Waiting time in minutes for the next Orbiter bus to arrive R+ := [0,∞) ⊂ R

Vertical displacement from current position of a pollen on water R

3.1 Basic Definitions

To take advantage of our measurements over the real numbers, in terms of its metric structure
and arithmetic, we need to formally define this measurement process using the notion of a random
variable.

Definition 11 (Random Variable) Let (Ω,F , P ) be some probability triple. Then, a Random
Variable (RV), say X, is a function from the sample space Ω to the set of real numbers R

X : Ω→ R

such that for every x ∈ R, the inverse image of the half-open real interval (−∞, x] is an element of
the collection of events F , i.e.:

for every x ∈ R, X [−1]( (−∞, x] ) := {ω : X(ω) ≤ x} ∈ F .

This definition can be summarised by the statement that a RV is an F-measurable map. We assign probability to the
RV X as follows:

P(X ≤ x) = P( X [−1]( (−∞, x] ) ) := P( {ω : X(ω) ≤ x} ) . (3.1)

Definition 12 (Distribution Function) The Distribution Function (DF) or Cumulative
Distribution Function (CDF) of any RV X, over a probability triple (Ω,F , P ), denoted by F

is:
F (x) := P(X ≤ x) = P( {ω : X(ω) ≤ x} ), for any x ∈ R . (3.2)

Thus, F (x) or simply F is a non-decreasing, right continuous, [0, 1]-valued function over R. When
a RV X has DF F we write X ∼ F .

46
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A special RV that often plays the role of ‘building-block’ in Probability and Statistics is the indicator
function of an event A that tells us whether the event A has occurred or not. Recall that an event
belongs to the collection of possible events F for our experiment.

Definition 13 (Indicator Function) The Indicator Function of an event A denoted 11A is
defined as follows:

11A(ω) :=

{
1 if ω ∈ A
0 if ω /∈ A

(3.3)

Figure 3.1: The Indicator function of event A ∈ F is a RV 11A with DF F

10

A
0

DF

x xx

P(‘not A’)

P(‘A or not A’)=1

Classwork 8 Let us convince ourselves that 11A is really a RV. For 11A to be a RV, we need to verify
that for any real number x ∈ R, the inverse image 11[−1]

A ( (−∞, x] ) is an event, ie :

11[−1]
A ( (−∞, x] ) := {ω : 11A(ω) ≤ x} ∈ F .

All we can assume about the collection of events F is that it contains the event A and that it is a
sigma algebra. A careful look at the Figure 3.1 yields:

11[−1]
A ( (−∞, x] ) := {ω : 11A(ω) ≤ x} =


∅ if x < 0

Ac if 0 ≤ x < 1

A ∪Ac = Ω if 1 ≤ x

Thus, 11[−1]
A ( (−∞, x] ) is one of the following three sets that belong to F ; (1) ∅, (2) Ac and (3) Ω

depending on the value taken by x relative to the interval [0, 1]. We have proved that 11A is indeed
a RV.

Some useful properties of the Indicator Function are:

11Ac = 1− 11A, 11A∩B = 11A11B, 11A∪B = 11A + 11B − 11A11B
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3.2 An Elementary Discrete Random Variable

When a RV takes at most countably many values from a discrete set D ⊂ R, we call it a discrete
RV. Often, D is the set of integers Z.

Definition 14 (probability mass function (PMF)) Let X be a discrete RV over a probability
triple (Ω,F , P ). We define the probability mass function (PMF) f of X to be the function
f : D→ [0, 1] defined as follows:

f(x) := P(X = x) = P( {ω : X(ω) = x} ), where x ∈ D.

The DF F and PMF f for a discrete RV X satisfy the following:

1. For any x ∈ R,
P(X ≤ x) = F (x) =

∑
D3y≤x

f(y) :=
∑

y ∈ D∩(−∞,x]

f(y) .

2. For any a, b ∈ D with a < b,

P(a < X ≤ b) = F (b)− F (a) =
∑

y ∈ D∩(a,b]

f(y) .

In particular, when D = Z and a = b− 1,

P(b− 1 < X ≤ b) = F (b)− F (b− 1) = f(b) = P( {ω : X(ω) = b} ) .

3. And of course ∑
x∈D

f(x) = 1

The Indicator Function 11A of the event that ‘A occurs’ for the θ-specific experiment E over some
probability triple (Ω,F ,Pθ), with A ∈ F , is the Bernoulli(θ) RV. The parameter θ denotes the
probability that ‘A occurs’ (see Figure 3.2 when A is the event that ‘H occurs’). This is our first
example of a discrete RV.

Model 1 (Bernoulli(θ)) Given a parameter θ ∈ [0, 1], the probability mass function (PMF) for the
Bernoulli(θ) RV X is:

f(x; θ) = θx(1− θ)1−x11{0,1}(x) =


θ if x = 1,

1− θ if x = 0,

0 otherwise

(3.4)

and its DF is:

F (x; θ) =


1 if 1 ≤ x,

1− θ if 0 ≤ x < 1,

0 otherwise

(3.5)

We emphasise the dependence of the probabilities on the parameter θ by specifying it following the
semicolon in the argument for f and F and by subscripting the probabilities, i.e. Pθ(X = 1) = θ

and Pθ(X = 0) = 1− θ.
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Figure 3.2: The Indicator Function 11 H of the event ‘Heads occurs’, for the experiment ‘Toss 1
times,’ E1

θ, as the RV X from the sample space Ω = {H, T} to R and its DF F . The probability that
‘Heads occurs’ and that ‘Tails occurs’ are f(1; θ) = Pθ(X = 1) = Pθ(H) = θ and f(0; θ) = Pθ(X =
0) = Pθ(T) = 1− θ, respectively.
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−1 0 21
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3.3 An Elementary Continuous Random Variable

When a RV takes values in the continuum we call it a continuous RV. An example of such a RV is
the vertical position (in micro meters) since the original release of a pollen grain on water. Another
example of a continuous RV is the volume of water (in cubic meters) that fell on the southern Alps
last year.

Definition 15 (probability density function (PDF)) A RV X is said to be ‘continuous’ if
there exists a piecewise-continuous function f , called the probability density function (PDF) of X,
such that for any a, b ∈ R with a < b,

P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
f(x) dx .

The following hold for a continuous RV X with PDF f :

1. For any x ∈ R, P(X = x) = 0.

2. Consequentially, for any a, b ∈ R with a ≤ b,

P(a < X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b) = P(a ≤ X < b) .

3. By the fundamental theorem of calculus, except possibly at finitely many points (where the
continuous pieces come together in the piecewise-continuous f):

f(x) =
d

dx
F (x)

4. And of course f must satisfy:∫ ∞
−∞

f(x) dx = P(−∞ < X <∞) = 1 .
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An elementary and fundamental example of a continuous RV is the Uniform(0, 1) RV of Model 2.
It forms the foundation for random variate generation and simulation. In fact, it is appropriate to
call this the fundamental model since every other experiment can be obtained from this one.

Model 2 (The Fundamental Model) The probability density function (PDF) of the fundamen-
tal model or the Uniform(0, 1) RV is

f(x) = 11[0,1](x) =

{
1 if 0 ≤ x ≤ 1,

0 otherwise
(3.6)

and its distribution function (DF) or cumulative distribution function (CDF) is:

F (x) :=
∫ x

−∞
f(y) dy =


0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1

(3.7)

Note that the DF is the identity map in [0, 1]. The PDF and DF are depicted in Figure 3.3.

Figure 3.3: A plot of the PDF and DF or CDF of the Uniform(0, 1) continuous RV X.
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Labwork 7 Let us encode the PDF of Uniform(0, 1) as an M-file in Matlab. Notice that the PDF
function assigns 1 to every value of x ∈ [0, 1] and 0 to every value of x /∈ [0, 1]. So, the problem
mostly boils down to finding the entries inside and outside the range. We can use Matlab’s built-in
find function for this purpose. We give an example to illustrate the syntax of find.

>> Xs=[0.2511 1.6160 0.4733 -5.3517 0.8308 0.5853 2.5497] % an array Xs with real values

Xs = 0.2511 1.6160 0.4733 -5.3517 0.8308 0.5853 2.5497

We can obtain the indices of Xs whose values are ≥ 0, i.e. {i : Xs(i) ≥ 0} and the indices of Xs
whose values are ≤ 1, i.e. {i : Xs(i) ≤ 1} as follows:

>> find(Xs >= 0)

ans = 1 2 3 5 6 7

>> find(Xs <= 1)

ans = 1 3 4 5 6
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The intersection of the two sets of indices, i.e. {i : Xs(i) ≥ 0 and Xs(i) ≤ 1} = {i : 0 ≤ Xs(i) ≤ 1}
can be obtained by &, the Boolean and, as follows:

>> find(Xs >= 0 & Xs <= 1)

ans = 1 3 5 6

Finally, we know which indices of the Xs array should have the PDF value of 1. The remaining
indices of Xs should therefore have the PDF value of 0. Let us declare an array called Pdf for
the PDF values corresponding to the Xs. We can initialise this array with zeros using the zeros

function and make it of the same size as Xs as follows:

>> size(Xs)

ans = 1 7

>> Pdf = zeros(1,7)

Pdf = 0 0 0 0 0 0 0

Now, we can set the indices 1, 3, 5, 6 (returned by find(Xs >= 0 & Xs <= 1)) of Pdf array to 1.

>> Pdf([1 3 5 6])=1

Pdf = 1 0 1 0 1 1 0

We can modularise this process for an arbitrary input array x via a function in the following M-file.

Unif01Pdf.m
function Pdf = Unif01Pdf (x)

% Unif01Pdf(x) returns the PDF of Uniform(0,1) RV X

% the input x can be an array

Pdf=zeros(size(x)); % Pdf is an array of zeros and of the same size as x

% use the built-in find function to find the Indices of x whose values are in the range [0,1]

Indices = find(x>=0 & x<=1);

Pdf(Indices) = 1; % Set these indices in array Pdf to 1=PDF of X over [0,1]

Let us call the function we wrote called Unif01Pdf next.

>> help Unif01Pdf

Unif01Pdf(x) returns the PDF of Uniform(0,1) RV X

the input x can be an array

>> Xs

Xs = 0.2511 1.6160 0.4733 -5.3517 0.8308 0.5853 2.5497

>> Unif01Pdf(Xs)

ans = 1 0 1 0 1 1 0

Labwork 8 Understand each step in the function Unif01Cdf:

Unif01Cdf.m
function Cdf = Unif01Cdf (x)

% Unif01Cdf(x) returns the CDF of Uniform(0,1) RV X

% the input x can be an array

Cdf=zeros(size(x));% Cdf is an array of zeros and of the same size as x

% use the built-in find function to find the indices of x whose values are >= 1

Indices = find(x>=1);

Cdf(Indices) = 1;% Set these indices in array Cdf to 1

Indices = find(x>=0 & x<=1); % find indices of x with values in [0,1]

Cdf(Indices)=x(Indices); % set the Cdf of x in [0,1] equal to x
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When we type in help Unif01Cdf, Xs and Unif01Cdf(Xs) we can confirm that the Unif01Cdf

function is correctly reporting the CDF values of the input array Xs.

>> help Unif01Cdf

Unif01Cdf(x) returns the CDF of Uniform(0,1) RV X

the input x can be an array

>> Xs

Xs = 0.2511 1.6160 0.4733 -5.3517 0.8308 0.5853 2.5497

>> Unif01Cdf(Xs)

ans = 0.2511 1.0000 0.4733 0 0.8308 0.5853 1.0000

Labwork 9 Generate the plot of the PDF and the CDF for the Uniform(0, 1) RV X by following
the commands below. Go through every step and understand each command when you reproduce
the plot.

plotunif.m
% Plot the PDF and CDF for Uniform[0,1] RV

x = -1:0.01:2; % vector from -1 to 2; w/ increment .05

% get the [0,1] uniform pdf values of x in vector pdf

pdf = unif01pdf(x);

% get the [0,1] uniform DF or cdf of x in vector cdf

cdf = unif01cdf(x);

% do the plots

% subplot for pdf: subplot(1,2,1) means there is 1 row with

% 2 columns of subplots and here is the first of them

subplot(1,2,1), plot(x,pdf)

title(’Uniform [0,1] pdf’) % title as a string

xlabel(’x’), ylabel(’f(x)’) % x and y axes labels

axis([-0.2 1.2 -0.2 1.2]) % range specs for x and y axes

axis square % axes scaled as square

% subplot for cdf: subplot(1,2,1) means there is 1 row with

% 2 columns of subplots and here is the first of them

subplot(1,2,2), plot(x,cdf)

title(’Uniform [0,1] DF or CDF’)

xlabel(’x’), ylabel(’F(x)’)

axis([-0.2 1.2 -0.2 1.2])

axis square

The plot was saved as an encapsulated postscript file from the File menu of the Figure window and
is displayed in Figure 3.3.

3.4 Expectations

It is convenient to summarise a RV by a single number. This single number can be made to
represent some average or expected feature of the RV via an integral with respect to the density of
the RV.

Definition 16 (Expectation of a RV) The expectation, or expected value, or mean, or
first moment, of a random variable X, with distribution function F and density f , is defined to
be

E(X) :=
∫
x dF (x) =

{∑
x xf(x) if X is discrete∫
xf(x) dx if X is continuous ,

(3.8)
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provided the sum or integral is well-defined. We say the expectation exists if∫
|x| dF (x) <∞ . (3.9)

Sometimes, we denote E(X) by EX for brevity. Thus, the expectation is a single-number summary
of the RV X and may be thought of as the average. We subscript E to specify the parameter θ ∈ ΘΘ
with respect to which the integration is undertaken.

EθX :=
∫
x dF (x; θ)

Definition 17 (Variance of a RV) Let X be a RV with mean or expectation E(X). Variance of
X denoted by V(X) or V X is

V(X) := E
(
(X −E(X))2

)
=
∫

(x−E(X))2 dF (x) ,

provided this expectation exists. The standard deviation denoted by sd(X) :=
√

V(X). Thus
variance is a measure of “spread” of a distribution.

Definition 18 (k-th moment of a RV) We call

E(Xk) =
∫
xk dF (x)

as the k-th moment of the RV X and say that the k-th moment exists when E(|X|k) <∞. We call
the following expectation as the k-th central moment:

E
(

(X −E(X))k
)
.

Properties of Expectations

1. If the k-th moment exists and if j < k then the j-th moment exists.

2. If X1, X2, . . . , Xn are RVs and a1, a2, . . . , an are constants, then

E

(
n∑
i=1

aiXi

)
=

n∑
i=1

aiE(Xi) . (3.10)

3. Let X1, X2, . . . , Xn be independent RVs, then

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E(Xi) . (3.11)

4. V(X) = E(X2)− (E(X))2 . [prove by completing the square and applying (3.10)]

5. If a and b are constants then:

V(aX + b) = a2V(X) . (3.12)

6. If X1, X2, . . . , Xn are independent and a1, a2, . . . , an are constants, then:

V

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iV(Xi) . (3.13)
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Mean and variance of Bernoulli(θ) RV: Let X ∼ Bernoulli(θ). Then,

E(X) =
1∑

x=0

xf(x) = (0× (1− θ)) + (1× θ) = 0 + θ = θ ,

E(X2) =
1∑

x=0

x2f(x) = (02 × (1− θ)) + (12 × θ) = 0 + θ = θ ,

V(X) = E(X2)− (E(X))2 = θ − θ2 = θ(1− θ) .
Parameter specifically,

Eθ(X) = θ and Vθ(X) = θ(1− θ) .

Figure 3.4: Mean (Eθ(X)), variance (Vθ(X)) and the rate of change of variance ( ddθVθ(X)) of a
Bernoulli(θ) RV X as a function of the parameter θ.
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Eθ(X)=θ

Vθ(X)=θ(1−θ)

d/dθ Vθ(X)=1−2θ

Maximum of the variance Vθ(X) is found by setting the derivative to zero, solving for θ and showing
the second derivative is locally negative, i.e. Vθ(X) is concave down:

V′θ(X) :=
d

dθ
Vθ(X) = 1− 2θ = 0 ⇐⇒ θ =

1
2
, V′′θ (X) :=

d

dθ

(
d

dθ
Vθ(X)

)
= −2 < 0 ,

max
θ∈[0,1]

Vθ(X) =
1
2

(
1− 1

2

)
=

1
4
, since Vθ(X) is maximized at θ =

1
2

The plot depicting these expectations as well as the rate of change of the variance are depicted
in Figure 3.4. Note from this Figure that Vθ(X) attains its maximum value of 1/4 at θ = 0.5
where d

dθVθ(X) = 0. Furthermore, we know that we don’t have a minimum at θ = 0.5 since the
second derivative V′′θ (X) = −2 is negative for any θ ∈ [0, 1]. This confirms that Vθ(X) is concave
down and therefore we have a maximum of Vθ(X) at θ = 0.5. We will revisit this example when
we employ a numerical approach called Newton-Raphson method to solve for the maximum of a
differentiable function by setting its derivative equal to zero.
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Mean and variance of Uniform(0, 1) RV: Let X ∼ Uniform(0, 1). Then,

E(X) =
∫ 1

x=0
xf(x) dx =

∫ 1

x=0
x 1 dx =

1
2
(
x2
]x=1

x=0
=

1
2

(1− 0) =
1
2
,

E(X2) =
∫ 1

x=0
x2f(x) dx =

∫ 1

x=0
x2 1 dx =

1
3
(
x3
]x=1

x=0
=

1
3

(1− 0) =
1
3
,

V(X) = E(X2)− (E(X))2 =
1
3
−
(

1
2

)2

=
1
3
− 1

4
=

1
12

.

Proposition 2 (Winnings on Average) Let Y = r(X). Then

E(Y ) = E(r(X)) =
∫
r(x) dF (x) .

Think of playing a game where we draw x ∼ X and then I pay you y = r(x). Then your average
income is r(x) times the chance that X = x, summed (or integrated) over all values of x.

Example 14 (Probability is an Expectation) Let A be an event and let r(X) = 11A(x). Recall
11A(x) is 1 if x ∈ A and 11A(x) = 0 if x /∈ A. Then

E(11A(X)) =
∫

11A(x) dF (x) =
∫
A
f(x) dx = P(X ∈ A) = P(A) (3.14)

Thus, probability is a special case of expectation. Recall our LTRF motivation for the definition of
probability and make the connection.

3.5 Stochastic Processes

Definition 19 (Independence of RVs) A finite or infinite sequence of RVs {X1, X2, . . .} is said
to be independent or independently distributed if

P(Xi1 ≤ xi1 , Xi2 ≤ xi2 , . . . , Xik ≤ xik) = P(Xi1 ≤ xi1)P(Xi2 ≤ xi2) · · · ,P(Xik ≤ xik)

for any distinct subset {i1, i2, . . . , il} of indices of the sequence of RVs and any sequence of real
numbers xi1 , xi2 , . . . , xik .

By the above definition, the sequence of discrete RVs X1, X2, . . . taking values in an at most count-
able set D are said to be independently distributed if for any distinct subset of indices {i1, i2, . . . , ik}
such that the corresponding RVs Xi1 , Xi2 , . . . , Xik exists as a distinct subset of our original sequence
of RVs X1, X2, . . . and for any elements xi1 , xi2 , . . . , xik in D, the following equality is satisfied:

P(Xi1 = xi1 , Xi2 = xi2 , . . . , Xik = xik) = P(Xi1 = xi1)P(Xi2 = xi2) · · ·P(Xik = xik)

For an independent sequence of RVs {X1, X2, . . .}, we have

P(Xi+1 ≤ xi+1|Xi ≤ xi, Xi−1 ≤ xi−1, . . . , X1 ≤ x1)

=
P(Xi+1 ≤ xi+1, Xi ≤ xi, Xi−1 ≤ xi−1, . . . , X1 ≤ x1)

P(Xi ≤ xi, Xi−1 ≤ xi−1, . . . , X1 ≤ x1)

=
P(Xi+1 ≤ xi+1)P(Xi ≤ xi)P(Xi−1 ≤ xi−1) · · ·P(X1 ≤ x1)

P(Xi ≤ xi)P(Xi−1 ≤ xi−1) · · ·P(X1 ≤ x1)

= P(Xi+1 ≤ xi+1)
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The above equality that

P(Xi+1 ≤ xi+1|Xi ≤ xi, Xi−1 ≤ xi−1, . . . , X1 ≤ x1) = P(Xi+1 ≤ xi+1)

simply says that the conditional distribution of the RV Xi+1 given all previous RVs Xi, Xi−1, . . . , X1

is simply determined by the distribution of Xi+1.

When a sequence of RVs are not independent they are said to be dependent.

Definition 20 (Stochastic Process) A collection of RVs

{Xα}α∈N := { Xα : α ∈ A }

is called a stochastic process. Thus, for every α ∈ A, the index set of the stochastic process,
Xα is a RV. If the index set A ⊂ Z then we have a discrete time stochastic process, typically
denoted by

{Xi}i∈Z := {. . . , X−2, X−1, X0, X1, X2, . . .}, or

{Xi}i∈N := {X1, X2, . . .}, or

{Xi}i∈[n] := {X1, X2, . . . , Xn}, where, [n] := {1, 2, . . . , n} .

If A ⊂ R then we have a continuous time stochastic process, typically denoted by {Xt}t∈R,
etc.

Definition 21 (Independent and Identically Distributed (IID)) The finite or infinite se-
quence of RVs or the stochastic process {X1, X2, . . .} is said to be independent and identically
distributed or IID if :

• {X1, X2, . . .} is independently distributed according to Definition 19, and

• F (X1) = F (X2) = · · · , ie. all the Xi’s have the same DF F (X1).

This is perhaps the most elementary class of stochastic processes and we succinctly denote it by

{Xi}i∈[n] := {X1, X2, . . . , Xn}
IID∼ F, or {Xi}i∈N := {X1, X2, . . .}

IID∼ F .

We sometimes replace the DF F above by the name of the RV.

Definition 22 (Independently Distributed) The sequence of RVs or the stochastic process
{Xi}i∈N := {X1, X2, . . .} is said to be independently distributed if :

• {X1, X2, . . .} is independently distributed according to Definition 19.

This is a class of stochastic processes that is more general than the IID class.

Let us consider a few discrete RVs for the simple coin tossing experiment E3
θ that build on the

Bernoulli(p) RV Xi for the i-th toss in an independent and identically distibuted (IID.)
manner.
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Table 3.1: The 8 ω’s in the sample space Ω of the experiment E3
θ are given in the first row above.

The RV Y is the number of ‘Heads’ in the 3 tosses and the RV Z is the number of ‘Tails’ in the
3 tosses. Finally, the RVs Y ′ and Z ′ are the indicator functions of the event that ‘all three tosses
were Heads’ and the event that ‘all three tosses were Tails’, respectively.

ω: HHH HHT HTH HTT THH THT TTH TTT RV Definitions / Model

P(ω): 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 Xi

IID∼ Bernoulli(1
2)

Y (ω): 3 2 2 1 2 1 1 0 Y := X1 +X2 +X3

Z(ω): 0 1 1 2 1 2 2 3 Z := (1−X1) + (1−X2) + (1−X3)

Y ′(ω): 1 0 0 0 0 0 0 0 Y ′ := X1X2X3

Z ′(ω): 0 0 0 0 0 0 0 1 Y ′ := (1−X1)(1−X2)(1−X3)

Classwork 9 Describe the probability of the RV Y and Y ′ of Table 3.1 in terms of its PMF. Repeat
the process for the RV Z in your spare time.

P(Y = y) =


P(Y ′ = y′) =

{

Classwork 10 1. What is conditional probability P(Y |Y ′ = 0) ?

P(Y = y|Y ′ = 0) = P(Y=y,Y ′=0)
P(Y ′=0) = P({ω:Y (ω)=y ∩ Y ′(ω)=0})

P({ω:Y ′(ω)=0}) =?

P(Y = 0|Y ′ = 0) P(Y=0,Y ′=0)
P(Y ′=0)

1
8

1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

1
7

P(Y = 1|Y ′ = 0) P(Y=1,Y ′=0)
P(Y ′=0)

1
8

+ 1
8

+ 1
8

1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

3
7

P(Y = 2|Y ′ = 0) P(Y=2,Y ′=0)
P(Y ′=0)

1
8

+ 1
8

+ 1
8

1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

3
7

P(Y = 3|Y ′ = 0) P(Y=3,Y ′=0)
P(Y ′=0)

P(∅)
1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

0

P(Y ∈ {0, 1, 2, 3}|Y ′ = 0)
P3
y=0 P(Y=y,Y ′=0)

P(Y ′=0)

1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

+ 1
8

1

2. What is P(Y |Y ′ = 1) ?

P(Y = y|Y ′ = 1) =

{
1 if y = 3

0 otherwise



CHAPTER 3. RANDOM VARIABLES 58

3.5.1 Markov Processes

When a stochastic process {Xα}α∈A is not independent it is said to be dependent. Next we introduce
ourselves to one of the simplest stochastic process with a ‘first-order’ dependence called Markov
dependence.

Definition 23 (Markov chain) The stochastic process {Xi}i∈Z is called a discrete time markov
chain if

P(Xi+1 ≤ xi+1|Xi ≤ xi, Xi−1 ≤ xi−1, . . .) = P(Xi+1 ≤ xi+1|Xi)

Thus, the probability of the future RV Xi+1, when given the entire past information about the RVs
Xi, Xi−1, . . ., is only determined by the present RV Xi, ie. probability of the future RV Xi+1 given
the entire history is only dependent on the present RV Xi.



Chapter 4

Uniform Random Number Generators

4.1 Introduction

Our probability model and the elementary continuous Uniform(0, 1) RV are built from the abstract
concept of a random variable over a probability triple. A direct implementation of these ideas on a
computing machine is not possible. In practice, random variables are typically simulated by deter-
ministic methods or algorithms. Such algorithms generate sequences of numbers whose behavior is
virtually indistinguishable from that of truly random sequences. In computational statistics, simu-
lating realisations from a given RV is usually done in two distinct steps. First, sequences of numbers
that imitate independent and identically distributed (IID) Uniform(0, 1) RVs are generated. Sec-
ond, appropriate transformations are made to these imitations of IID Uniform(0, 1) random variates
in order to imitate IID random variates from other random variables or other random structures.
These two steps are essentially independent and are studied by two non-overlapping groups of re-
searchers. The formal term pseudo-random number generator (PRNG) or simply random
number generator (RNG) usually refers to some deterministic algorithm used in the first step to
produce pseudo-random numbers (PRNs) that imitate IID Uniform(0, 1) random variates.

In the following chapters, we focus on transforming IID Uniform(0, 1) variates to other non-uniform
variates. In this chapter, we focus on the art of imitating IID Uniform(0, 1) variates. Before we
delve into the theory of RNGs, let us learn to implement the Matlab function that generates
PRNs.

4.2 Uniform Random Numbers in Matlab

In Matlab the function rand produces a deterministic PRN sequence. First, read help rand. We
can generate PRNs as follows:

>> rand(1,10) % generate a 1 X 10 array of PRNs

ans =

0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649

>> rand(1,10) % generate another 1 X 10 array of PRNs

ans =

0.1576 0.9706 0.9572 0.4854 0.8003 0.1419 0.4218 0.9157 0.7922 0.9595

>> rand(’twister’,5489) % reset the PRNG to default state Mersenne Twister with seed=5489

>> rand(1,10) % reproduce the first array

ans =

0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649

>> rand(1,10) % reproduce the second array

59
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ans =

0.1576 0.9706 0.9572 0.4854 0.8003 0.1419 0.4218 0.9157 0.7922 0.9595

In general, you can use any seed value to initiate your PRNG. You may use the clock command
to set the seed:

>> rand(’twister’,SeedFromClock) % initialize the PRNG

>> rand(1,10)

ans =

0.3696 0.3974 0.6428 0.6651 0.6961 0.7311 0.8982 0.6656 0.6991 0.8606

>> rand(2,10)

ans =

0.3432 0.9511 0.3477 0.1007 0.8880 0.0853 0.6067 0.6976 0.4756 0.1523

0.5827 0.5685 0.0125 0.1555 0.5551 0.8994 0.2502 0.5955 0.5960 0.5700

>> rand(’twister’,SeedFromClock) % initialize the PRNG to same SeedFromClock

>> rand(1,10)

ans =

0.3696 0.3974 0.6428 0.6651 0.6961 0.7311 0.8982 0.6656 0.6991 0.8606



Chapter 5

Statistics

5.1 Data and Statistics

Definition 24 (Data) The function X measures the outcome ω of an experiment with sample
space Ω [Often, the sample space is also denoted by S]. Formally, X is a random variable [or a
random vector X = (X1, X2, . . . , Xn), i.e. a vector of random variables] taking values in the data
space X:

X(ω) : Ω 7→ X .

The realisation of the RV X when an experiment is performed is the observation or data x ∈ X. That
is, when the experiment is performed once and it yields a specific ω ∈ Ω, the data X(ω) = x ∈ X is
the corresponding realisation of the RV X.

Figure 5.1: Sample Space, Random Variable, Realisation, Data, and Data Space.

Example 15 For some given parameter θ ∈ ΘΘ := [0, 1], consider n IID Bernoulli(θ) trials,
i.e. X1, X2, . . . , Xn

IID∼ Bernoulli(θ). Then the random vector X = (X1, X2, . . . , Xn), which takes
values in the data space X = {0, 1}n := {(x1, x2, . . . , xn) : xi ∈ {0, 1}, i = 1, 2, . . . , n}, made up
of vertices of the n-dimensional hyper-cube, measures the outcomes of this experiment. A particu-
lar realisation of X, upon performance of this experiment, is the observation, data or data vector
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Figure 5.2: Data Spaces X = {0, 1}2 and X = {0, 1}3 for two and three Bernoulli trials, respectively.

0 1
0

1

(0  0)

(0  1)

(1  0)

(1  1)

0

1

0

1
0

1

(1  0  0)

(1  0  1)

(1  1  0)

(1  1  1)

(0  0  0)

(0  0  1)

(0  1  0)

(0  1  1)

(x1, x2, . . . , xn). For instance, if we observed n− 1 tails and 1 heads, in that order, then our data
vector (x1, x2, . . . , xn−1, xn) = (0, 0, . . . , 0, 1).

Definition 25 (Statistic) A statistic T is any function of the data:

T (x) : X 7→ T .

Thus, a statistic T is also an RV that takes values in the space T. When x ∈ X is the realisation of
an experiment, we let T (x) = t denote the corresponding realisation of the statistic T . Sometimes
we use Tn(X) and Tn to emphasise that X is an n-dimensional random vector, i.e. X ⊂ Rn

Classwork 11 Is the RV X, for which the realisation is the observed data X(ω) = x, a statistic?
In other words, is the data a statistic? [Hint: consider the identity map T (x) = x : X 7→ T = X.]

Next, we define two important statistics called the sample mean and sample variance. Since
they are obtained from the sample data, they are called sample moments, as opposed to the pop-
ulation moments. The corresponding population moments are E(X1) and V(X1), respectively.

Definition 26 (Sample Mean) From a given a sequence of RVs X1, X2, . . . , Xn, we may obtain
another RV called the n-samples mean or simply the sample mean:

Tn( (X1, X2, . . . , Xn) ) = Xn( (X1, X2, . . . , Xn) ) :=
1
n

n∑
i=1

Xi . (5.1)

For brevity, we write
Xn( (X1, X2, . . . , Xn) ) as Xn ,

and its realisation
Xn( (x1, x2, . . . , xn) ) as xn .
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Note that the expectation and variance of Xn are:

E(Xn) = E

(
1
n

n∑
i=1

Xi

)
[by definition (5.1)]

=
1
n

n∑
i=1

E (Xi) [by property (3.10)]

Furthermore, if every Xi in the original sequence of RVs X1, X2, . . . is identically distributed with
the same expectation, by convention E(X1), then:

E(Xn) =
1
n

n∑
i=1

E (Xi) =
1
n

n∑
i=1

E (X1) =
1
n
n E (X1) = E (X1) . (5.2)

Similarly, we can show that:

V(Xn) = V

(
1
n

n∑
i=1

Xi

)
[by definition (5.1)]

=
(

1
n

)2

V

(
n∑
i=1

Xi

)
[by property (3.12)]

Furthermore, if the original sequence of RVs X1, X2, . . . is independently distributed then:

V(Xn) =
(

1
n

)2

V

(
n∑
i=1

Xi

)
=

1
n2

n∑
i=1

V (Xi) [by property (3.13)]

Finally, if the original sequence of RVs X1, X2, . . . is independently and identically distributed
with the same variance (V(X1) by convention) then:

V(Xn) =
1
n2

n∑
i=1

V (Xi) =
1
n2

n∑
i=1

V (X1) =
1
n2

n V (X1) =
1
n

V (X1) . (5.3)

Labwork 10 After initializing the fundamental sampler, we draw five samples and then obtain the
sample mean using the Matlab function mean. In the following, we will reuse the samples stored
in the array XsFromUni01Twstr101.

>> rand(’twister’,101); % initialise the fundamental Uniform(0,1) sampler

>> XsFromUni01Twstr101=rand(1,5); % simulate n=5 IID samples from Uniform(0,1) RV

>> SampleMean=mean(XsFromUni01Twstr101);% find sample mean

>> disp(XsFromUni01Twstr101); % The data-points x_1,x_2,x_3,x_4,x_5 are:

0.5164 0.5707 0.0285 0.1715 0.6853

>> disp(SampleMean); % The Sample mean is :

0.3945

We can thus use mean to obtain the sample mean xn of n sample points x1, x2, . . . , xn.

We may also obtain the sample mean using the sum function and a division by sample size:

>> sum(XsFromUni01Twstr101) % take the sum of the elements of the XsFromUni01Twstr101 array

ans = 1.9723

>> sum(XsFromUni01Twstr101) / 5 % divide the sum by the sample size 5

ans = 0.3945



CHAPTER 5. STATISTICS 64

We can also obtain the sample mean via matrix product or multiplication as follows:

>> size(XsFromUni01Twstr101) % size(SomeArray) gives the size or dimensions of the arrar SomeArray

ans = 1 5

>> ones(5,1) % here ones(5,1) is an array of 1’s with size or dimension 5 X 1

ans =

1

1

1

1

1

>> XsFromUni01Twstr101 * ones(5,1) % multiplying an 1 X 5 matrix with a 5 X 1 matrix of Ones

ans = 1.9723

>> XsFromUni01Twstr101 * ( ones(5,1) * 1/5) % multiplying an 1 X 5 matrix with a 5 X 1 matrix of 1/5 ’s

ans = 0.3945

Definition 27 (Sample Variance & Standard Deviation) From a given a sequence of ran-
dom variables X1, X2, . . . , Xn, we may obtain another statistic called the n-samples variance or
simply the sample variance :

Tn( (X1, X2, . . . , Xn) ) = S2
n( (X1, X2, . . . , Xn) ) :=

1
n− 1

n∑
i=1

(Xi −Xn)2 . (5.4)

For brevity, we write S2
n( (X1, X2, . . . , Xn) ) as S2

n and its realisation S2
n( (x1, x2, . . . , xn) ) as s2

n.

Sample standard deviation is simply the square root of sample variance:

Sn( (X1, X2, . . . , Xn) ) =
√
S2
n( (X1, X2, . . . , Xn) ) (5.5)

For brevity, we write Sn( (X1, X2, . . . , Xn) ) as Sn and its realisation Sn( (x1, x2, . . . , xn) ) as sn.

Once again, if X1, X2, . . . , Xn
IID∼ X1, the expectation of the sample variance is:

E(S2
n) = V(X1) .

Labwork 11 We can compute the sample variance and sample standard deviation for the five
samples stored in the array XsFromUni01Twstr101 from Labwork 10 using Matlab’s functions
var and std, respectively.

>> disp(XsFromUni01Twstr101); % The data-points x_1,x_2,x_3,x_4,x_5 are :

0.5164 0.5707 0.0285 0.1715 0.6853

>> SampleVar=var(XsFromUni01Twstr101);% find sample variance

>> SampleStd=std(XsFromUni01Twstr101);% find sample standard deviation

>> disp(SampleVar) % The sample variance is:

0.0785

>> disp(SampleStd) % The sample standard deviation is:

0.2802

It is important to bear in mind that the statistics such as sample mean and sample variance are
random variables and have an underlying distribution.
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Definition 28 (Order Statistics) Suppose X1, X2, . . . , Xn
IID∼ F , where F is the DF from the

set of all DFs over the real line. Then, the n-sample order statistics X([n]) is:

X([n])( (X1, X2, . . . , Xn) ) :=
(
X(1), X(2), . . . X(n)

)
, such that, X(1) ≤ X(2) ≤ . . . ≤ X(n) . (5.6)

For brevity, we write X([n])( (X1, X2, . . . , Xn) ) as X([n]) and its realisation X([n])( (x1, x2, . . . , xn) )
as x([n]) = (x(1), x(2), . . . x(n)).

Without going into the details of how to sort the data in ascending order to obtain the order statis-
tics (an elementary topic of an Introductory Computer Science course), we simply use Matlab’s
function sort to obtain the order statistics, as illustrated in the following example.

Labwork 12 The order statistics for the five samples stored in XsFromUni01Twstr101 from Lab-
work 10 can be computed using sort as follows:

>> disp(XsFromUni01Twstr101); % display the sample points

0.5164 0.5707 0.0285 0.1715 0.6853

>> SortedXsFromUni01Twstr101=sort(XsFromUni01Twstr101); % sort data

>> disp(SortedXsFromUni01Twstr101); % display the order statistics

0.0285 0.1715 0.5164 0.5707 0.6853

Therefore, we can use sort to obtain our order statistics x(1), x(2), . . . , x(n) from n sample points
x1, x2, . . . , xn.

Next, we will introduce a family of common statistics, called the qth quantile, by first defining the
function:

Definition 29 (Inverse DF or Inverse CDF or Quantile Function) Let X be an RV with
DF F . The inverse DF or inverse CDF or quantile function is:

F [−1](q) := inf {x : F (x) > q}, for some q ∈ [0, 1] . (5.7)

If F is strictly increasing and continuous then F [−1](q) is the unique x ∈ R such that F (x) = q.

A functional is merely a function of another function. Thus, T (F ) : {All DFs } 7→ T, being a
map or function from the space of DFs to its range T, is a functional. Some specific examples of
functionals we have already seen include:

1. The mean of RV X ∼ F is a function of the DF F :

T (F ) = E(X) =
∫
x dF (x) .

2. The variance of RV X ∼ F is a function of the DF F :

T (F ) = E(X −E(X))2 =
∫

(x−E(X))2 dF (x) .

3. The value of DF at a given x ∈ R of RV X ∼ F is also a function of DF F :

T (F ) = F (x) .
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Other functionals of F that depend on the quantile function F [−1] are:

1. The qth quantile of RV X ∼ F :

T (F ) = F [−1](q) where q ∈ [0, 1] .

2. The first quartile or the 0.25th quantile of the RV X ∼ F :

T (F ) = F [−1](0.25) .

3. The median or the second quartile or the 0.50th quantile of the RV X ∼ F :

T (F ) = F [−1](0.50) .

4. The third quartile or the 0.75th quantile of the RV X ∼ F :

T (F ) = F [−1](0.75) .

Definition 30 (Empirical Distribution Function (EDF or ECDF)) Suppose we have n IID
RVs, X1, X2, . . . , Xn

IID∼ F , where F is a DF from the set of all DFs over the real line. Then, the
n-sample empirical distribution function (EDF or ECDF) is the discrete distribution function F̂n
that puts a probability mass of 1/n at each sample or data point xi:

F̂n(x) =
∑n

i=1 11(Xi ≤ x)
n

, where 11(Xi ≤ x) :=

{
1 if xi ≤ x
0 if xi > x

(5.8)

Labwork 13 Let us plot the ECDF for the five samples drawn from the Uniform(0, 1) RV in
Labwork 10 using the Matlab function ECDF (given in Labwork 49). Let us super-impose the
samples and the true DF as depicted in Figure 5.3 with the following script:

plotunifecdf.m
xs = -1:0.01:2; % vector xs from -1 to 2 with increment .05 for x values

% get the [0,1] uniform DF or cdf of xs in vector cdf

cdf=zeros(size(xs));% initialise cdf as zero

indices = find(xs>=1); cdf(indices) = 1; % set cdf as 1 when xs >= 1

indices = find(xs>=0 & xs<=1); cdf(indices)=xs(indices); % cdf=xs when 0 <= xs <= 1

plot(xs,cdf,’r’) % plot the DF

hold on; title(’Uniform [0,1] DF and ECDF’); xlabel(’x’); axis([-0.2 1.2 -0.2 1.2])

x=[0.5164, 0.5707, 0.0285, 0.1715, 0.6853]; % five samples

plot(x,zeros(1,5),’r+’,’LineWidth’,2,’MarkerSize’,10)% plot the data as red + marks

hold on; grid on; % turn on grid

ECDF(x,1,.2,.6);% ECDF (type help ECDF) plot is extended to left and right by .2 and .4, respectively.

Definition 31 (qth Sample Quantile) For some q ∈ [0, 1] and n IID RVs X1, X2, . . . , Xn
IID∼ F ,

we can obtain the ECDF F̂n using (10.1). The qth sample quantile is defined as the statistic
(statistical functional):

T (F̂n) = F̂ [−1]
n (q) := inf {x : F̂ [−1]

n (x) ≥ q} . (5.9)

By replacing q in this definition of the qth sample quantile by 0.25, 0.5 or 0.75, we obtain the first,
second (sample median) or third sample quartile, respectively.
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Figure 5.3: Plot of the DF of Uniform(0, 1), five IID samples from it, and the ECDF based
on the five samples. Note that the ECDF F̂5 for data points x = (x1, x2, x3, x4, x5) =
(0.5164, 0.5707, 0.0285, 0.1715, 0.6853) jumps by 1/5 = 0.20 at each of the five samples.
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Algorithm 2 qth Sample Quantile of Order Statistics
1: input:

1. q in the qth sample quantile, i.e. the argument q of F̂ [−1]
n (q),

2. order statistic (x(1), x(2), . . . , x(n)), i.e. the sorted (x1, x2, . . . , xn), where n > 0.

2: output: F̂ [−1]
n (q), the qth sample quantile

3: i← b(n− 1)qc
4: δ ← (n− 1)q − i
5: if i = n− 1 then
6: F̂

[−1]
n (q)← x(i+1)

7: else
8: F̂

[−1]
n (q)← (1− δ)x(i+1) + δx(i+2)

9: end if
10: return: F̂ [−1]

n (q)
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The following algorithm can be used to obtain the qth sample quantile of n IID samples (x1, x2, . . . , xn)
on the basis of their order statistics (x(1), x(2), . . . , x(n)).

The qth sample quantile, F̂ [−1]
n (q), is found by interpolation from the order statistics (x(1), x(2), . . . , x(n))

of the n data points (x1, x2, . . . , xn), using the formula:

F̂ [−1]
n (q) = (1− δ)x(i+1) + δx(i+2), where, i = b(n− 1)qc and δ = (n− 1)q − b(n− 1)qc .

Thus, the sample minimum of the data points (x1, x2, . . . , xn) is given by F̂ [−1]
n (0), the sample

maximum is given by F̂ [−1]
n (1) and the sample median is given by F̂ [−1]

n (0.5), etc.

Labwork 14 Use the implementation of Algorithm 2 in Labwork 50 as the Matlab function
qthSampleQuantile to find the qth sample quantile of two simulated data arrays:

1. SortedXsFromUni01Twstr101, the order statistics that was constructed in Labwork 12 and

2. Another sorted array of 7 samples called SortedXs

>> disp(SortedXsFromUni01Twstr101)

0.0285 0.1715 0.5164 0.5707 0.6853

>> rand(’twister’,420);

>> SortedXs=sort(rand(1,7));

>> disp(SortedXs)

0.1089 0.2670 0.3156 0.3525 0.4530 0.6297 0.8682

>> for q=[0, 0.25, 0.5, 0.75, 1.0]

disp([q, qthSampleQuantile(q,SortedXsFromUni01Twstr101) ...

qthSampleQuantile(q,SortedXs)])

end

0 0.0285 0.1089

0.2500 0.1715 0.2913

0.5000 0.5164 0.3525

0.7500 0.5707 0.5414

1.0000 0.6853 0.8682

5.2 Exploring Data and Statistics

5.2.1 Univariate Data

A histogram is a graphical representation of the frequency with which elements of a data array:

x = (x1, x2, . . . , xn) ,

of real numbers fall within each of the m intervals or bins of some interval partition:

b := (b1, b2, . . . , bm) := ([b1, b1], [b2, b2], . . . , [bm, bm])

of the data range of x given by the closed interval:

R(x) := [min{x1, x2, . . . , xn},max{x1, x2, . . . , xn}] .

Elements of this partition b are called bins, their mid-points are called bin centres:

c := (c1, c2, . . . , cm) := ((b1 + b1)/2, (b2 + b2)/2, . . . , (bm + bm)/2)
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and their overlapping boundaries, i.e. bi = bi+1 for 1 ≤ i < m, are called bin edges:

d := (d1, d2, . . . , dm+1) := (b1, b2, . . . , bm−1, bm, bm) .

For a given partition of the data range R(x) or some superset of R(x), three types of histograms are
possible: frequency histogram, relative frequency histogram and density histogram. Typically, the
partition b is assumed to be composed of m overlapping intervals of the same width w = bi−bi for all
i = 1, 2, . . . ,m. Thus, a histogram can be obtained by a set of bins along with their corresponding
heights:

h = (h1, h2, . . . , hm) , where hk := g(#{xi : xi ∈ bk})

Thus, hk, the height of the k-th bin, is some function g of the number of data points that fall in
the bin bk Formally, a histogram is a sequence of ordered pairs:

((b1, h1), (b2, h2), . . . , (bm, hm)) .

Given a partition b, a frequency histogram is the histogram:

((b1, h1), (b2, h2), . . . , (bm, hm)) , where hk := #{xi : xi ∈ bk} ,

a relative frequency histogram is the histogram:

((b1, h1), (b2, h2), . . . , (bm, hm)) , where hk := n−1#{xi : xi ∈ bk} ,

and a density histogram is the histogram:

((b1, h1), (b2, h2), . . . , (bm, hm)) , where hk := (wkn)−1#{xi : xi ∈ bk} , wk := bk − bk .

Labwork 15 Let us use samples from the rand(’twister’,5489) as our data set x and plot
various histograms. Let us use hist function (read help hist) to make a default histogram with
ten bins.

>> rand(’twister’,5489);

>> hist(x)

>> rand(’twister’,5489);

>> x=rand(1,100); % generate 100 PRNs

>> [Fs, Cs] = hist(x) % Cs is the bin centers and Fs is the frequencies of data set x

Fs =

9 11 10 8 7 10 8 11 10 16

Cs =

0.0598 0.1557 0.2516 0.3474 0.4433 0.5392 0.6351 0.7309 0.8268 0.9227

>> % produce a histogram plot the last argument 1 is the width value for immediately adjacent bars -- help bar

>> bar(Cs,Fs,1) % create a frequency histogram

>> bar(Cs,Fs/100,1) % create a relative frequency histogram

>> bar(Cs,Fs/(0.1*100),1) % create a density histogram (area of bars sum to 1)

>> sum(Fs/(0.1*100) .* ones(1,10)*0.1)

>> ans = 1

Try making a density histogram with 1000 samples from rand with 15 bins. You can specify the
number of bins by adding an extra argument to hist, for e.g. [Fs, Cs] = hist(x,15) will produce
15 bins of equal width over the data range R(x).

Labwork 16 We can also visualise the 100 data points in the array x using stem plot as well as
the ECDF plots:
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>> rand(’twister’,5489);

>> x=rand(1,100); % produce 100 samples with rand

>> stem(x) % make a stem plot of the 100 data points in x

>> ECDF(x,2,.2,.6);% ECDF (type help ECDF) plot is extended to left and right by .2 and .4, respectively.

We can also visually summarise univariate data using the box plot or box-whisker plot available
in the Stats Toolbox of Matlab. These family of plots display a set of sample quantiles, typically
they are include, the median, the first and third quartiles and the minimum and maximum values
of our data array x.

5.2.2 Bivariate Data

By bivariate data array x we mean a 2× n matrix of real numbers or equivalently n ordered pairs
of points (x1,i, x2,i) as i = 1, 2, . . . , n. The most elementary visualisation of these n ordered pairs
is in orthogonal Cartesian co-ordinates. Such plots are termed 2D scatter plots in statistics.

Labwork 17 Generate a 2× 5 array representing samples of 5 ordered pairs sampled uniformly at
random over the unit square [0, 1]× [0, 1]:

>> rand(’twister’,5489);

>> x=rand(2,5)% create a sequence of 5 ordered pairs uniformly from unit square [0,1]X[0,1]

x =

0.8147 0.1270 0.6324 0.2785 0.9575

0.9058 0.9134 0.0975 0.5469 0.9649

>> plot(x(1,:),x(2,:),’x’) % a 2D scatter plot with marker ’x’

2D histograms

Surface Plot

5.2.3 Trivariate Data

Similarly, we can make 3D scatter plots as follows:

Labwork 18 Repeat the visualisation below with a larger array, say x=rand(3,1000), and use the
rotate 3D feature in the Figure window to visually explore the samples in the unit cube. Do they
seem to be uniformly distributed inside the unit cube?

>> rand(’twister’,5489);

>> x=rand(3,5)% create a sequence of 5 ordered triples uniformly from unit cube [0,1]X[0,1]X[0,1]

x =

0.8147 0.9134 0.2785 0.9649 0.9572

0.9058 0.6324 0.5469 0.1576 0.4854

0.1270 0.0975 0.9575 0.9706 0.8003

>> plot3(x(1,:),x(2,:),x(3,:),’x’) % a 2D scatter plot with marker ’x’

Iso-surface Plots

5.2.4 Multivariate Data

Scatter Matrix

Parallel Co-ordinate Plot
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Common Random Variables

The Uniform(0, 1) RV of Model 2 forms the foundation for random variate generation and sim-
ulation. This is appropriately called the fundamental model or experiment, since every other
experiment can be obtained from this one.

Next, we simulate or generate samples from other RVs by making the following two assumptions:

1. independent samples from the Uniform(0, 1) RV can be generated, and

2. real arithmetic can be performed exactly in a computer.

Both these assumptions are, in fact, not true and require a more careful treatment of the subject.
We may return to these careful treatments later on.

6.1 Inversion Sampler for Continuous Random Variables

Proposition 3 Let F (x) :=
∫ x
−∞ f(y) dy : R → [0, 1] be a continuous DF with density f , and let

its inverse F [−1] : [0, 1]→ R be:

F [−1](u) := inf{x : F (x) = u} .

Then, F [−1](U) has the distribution function F , provided U is a Uniform(0, 1) RV. Recall inf(A)
or infimum of a set A of real numbers is the greatest lower bound of every element of A.

Proof: The “one-line proof” of the proposition is due to the following equalities:

P(F [−1](U) ≤ x) = P(inf{y : F (y) = U)} ≤ x) = P(U ≤ F (x)) = F (x), for all x ∈ R.

This yields the inversion sampler or the inverse (C)DF sampler, where we (i) generate u ∼
Uniform(0, 1) and (ii) return x = F [−1](u), as formalised by the following algorithm.

This algorithm emphasises the fundamental sampler’s availability in an input step, and its set-up
needs in an initialise step. In the following sections, we will not mention these universal steps; they
will be taken for granted. The direct applicability of Algorithm 3 is limited to univariate densities
for which the inverse of the cumulative distribution function is explicitly known. The next section
will consider some examples.

71
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Algorithm 3 Inversion Sampler or Inverse (C)DF Sampler

1: input: (1) F [−1](x), inverse of the DF of the target RV X, (2) the fundamental sampler
2: initialise: set the seed, if any, for the fundamental sampler
3: output: a sample from X distributed according to F
4: draw u ∼ Uniform(0, 1)
5: return: x = F [−1](u)

6.2 Some Simulations of Continuous Random Variables

Model 3 (Uniform(θ1, θ2)) Given two real parameters θ1, θ2 ∈ R, such that θ1 < θ2, the PDF of
the Uniform(θ1, θ2) RV X is:

f(x; θ1, θ2) =

{
1

θ2−θ1 if θ1 ≤ x ≤ θ2,

0 otherwise
(6.1)

and its DF given by F (x; θ1, θ2) =
∫ x
−∞ f(y; θ1, θ2) dy is:

F (x; θ1, θ2) =


0 if x < θ1

x−θ1
θ2−θ1 if θ1 ≤ x ≤ θ2,

1 if x > θ2

(6.2)

Recall that we emphasise the dependence of the probabilities on the two parameters θ1 and θ2 by
specifying them following the semicolon in the argument for f and F .

Figure 6.1: A plot of the PDF, DF or CDF and inverse DF of the Uniform(−1, 1) RV X.
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Simulation 1 (Uniform(θ1, θ2)) To simulate from Uniform(θ1, θ2) RV X using the Inversion Sam-
pler, we first need to find F [−1](u) by solving for x in terms of u = F (x; θ1, θ2):

u =
x− θ1

θ2 − θ1
⇐⇒ x = (θ2 − θ1)u+ θ1 ⇐⇒ F [−1](u; θ1, θ2) = θ1 + (θ2 − θ1)u

Here is a simple implementation of the Inversion Sampler for the Uniform(θ1, θ2) RV in Matlab:

>> rand(’twister’,786); % initialise the fundamental sampler for Uniform(0,1)

>> theta1=-1; theta2=1; % declare values for parameters theta1 and theta2
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>> u=rand; % rand is the Fundamental Sampler and u is a sample from it

>> x=theta1+(theta2 - theta1)*u; % sample from Uniform(-1,1]) RV

>> disp(x); % display the sample from Uniform[-1,,1] RV

0.5134

It is just as easy to draw n IID samples from Uniform(θ1, θ2) RV X by transforming n IID samples
from the Uniform(0, 1) RV as follows:

>> rand(’twister’,786543); % initialise the fundamental sampler

>> theta1=-83; theta2=1004; % declare values for parameters a and b

>> u=rand(1,5); % now u is an array of 5 samples from Uniform(0,1)

>> x=theta1+(theta2 - theta1)*u; % x is an array of 5 samples from Uniform(-83,1004]) RV

>> disp(x); % display the 5 samples just drawn from Uniform(-83,1004) RV

465.3065 111.4994 14.3535 724.8881 254.0168

Model 4 (Exponential(λ)) For a given λ > 0, an Exponential(λ) RV has the following PDF f

and DF F :

f(x;λ) = λe−λx F (x;λ) = 1− e−λx . (6.3)

This distribution is fundamental because of its property of memorylessness and plays a funda-
mental role in continuous time processes as we will see later.

We encode the PDF and DF of the Exponential(λ) RV as Matlab functions ExponentialPdf and
ExponentialCdf and use them to produce Figure 6.2 in Labwork 48.

Figure 6.2: Density and distribution functions of Exponential(λ) RVs, for λ = 1, 10, 10−1, in four
different axes scales.
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Mean and Variance of Exponential(λ): Show that the mean of an Exponential(λ) RV X is:

Eλ(X) =
∫ ∞

0
xf(x;λ) dx =

∫ ∞
0

xλe−λx dx =
1
λ
,

and the variance is:

Vλ(X) =
(

1
λ

)2

.

Let us consider the problem of simulating from an Exponential(λ) RV with realisations in R+ :=
[0,∞) := {x : x ≥ 0, x ∈ R} to model the waiting time for a bus at a bus stop.
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Simulation 2 (Exponential(λ)) For a given λ > 0, an Exponential(λ) RV has the following PDF
f , DF F and inverse DF F [−1]:

f(x;λ) = λe−λx F (x;λ) = 1− e−λx F [−1](u;λ) =
−1
λ

loge(1− u) (6.4)

We write the natural logarithm loge as log for notational simplicity. An implementation of the
Inversion Sampler for Exponential(λ) as a function in the M-file:

ExpInvCDF.m
function x = ExpInvCDF(u,lambda);

% Return the Inverse CDF of Exponential(lambda) RV X

% Call Syntax: x = ExpInvCDF(u,lambda);

% ExpInvCDF(u,lambda);

% Input : lambda = rate parameter,

% u = array of numbers in [0,1]

% Output : x

x=-(1/lambda) * log(1-u);

We can simply call the function to draw a sample from, say the Exponential(λ = 1.0) RV by:

lambda=1.0; % some value for lambda

u=rand; % rand is the Fundamental Sampler

ExpInvCDF(u,lambda) % sample from Exponential(1) RV via function in ExpInvCDF.m

Because of the following:

U ∼ Uniform(0, 1) =⇒ −U ∼ Uniform(−1, 0) =⇒ 1− U ∼ Uniform(0, 1) ,

we could save a subtraction operation in the above algorithm by replacing -(1/lambda) * log(1-u)

by -(1/lambda) * log(u). This is implemented as the following function.

ExpInvSam.m
function x = ExpInvSam(u,lambda);

% Return the Inverse CDF based Sample from Exponential(lambda) RV X

% Call Syntax: x = ExpInvSam(u,lambda);

% or ExpInvSam(u,lambda);

% Input : lambda = rate parameter,

% u = array of numbers in [0,1] from Uniform[0,1] RV

% Output : x

x=-(1/lambda) * log(u);

>> rand(’twister’,46678); % initialise the fundamental sampler

>> Lambda=1.0; % declare Lambda=1.0

>> x=ExpInvSam(rand(1,5),Lambda); % pass an array of 5 Uniform(0,1) samles from rand

>> disp(x); % display the Exponential(1.0) distributed samples

0.5945 2.5956 0.9441 1.9015 1.3973

It is straightforward to do replicate experiments. Consider the experiment of drawing five inde-
pendent samples from the Exponential(λ = 1.0) RV. Suppose we want to repeat or replicate this
experiment seven times and find the sum of the five outcomes in each of these replicates. Then we
may do the following:
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Figure 6.3: The PDF f , DF F , and inverse DF F [−1] of the the Exponential(λ = 1.0) RV.
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>> rand(’twister’,1973); % initialise the fundamental sampler

>> % store 7 replications of 5 IID draws from Exponential(1.0) RV in array a

>> lambda=1.0; a= -1/lambda * log(rand(5,7)); disp(a);

0.7267 0.3226 1.2649 0.4786 0.3774 0.0394 1.8210

1.2698 0.4401 1.6745 1.4571 0.1786 0.4738 3.3690

0.4204 0.1219 2.2182 3.6692 0.9654 0.0093 1.7126

2.1427 0.1281 0.8500 1.4065 0.1160 0.1324 0.2635

0.6620 1.1729 0.6301 0.6375 0.3793 0.6525 0.8330

>> %sum up the outcomes of the sequence of 5 draws in each replicate

>> s=sum(a); disp(s);

5.2216 2.1856 6.6378 7.6490 2.0168 1.3073 7.9990

Labwork 19 Consider the problem of modelling the arrival of buses at a bus stop. Suppose that the
time between arrivals is an Exponential(λ = 0.1) RV X with a mean inter-arrival time of 1/λ = 10
minutes. Suppose you go to your bus stop and zero a stop-watch. Simulate the times of arrival
for the next seven buses as indicated by your stop-watch. Seed the fundamental sampler by your
Student ID (eg. if your ID is 11424620 then type rand(’twister’, 11424620); just before the
simulation). Hand in the code with the arrival times of the next seven buses at your ID-seeded bus
stop.

The support of the Exponential(λ) RV is R+ := [0,∞). Let us consider a RV built by mirroring
the Exponential(λ) RV about the origin with the entire real line as its support.

Model 5 (Laplace(λ) or Double Exponential(λ) RV) If a RV X is equally likely to be either pos-
itive or negative with an exponential density, then the Laplace(λ) or Double Exponential(λ) RV,
with the rate parameter λ > 0, λ ∈ R, may be used to model it. The density function for the
Laplace(λ) RV given by f(x;λ) is

f(x;λ) =
λ

2
e−λ|x| =

{
λ
2 e
λx if x < 0

λ
2 e
−λx if x ≥ 0

.

Let us define the sign of a real number x by

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0 .
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Then, the DF of the Laplace(λ) RV X is

F (x;λ) =
∫ x

−∞
f(y;λ) dy =

1
2

(
1 + sign(x)

(
1− e−λ|x|

))
, (6.5)

and its inverse DF is

F [−1](u;λ) = − 1
λ

sign
(
u− 1

2

)
log
(

1− 2
∣∣∣∣u− 1

2

∣∣∣∣) , u ∈ [0, 1] (6.6)

Mean and Variance of Laplace(λ) RV X: Show that the mean of a Laplace(λ) RV X is

E(X) =
∫ ∞

0
xf(x;λ) dx =

∫ ∞
0

x
λ

2
e−λ|x| dx = 0 ,

and the variance is

V(X) =
(

1
λ

)2

+
(

1
λ

)2

= 2
(

1
λ

)2

.

Note that the mean is 0 due to the symmetry of the density about 0 and the variance is twice that
of the Exponential(λ) RV.

Simulation 3 (Laplace(λ)) Here is an implementation of an inversion sampler to draw IID sam-
ples from a Laplace(λ) RV X by transforming IID samples from the Uniform(0, 1) RV U :

LaplaceInvCDF.m
function x = LaplaceInvCDF(u,lambda);

% Call Syntax: x = LaplaceInvCDF(u,lambda);

% or LaplaceInvCDF(u,lambda);

%

% Input : lambda = rate parameter > 0,

% u = an 1 X n array of IID samples from Uniform[0,1] RV

% Output : an 1Xn array x of IID samples from Laplace(lambda) RV

% or Inverse CDF of Laplace(lambda) RV

x=-(1/lambda)*sign(u-0.5) .* log(1-2*abs(u-0.5));

We can simply call the function to draw a sample from, say the Laplace(λ = 1.0) RV by

>> lambda=1.0; % some value for lambda

>> rand(’twister’,6567); % initialize the fundamental sampler

>> u=rand(1,5); % draw 5 IID samples from Uniform(0,1) RV

>> disp(u); % display the samples in u

0.6487 0.9003 0.3481 0.6524 0.8152

>> x=LaplaceInvCDF(u,lambda); % draw 5 samples from Laplace(1) RV using inverse CDF

>> disp(x); % display the samples

0.3530 1.6127 -0.3621 0.3637 0.9953

Next, let us become familiar with an RV for which the expectation does not exist. This will help
us appreciate the phrase “none of which is dominant” in the informal statement of the CLT later.

Model 6 (Cauchy) The density of the Cauchy RV X is:

f(x) =
1

π(1 + x2)
, −∞ < x <∞ ,

and its DF is:
F (x) =

1
π

tan−1(x) +
1
2
. (6.7)

Randomly spinning a LASER emitting improvisation of “Darth Maul’s double edged lightsaber” that
is centered at (1, 0) in the plane R2 and recording its intersection with the y-axis, in terms of the y
coordinates, gives rise to the Standard Cauchy RV.
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Mean of Cauchy RV: The expectation of the Cauchy RV X, obtained via integration by parts
(set u = x and v = tan−1(x)) does not exist , since:∫

|x| dF (x) =
2
π

∫ ∞
0

x

1 + x2
dx =

(
x tan−1(x)

]∞
0
−
∫ ∞

0
tan−1(x) dx =∞ . (6.8)

Variance and higher moments cannot be defined when the expectation itself is undefined.

Simulation 4 (Cauchy) We can draw n IID samples from the Cauchy RV X by transforming n
IID samples from Uniform(0, 1) RV U using the inverse DF as follows:

>> rand(’twister’,2435567); % initialise the fundamental sampler

>> u=rand(1,5); % draw 5 IID samples from Uniform(0,1) RV

>> disp(u); % display the samples in u

0.7176 0.6655 0.9405 0.9198 0.2598

>> x=tan(pi * u); % draw 5 samples from Standard cauchy RV using inverse CDF

>> disp(x); % display the samples in x

-1.2272 -1.7470 -0.1892 -0.2575 1.0634

Recall that the mean of the Cauchy RV X does not exist since
∫
|x| dF (x) = ∞ (6.8). We will

investigate this in Labwork 20.

Labwork 20 Let us see what happens when we plot the running sample mean for an increasing
sequence of IID samples from the Standard Cauchy RV X by implementing the following script file:

PlotStandardCauchyRunningMean.m
% script to plot the oscillating running mean of Std Cauchy samples

% relative to those for the Uniform(0,10) samples

rand(’twister’,25567); % initialize the fundamental sampler

for i=1:5

N = 10^5; % maximum sample size

u=rand(1,N); % draw N IID samples from Uniform(0,1)

x=tan(pi * u); % draw N IID samples from Standard cauchy RV using inverse CDF

n=1:N; % make a vector n of current sample size [1 2 3 ... N-1 N]

CSx=cumsum(x); % CSx is the cumulative sum of the array x (type ’help cumsum’)

% Runnign Means <- vector division of cumulative sum of samples by n

RunningMeanStdCauchy = CSx ./ n; % Running Mean for Standard Cauchy samples

RunningMeanUnif010 = cumsum(u*10.0) ./ n; % Running Mean for Uniform(0,10) samples

semilogx(n, RunningMeanStdCauchy) %

hold on;

semilogx(n, RunningMeanUnif010, ’m’)

end

xlabel(’n = sample size’);

ylabel(’Running mean from n samples’)

The resulting plot is shown in Figure 6.4. Notice that the running means or the sample mean
of n samples as a function of n, for each of the five replicate simulations, never settles down to
a particular value. This is because of the “thick tails” of the density function for this RV which
produces extreme observations. Compare them with the running means, based on n IID samples
from the Uniform(0, 10) RV, for each of five replicate simulations (magenta lines). The latter
sample means have settled down stably to the mean value of 5 after about 700 samples.

For a continuous RV X with a closed-form expression for the inverse DF F [−1], we can employ
Algorithm 3 to draw samples from X. Table 6.1 summarises some random variables that are
amenable to Algorithm 3.

Next, we familiarise ourselves with the Gaussian or Normal RV.
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Figure 6.4: Unending fluctuations of the running means based on n IID samples from the Standard
Cauchy RV X in each of five replicate simulations (blue lines). The running means, based on n

IID samples from the Uniform(0, 10) RV, for each of five replicate simulations (magenta lines).
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Table 6.1: Some continuous RVs that can be simulated from using Algorithm 3.
Random Variable X F (x) X = F [−1](U), U ∼ Uniform(0, 1) Simplified form

Uniform(a, b) (6.2) a+ (b− a)U –
Exponential(λ) (6.3) −1

λ log(1− U) −1
λ log(U)

Laplace(λ) (6.6) − 1
λ sign

(
U − 1

2

)
log
(
1− 2

∣∣U − 1
2

∣∣) –
Cauchy (6.7) tan

(
π
(
U − 1

2

))
tan (πU)

Model 7 (Normal(µ, σ2)) X has a Normal(µ, σ2) or Gaussian(µ, σ2) distribution with the location
parameter µ ∈ R and the scale or variance parameter σ2 > 0, if:

f(x;µ, σ2) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
, x ∈ R (6.9)

Normal(0, 1) distributed RV, which plays a fundamental role in asymptotic statistics, is convention-
ally denoted by Z. Z is said to have the Standard Normal distribution with PDF f(z; 0, 1) and
DF F (z; 0, 1) conventionally denoted by φ(z) and Φ(z), respectively.

There is no closed form expression for Φ(z) or F (x;µ, σ). The latter is simply defined as:

F (x;µ, σ2) =
∫ x

−∞
f(y;µ, σ) dy

We can express F (x;µ, σ2) in terms of the error function (erf) as follows:

F (x;µ, σ2) =
1
2

erf
(
x− µ√

2σ2

)
+

1
2

(6.10)

We implement the PDF (6.9) and DF (6.10) for a Normal(µ, σ2) RV X as Matlab functions
NormalPdf and NormalCdf, respectively, in Labwork 47, and then produce their plots for various
Normal(µ, σ2) RVs, shown in Figure 6.5. Observe the concentration of probability mass, in terms
of the PDF and DF plots, about the location parameter µ as the variance parameter σ2 decreases.
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Figure 6.5: Density and distribution function of several Normal(µ, σ2) RVs.
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Mean and Variance of Normal(µ, σ2): The mean of a Normal(µ, σ2) RV X is:

E(X) =
∫ ∞
−∞

xf(x;µ, σ2) dx =
1

σ
√

2π

∫ ∞
−∞

x exp
(
− 1

2σ2
(x− µ)2

)
dx = µ ,

and the variance is:

V(X) =
∫ ∞
−∞

(x− µ)2f(x;µ, σ2) dx =
1

σ
√

2π

∫ ∞
−∞

(x− µ)2 exp
(
− 1

2σ2
(x− µ)2

)
dx = σ2 .

Labwork 21 Write a function to evaluate the P(X ∈ [a, b]) for the Normal(0, 1) RV X for user-
specified values of a and b. [Hint: one option is by making two calls to NormalCdf and doing one
arithmetic operation.]

Simulations 1 and 2, 3 and 4 produce samples from a continuous RV X with a closed-form expression
for the inverse DF F [−1] via Algorithm 3 (Table 6.1). But only a few RVs have an explicit F [−1].
For example, Normal(0, 1) RV does not have an explicit F [−1]. Algorithm 4 is a more general but
inexact method that relies on an approximate numerical solution of x, for a given u, that satisfies
the equation F (x) = u.

Algorithm 4 Inversion Sampler by Numerical Solution of F (X) = U via Newton-Raphson Method
1: input: F (x), the DF of the target RV X

2: input: f(x), the density of X
3: input: A reasonable Stopping Rule,

e.g. a specified tolerance ε > 0 and a maximum number of iterations MAX

4: input: a careful mechanism to specify x0

5: output: a sample from X distributed according to F
6: draw: u ∼ Uniform(0, 1)
7: initialise: i← 0, xi ← x0, xi+1 ← x0 − F (x0)−u

f(x0)

8: while Stopping Rule is not satisfied,
e.g. |F (xi)− F (xi−1)| > ε AND i < MAX do

9: xi ← xi+1

10: xi+1 ←
(
xi − F (xi)−u

f(xi)

)
11: i← i+ 1
12: end while
13: return: x← xi

Simulation 5 (Normal(µ, σ2)) We may employ Algorithm 4 to sample from the Normal(µ, σ2)
RV X using the following function.



CHAPTER 6. COMMON RANDOM VARIABLES 80

Sample1NormalByNewRap.m
function x = Sample1NormalByNewRap(u,Mu,SigmaSq)

% Returns a sample from Normal(Mu, SigmaSq)

% Newton-Raphson numerical solution of F(x)=u

% Input: u = one random Uniform(0,1) sample

% Mu = Mean of Normal(Mu, SigmaSq)

% SigmaSq = Variance of Normal(Mu, SigmaSq)

% Usage: x = Sample1NormalByNewRap(u,Mu,SigmaSq)

% To transform an array Us of uniform samples to array Xs of Normal samples via arrayfun

% Xs = arrayfun(@(u)(Sample1NormalByNewRap(u,-100.23,0.01)),Us);

Epsilon=1e-5; % Tolerance in stopping rule

MaxIter=10000; % Maximum allowed iterations in stopping rule

x=0; % initialize the output x as 0

% initialize i, xi, and xii

i=0; % Mu is an ideal initial condition since F(x; Mu, SigmaSq)

xi = Mu; % is convex when x < Mu and concave when x > Mu and the

% Newton-Raphson method started at Mu converges

xii = xi - (NormalCdf(xi,Mu,SigmaSq)-u)/NormalPdf(xi,Mu,SigmaSq);

% Newton-Raphson Iterations

while (abs(NormalCdf(xii,Mu,SigmaSq)-NormalCdf(xi,Mu,SigmaSq))...

> Epsilon & i < MaxIter),

xi = xii;

xii = xii - (NormalCdf(xii,Mu,SigmaSq)-u)/NormalPdf(xii,Mu,SigmaSq);

i=i+1;

end

x=xii; % record the simulated x from the j-th element of u

We draw five samples from the Normal(0, 1) RV Z and store them in z as follows. The vector
z can be obtained by a Newton-Raphson-based numerical transformation of the vector u of 5 IID
samples from the Uniform(0, 1) RV. We simply need to apply the function Sample1NormalByNewRap

to each element of an arra of Unifrm(0, 1) samples. Matlab’s arrayfun command can be used
to apply @(u)(Sample1NormalByNewRap(u,0,1)) (i.e., Sample1NormalByNewRap as a function of
u) to every element of our array of Uniform(0, 1) samples, say Us. Note that F (z) is the same as
the drawn u from U at least up to four significant digits.

>> rand(’twister’,563987);

>> Us=rand(1,5); % store 5 samples from Uniform(0,1) RV in array Us

>> disp(Us); % display Us

0.8872 0.2569 0.5275 0.8650 0.8517

>> z=Sample1NormalByNewRap(u(1),0,1); %transform Us(1) to a Normal(0,1) sample z

>> disp(z); % display z

1.2119

>> z = arrayfun(@(u)(Sample1NormalByNewRap(u,0,1)),Us); %transform array Us via arrayfun

>> % dislay array z obtained from applying Sample1NormalByNewRap to each element of Us

>> disp(z);

1.2119 -0.6530 0.0691 1.1031 1.0439

>> % check that numerical inversion of F worked, i.e., is F(z)=u ?

>> disp(NormalCdf(z,0,1));

0.8872 0.2569 0.5275 0.8650 0.8517

Next we draw five samples from the Normal(−100.23, 0.01) RV X, store it in an array x and observe
that the numerical method is reasonably accurate by the equality of u and F (x).

>> rand(’twister’,563987);

>> disp(Us); % display Us

0.8872 0.2569 0.5275 0.8650 0.8517

>> % transform array Us via arrayfun

>> x = arrayfun(@(u)(Sample1NormalByNewRap(u,-100.23,0.01)),Us);

>> disp(x);
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-100.1088 -100.2953 -100.2231 -100.1197 -100.1256

>> disp(NormalCdf(x,-100.23,0.01));

0.8872 0.2569 0.5275 0.8650 0.8517

One has to be extremely careful with this approximate simulation algorithm implemented in floating-
point arithmetic. More robust samplers for the Normal(µ, σ2) RV exist. However, Algorithm 4 is
often the only choice when simulating from an arbitrary RV with an unknown closed-form expression
for its F [−1].

Next, we use our simulation capability to gain an informal and intuitive understanding of one of
the most elementary theorems in probability and statistics, namely, the Central Limit Theorem
(CLT). We will see a formal treatment of CLT later.

Informally, the CLT can be stated as follows:
“The sample mean of a large number of IID samples, none of which is dominant, tends to the
Normal distribution as the number of samples increases.”

Labwork 22 Let us investigate the histograms from 10000 simulations of the sample mean of
n = 10, 100, 1000 IID Exponential(λ = 0.1) RVs as follows:

>> rand(’twister’,1973); % initialise the fundamental sampler

>> % a demonstration of Central Limit Theorem (CLT) -- Details of CLT are in the sequel

>> % the sample mean should be a Normal(1/lambda,lambda/n) RV

>> lambda=0.1; Reps=10000; n=10; hist(sum(-1/lambda * log(rand(n,Reps)))/n)

>> lambda=0.1; Reps=10000; n=100; hist(sum(-1/lambda * log(rand(n,Reps)))/n,20)

>> lambda=0.1; Reps=10000; n=1000; hist(sum(-1/lambda * log(rand(n,Reps)))/n,20)

Do you see a pattern in the histograms ?

See the histograms generated from the following code that produces sample means from the Cauchy
RV:

>> Reps=10000; n=1000; hist(sum(tan(pi * rand(n,Reps)))/n,20)

>> Reps=10000; n=1000; hist(sum(tan(pi * rand(n,Reps)))/n,20)

>> Reps=10000; n=1000; hist(sum(tan(pi * rand(n,Reps)))/n,20)

Classwork 12 Explain in words why the mean of n IID samples from the Cauchy RV is not
obeying the Central Limit Theorem. Also relate it to Figure 6.4 of Labwork 20.

6.3 Inversion Sampler for Discrete Random Variables

Next, consider the problem of sampling from a random variable X with a discontinuous
or discrete DF using the inversion sampler. We need to define the inverse more carefully here.

Proposition 4 Let the support of the RV X be over some real interval [a, b] and let its inverse DF
be defined as follows:

F [−1](u) := inf{x ∈ [a, b] : F (x) ≥ u, 0 ≤ u ≤ 1} .

If U ∼ Uniform(0, 1) then F [−1](U) has the DF F , i.e. F [−1](U) ∼ F ∼ X.

Proof: The proof is a consequence of the following equalities:

P(F [−1](U) ≤ x) = P(U ≤ F (x)) = F (x) := P(X ≤ x)
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6.4 Some Simulations of Discrete Random Variables

Simulation 6 (Bernoulli(θ)) Consider the problem of simulating from a Bernoulli(θ) RV based on
an input from a Uniform(0, 1) RV. Recall that bxc (called the ‘floor of x’) is the largest integer
that is smaller than or equal to x, e.g. b3.8c = 3. Using the floor function, we can simulate a
Bernoulli(θ) RV X as follows:

>> theta = 0.3; % set theta = Prob(X=1)

% return x -- floor(y) is the largest integer less than or equal to y

>> x = floor(rand + theta) % rand is the Fundamental Sampler

>> disp(x) % display the outcome of the simulation

0

>> n=10; % set the number of IID Bernoulli(theta=0.3) trials you want to simulate

>> x = floor(rand(1,10)+theta); % vectorize the operation

>> disp(x) % display the outcomes of the simulation

0 0 1 0 0 0 0 0 1 1

Again, it is straightforward to do replicate experiments, e.g. to demonstrate the Central Limit
Theorem for a sequence of n IID Bernoulli(θ) trials.

>> % a demonstration of Central Limit Theorem --

>> % the sample mean of a sequence of n IID Bernoulli(theta) RVs is Gaussian(theta,theta(1-theta)/n)

>> theta=0.5; Reps=10000; n=10; hist(sum(floor(rand(n,Reps)+theta))/n)

>> theta=0.5; Reps=10000; n=100; hist(sum(floor(rand(n,Reps)+theta))/n,20)

>> theta=0.5; Reps=10000; n=1000; hist(sum(floor(rand(n,Reps)+theta))/n,30)

Consider the class of discrete RVs with distributions that place all probability mass on a single real
number. This is the probability model for the deterministic real variable.

Model 8 (Point Mass(θ)) Given a specific point θ ∈ R, we say an RV X has point mass at θ or
is Point Mass(θ) distributed if the DF is:

F (x; θ) =

{
0 if x < θ

1 if x ≥ θ
(6.11)

and the PMF is:

f(x; θ) =

{
0 if x 6= θ

1 if x = θ
(6.12)

Thus, Point Mass(θ) RV X is deterministic in the sense that every realisation of X is exactly equal
to θ ∈ R. We will see that this distribution plays a central limiting role in asymptotic statistics.

Mean and variance of Point Mass(θ) RV: Let X ∼ Point Mass(θ). Then:

E(X) =
∑
x

xf(x) = θ × 1 = θ , V(X) = E(X2)− (E(X))2 = θ2 − θ2 = 0 .

Simulation 7 (Point Mass(θ)) Let us simulate a sample from the Point Mass(θ) RV X. Since
this RV produces the same realisation θ we can implement it via the following M-file:
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Sim1PointMass.m
function x = Sim1PointMass(u,theta)

% Returns one sample from the Point Mass(theta) RV X

% Call Syntax: x = SimPointMass(u,theta);

% Input : u = one uniform random number eg. rand()

% theta = a real number (scalar)

% Output : x = sample from X

x=theta;

Here is call to the function.

>> Sim1PointMass(rand(),2)

ans = 2

>> % % we can use arrayfun to apply Sim1Pointmass to any array of Uniform(0,1) samples

>> arrayfun(@(u)(Sim1PointMass(u,17)),rand(2,10))

ans =

17 17 17 17 17 17 17 17 17 17

17 17 17 17 17 17 17 17 17 17

Note that it is not necessary to have input IID samples from Uniform(0, 1) RV via rand in order
to draw samples from the Point Mass(θ) RV. For instance, an input matrix of zeros can do the job:

>> arrayfun(@(u)(Sim1PointMass(u,17)),zeros(2,8))

ans =

17 17 17 17 17 17 17 17

17 17 17 17 17 17 17 17

Next let us consider a natural generalization of the Bernoulli(θ) RV with more than two outcomes.

Model 9 (de Moivre(θ1, θ2, . . . , θk)) Given a specific point (θ1, θ2, . . . , θk) in the k-Simplex:

4k := { (θ1, θ2, . . . , θk) : θ1 ≥ 0, θ2 ≥ 0, . . . , θk ≥ 0,
k∑
i=1

θi = 1 } ,

we say that an RV X is de Moivre(θ1, θ2, . . . , θk) distributed if its PMF is:

f(x; θ1, θ2, . . . , θk) =

{
0 if x /∈ [k] := {1, 2, . . . , k},
θx if x ∈ [k].

The DF for de Moivre(θ1, θ2, . . . , θk) RV X is:

F (x; θ1, θ2, . . . , θk) =



0 if −∞ < x < 1

θ1 if 1 ≤ x < 2

θ1 + θ2 if 2 ≤ x < 3
...

θ1 + θ2 + · · ·+ θk−1 if k − 1 ≤ x < k

θ1 + θ2 + · · ·+ θk−1 + θk = 1 if k ≤ x <∞

(6.13)

The de Moivre(θ1, θ2, . . . , θk) RV can be thought of as a probability model for “the outcome of rolling
a polygonal cylindrical die with k rectangular faces that are marked with 1, 2, . . . , k”. The parameters
θ1, θ2, . . . , θk specify how the die is loaded and may be idealised as specifying the cylinder’s centre
of mass with respect to the respective faces. Thus, when θ1 = θ2 = · · · = θk = 1/k, we have a
probability model for the outcomes of a fair die.
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Mean and variance of de Moivre(θ1, θ2, . . . , θk) RV: The not too useful expressions for the
first two moments of X ∼ de Moivre(θ1, θ2, . . . , θk) are,

E(X) =
k∑
x=1

xθ(x) = θ1 + 2θ2 + · · ·+ kθk , and

V(X) = E(X2)− (E(X))2 =
(
θ1 + 22θ2 + · · ·+ k2θk

)
− (θ1 + 2θ2 + · · ·+ kθk)

2 .

However, if X ∼ de Moivre(1/k, 1/k, . . . , 1/k), then the mean and variance for the fair k-faced die
based on Faulhaber’s formula for

∑k
i=1 i

m, with m ∈ {1, 2}, are,

E(X) =
1
k

(1 + 2 + · · ·+ k) =
1
k

k(k + 1)
2

=
k + 1

2
,

E(X2) =
1
k

(
12 + 22 + · · ·+ k2

)
=

1
k

k(k + 1)(2k + 1)
6

=
2k2 + 3k + 1

6
,

V(X) = E(X2)− (E(X))2 =
2k2 + 3k + 1

6
−
(
k + 1

2

)2

=
2k2 + 3k + 1

6
−
(
k2 + 2k + 1

4

)
=

8k2 + 12k + 4− 6k2 − 12k − 6
24

=
2k2 − 2

24
=
k2 − 1

12
.

Next we simulate from de Moivre(θ1, θ2, . . . , θk) RV X via its inverse DF

F [−1] : [0, 1]→ [k] := {1, 2, . . . , k} ,

given by:

F [−1](u; θ1, θ2, . . . , θk) =



1 if 0 ≤ u < θ1

2 if θ1 ≤ u < θ1 + θ2

3 if θ1 + θ2 ≤ u < θ1 + θ2 + θ3

...
k if θ1 + θ2 + · · ·+ θk−1 ≤ u < 1

When k = 2 in the de Moivre(θ1, θ2) model, we have an RV that is similar to the Bernoulli(p = θ1)
RV. The DF F and its inverse F [−1] for a specific θ1 = 0.3 are depicted in Figure 6.6.

First we simulate from an equi-probable special case of the de Moivre(θ1, θ2, . . . , θk) RV, with
θ1 = θ2 = · · · = θk = 1/k.

Simulation 8 (de Moivre(1/k, 1/k, . . . , 1/k)) The equi-probable de Moivre(1/k, 1/k, . . . , 1/k) RV
X with a discrete uniform distribution over [k] = {1, 2, . . . k} can be efficiently sampled using the
ceiling function. Recall that dye is the smallest integer larger than or equal to y, eg. d13.1e = 14.
Algorithm 5 produces samples from the de Moivre(1/k, 1/k, . . . , 1/k) RV X.

The M-file implementing Algorithm 5 is:

SimdeMoivreEqui.m
function x = SimdeMoivreEqui(u,k);

% return samples from de Moivre(1/k,1/k,...,1/k) RV X

% Call Syntax: x = SimdeMoivreEqui(u,k);

% Input : u = array of uniform random numbers eg. rand

% k = number of equi-probabble outcomes of X

% Output : x = samples from X

x = ceil(k * u) ; % ceil(y) is the smallest integer larger than y

%x = floor(k * u); if outcomes are in {0,1,...,k-1}
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Figure 6.6: The DF F (x; 0.3, 0.7) of the de Moivre(0.3, 0.7) RV and its inverse F [−1](u; 0.3, 0.7).
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Algorithm 5 Inversion Sampler for de Moivre(1/k, 1/k, . . . , 1/k) RV
1: input:

1. k in de Moivre(1/k, 1/k, . . . , 1/k) RV X

2. u ∼ Uniform(0, 1)

2: output: a sample from X

3: return: x← dkue

Let us use the function SimdeMoivreEqui to draw five samples from a fair seven-faced cylindrical
dice.

>> k=7; % number of faces of the fair dice

>> n=5; % number of trials

>> rand(’twister’,78657); % initialise the fundamental sampler

>> u=rand(1,n); % draw n samples from Uniform(0,1)

>> % inverse transform samples from Uniform(0,1) to samples

>> % from de Moivre(1/7,1/7,1/7,1/7,1/7,1/7,1/7)

>> outcomes=SimdeMoivreEqui(u,k); % save the outcomes in an array

>> disp(outcomes);

6 5 5 5 2

Now, let us consider the more general problem of implementing a sampler for an arbitrary but
specified de Moivre(θ1, θ2, . . . , θk) RV. That is, the values of θi need not be equal to 1/k.

Simulation 9 (de Moivre(θ1, θ2, . . . , θk)) We can generate samples from a de Moivre(θ1, θ2, . . . , θk)
RV X when (θ1, θ2, . . . , θk) are specifiable as an input vector via the following algorithm.

The M-file implementing Algorithm 6 is:

SimdeMoivreOnce.m
function x = SimdeMoivreOnce(u,thetas)

% Returns a sample from the de Moivre(thetas=(theta_1,...,theta_k)) RV X

% Call Syntax: x = SimdeMoivreOnce(u,thetas);
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Algorithm 6 Inversion Sampler for de Moivre(θ1, θ2, . . . , θk) RV X

1: input:

1. parameter vector (θ1, θ2, . . . , θk) of de Moivre(θ1, θ2, . . . , θk) RV X.

2. u ∼ Uniform(0, 1)

2: output: a sample from X

3: initialise: F ← θ1, i← 1
4: while u > F do
5: i← i+ 1
6: F ← F + θi
7: end while
8: return: x← i

% deMoivreEqui(u,thetas);

% Input : u = a uniform random number eg. rand

% thetas = an array of probabilities thetas=[theta_1 ... theta_k]

% Output : x = sample from X

x=1; % initial index is 1

cum_theta=thetas(x);

while u > cum_theta;

x=x+1;

cum_theta = cum_theta + thetas(x);

end

Let us use the function deMoivreEqui to draw five samples from a fair seven-faced dice.

>> k=7; % number of faces of the fair dice

>> n=5; % number of trials

>> rand(’twister’,78657); % initialise the fundamental sampler

>> Us=rand(1,n); % draw n samples from Uniform(0,1)

>> disp(Us);

0.8330 0.6819 0.6468 0.6674 0.2577

>> % inverse transform samples from Uniform(0,1) to samples

>> % from de Moivre(1/7,1/7,1/7,1/7,1/7,1/7,1/7)

>> f=[1/7 1/7 1/7 1/7 1/7 1/7 1/7];

>> disp(f);

0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

>> % use funarray to apply function-handled SimdeMoivreOnce to

>> % each element of array Us and save it in array outcomes2

>> outcomes2=arrayfun(@(u)(SimdeMoivreOnce(u,f)),Us);

>> disp(outcomes2);

6 5 5 5 2

>> disp(SimdeMoivreEqui(u,k)); % same result using the previous algorithm

6 5 5 5 2

Clearly, Algorithm 6 may be used to sample from any de Moivre(θ1, . . . , θk) RV X. We demostrate
this by producing five samples from a randomly generated PMF f2.

>> rand(’twister’,1777); % initialise the fundamental sampler

>> f2=rand(1,10); % create an arbitrary array

>> f2=f2/sum(f2); % normalize to make a probability mass function

>> disp(f2); % display the weights of our 10-faced die

0.0073 0.0188 0.1515 0.1311 0.1760 0.1121 ...

0.1718 0.1213 0.0377 0.0723



CHAPTER 6. COMMON RANDOM VARIABLES 87

>> disp(sum(f2)); % the weights sum to 1

1.0000

>> disp(arrayfun(@(u)(SimdeMoivreOnce(u,f2)),rand(5,5))) % the samples from f2 are

4 3 4 7 3

6 7 4 5 3

5 8 7 10 6

2 3 5 7 7

6 5 9 5 7

Note that the principal work here is the sequential search, in which the mean number of comparisons
until success is:

1θ1 + 2θ2 + 3θ3 + . . .+ kθk =
k∑
i=1

iθi

For the de Moivre(1/k, 1/k, . . . , 1/k) RV, the right-hand side of the above expression is:

k∑
i=1

i
1
k

=
1
k

k∑
i=1

i =
1
k

k(k + 1)
2

=
k + 1

2
,

indicating that the average-case efficiency is linear in k. This linear dependence on k is denoted by
O(k). In other words, as the number of faces k increases, one has to work linearly harder to get
samples from de Moivre(1/k, 1/k, . . . , 1/k) RV using Algorithm 6. Using the simpler Algorithm 5,
which exploits the fact that all values of θi are equal, we generated samples in constant time, which
is denoted by O(1).

Let us consider a RV that arises from an IID stochastic process of Bernoulli(θ) RVs {Xi}i∈N, ie.

{Xi}i∈N := {X1, X2, . . .}
IID∼ Bernoulli(θ) .

When we consider the number of IID Bernoulli(θ) trials before the first ‘Head’ occurs we get the
following discrete RV.

Model 10 (Geometric(θ) RV) Given a parameter θ ∈ (0, 1), the PMF of the Geometric(θ) RV X

is

f(x; θ) =

{
θ(1− θ)x if x ∈ Z+ := {0, 1, 2, . . .}
0 otherwise

(6.14)

It is straightforward to verify that f(x; θ) is indeed a PDF :

∞∑
x=0

f(x; θ) =
∞∑
x=0

θ(1− θ)x = θ

(
1

1− (1− θ)

)
= θ

(
1
θ

)
= 1

The above equality is a consequence of the geometric series identity (6.15) with a = θ and ϑ := 1− θ:

∞X
x=0

aϑx = a

„
1

1− ϑ

«
, provided, 0 < ϑ < 1 . (6.15)

Proof:

a+aϑ+aϑ2 + · · ·+aϑn =
X

0≤x≤n
aϑx = a+

X
1≤x≤n

aϑx = a+ϑ
X

1≤x≤n
aϑx−1 = a+ϑ

X
0≤x≤n−1

aϑx = a+ϑ
X

0≤x≤n
aϑx−aϑn+1



CHAPTER 6. COMMON RANDOM VARIABLES 88

Therefore, X
0≤x≤n

aϑx = a+ ϑ
X

0≤x≤n
aϑx − aϑn+1

0@ X
0≤x≤n

aϑx

1A−
0@ϑ X

0≤x≤n
aϑx

1A = a− aϑn+1

0@ X
0≤x≤n

aϑx

1A (1− ϑ) = a(1− ϑn+1)

X
0≤x≤n

aϑx = a

„
1− ϑn+1

1− ϑ

«
∞X
x=0

aϑx := lim
n→∞

X
0≤x≤n

aϑx = a

„
1

1− ϑ

«
, provided, 0 < ϑ < 1

The outcome of a Geometric(θ) RV can be thought of as “the number of tosses needed before
the appearance of the first ‘Head’ when tossing a coin with probability of ‘Heads’ equal to θ in a
independent and identical manner.”

Mean and variance of Geometric(θ) RV: Let X ∼ Geometric(θ) RV. Then,

E(X) =
∞∑
x=0

xθ(1− θ)x = θ
∞∑
x=0

x(1− θ)x

In order to simplify the RHS above, let us employ differentiation with respect to θ:

−1
θ2

=
d

dθ

(
1
θ

)
=

d

dθ

∞∑
x=0

(1− θ)x =
∞∑
x=0

−x(1− θ)x−1

Multiplying the LHS and RHS above by −(1 − θ) and substituting in E(X) = θ
∑∞

x=0 x(1 − θ)x,
we get a much simpler expression for E(X) :

1− θ
θ2

=
∞∑
x=0

x(1− θ)x =⇒ E(X) = θ

(
1− θ
θ2

)
=

1− θ
θ

.

Similarly, it can be shown that

V(X) =
1− θ
θ2

.

Simulation 10 (Geometric(θ)) We can simulate a sample x from a Geometric(θ) RV X using the
following simple algorithm:

x← blog(u)/ log(1− θ)c, where, u ∼ Uniform(0, 1) .

To verify that the above procedure is valid, note that:

blog(U)/ log(1− θ)c = x ⇐⇒ x ≤ log(U)/ log(1− θ) < x+ 1

⇐⇒ x ≤ log1−θ(U) < x+ 1

⇐⇒ (1− θ)x ≥ U > (1− θ)x+1

The inequalities are reversed since the base being exponentiated is 1 − θ ≤ 1. The uniform event
(1− θ)x ≥ U > (1− θ)x+1 happens with the desired probability:

(1− θ)x − (1− θ)x+1 = (1− θ)x(1− (1− θ)) = θ(1− θ)x =: f(x; θ), X ∼ Geometric(θ) .

We implement the sampler to generate samples from Geometric(θ) RV with θ = 0.5, for instance:
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Figure 6.7: Mean and variance of a Geometric(θ) RV X as a function of the parameter θ.
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E(X)=(1−p)/p

V(X)=(1−p)/p2

>> theta=0.5; u=rand(); % choose some theta and uniform(0,1) variate

>> % Simulate from a Geomertic(theta) RV

>> floor(log (u) / log (1 - theta))

ans = 0

>> floor(log ( rand(1,10) ) / log (1 - 0.5)) % theta=0.5, 10 samples

ans = 0 0 1 0 2 1 0 0 0 0

Labwork 23 It is a good idea to make a relative frequency histogram of a simulation algorithm
and compare that to the PDF of the discrete RV we are simulating from. We use the following
script to create Figure 6.8:

PlotPdfSimGeometric.m
theta=0.5;

SampleSize=1000;

% simulate 1000 samples from Geometric(theta) RV

Samples=floor(log(rand(1,SampleSize))/ log (1-theta));

Xs = 0:10; % get some values for x

RelFreqs=hist(Samples,Xs)/SampleSize; % relative frequencies of Samples

stem(Xs,theta*((1-theta) .^ Xs),’*’)% PDF of Geometric(theta) over Xs

hold on;

plot(Xs,RelFreqs,’o’)% relative frequence histogram

RelFreqs100=hist(Samples(1:100),Xs)/100; % Relative Frequencies of first 100 samples

plot(Xs,RelFreqs100,’x’)

legend(’PDF of Geometric(0.5)’, ’Relative freq. hist. (1000 samples)’, ...

’Relative freq. hist. (100 samples)’)

The RV Y in Table 3.1 may be generalized to an experiment Enθ with n coin tosses. Let Xi be the
Indicator function of the event ‘Heads on the i-th toss’ as before. Then Y defined by,

Y :=
n∑
i=1

Xi := X1 +X2 + · · ·+Xn ,
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Figure 6.8: PDF of X ∼ Geometric(θ = 0.5) and the relative frequency histogram based on 100
and 1000 samples from X.
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is the number of ‘Heads’ in n tosses. Akin to the second row of Table 3.1, for the ‘Toss n times’
experiment Enθ the RV Y as defined above will take values in {0, 1, 2, . . . , n} and is therefore a
discrete RV. This is called the Binomial RV as defined next. But, first we remind ourselves of some
elementary definitions involving arrangements of objects from a collection (recall Section 1.6).

Model 11 (Binomial(n, θ) RV) Let the RV X =
∑n

i=1Xi be the sum of n independent and iden-
tically distributed Bernoulli(θ) RVs, i.e.:

X =
n∑
i=1

Xi, X1, X2, . . . , Xn
IID∼ Bernoulli(θ) .

Given two parameters n and θ, the PMF of the Binomial(n, θ) RV X is:

f(x;n, θ) =


(
n

x

)
θx(1− θ)n−x if x ∈ {0, 1, 2, 3, . . . , n} ,

0 otherwise
(6.16)

where,
(
n
x

)
is: (

n

x

)
=
n(n− 1)(n− 2) . . . (n− x+ 1)
x(x− 1)(x− 2) · · · (2)(1)

=
n!

x!(n− x)!
.(

n
x

)
is read as “n choose x.”

Proof: Observe that for the Binomial(n, θ) RV X, P(X = x) = f(x;n, θ) is the probability that
x of the n Bernoulli(θ) trials result in an outcome of 1’s. Next note that if all n Xi’s are 0’s,
then X = 0, and if all n Xi’s are 1’s, then X = n. In general, if some of the n Xi’s are 1’s and
the others are 0, then X can only take values in {0, 1, 2, . . . , n} and therefore f(x;n, θ) = 0 if
x /∈ {0, 1, 2, . . . , n}.
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Now, let us compute f(x;n, θ) when x ∈ {0, 1, 2, . . . , n}. Consider the set of indices {1, 2, 3, . . . , n}
for the n IID Bernoulli(θ) RVs {X1, X2, . . . , Xn}. Now choose x indices from {1, 2, . . . , n} to mark
those trials in a particular realization of {x1, x2, . . . , xn} with the Bernoulli outcome of 1. The
probability of each such event is θx(1 − θ)n−x due to the IID assumption. For each realization
{x1, x2, . . . , xn} ∈ {0, 1}n := {all binary (0− 1) strings of length n}, specified by a choice of x trial
indices with Bernoulli outcome 1, the binomial RV X =

∑n
i=1Xi takes the value x. Since there

are exactly
(
n
x

)
many ways in which we can choose x trial indices (with outcome 1) from the set

of n trial indices {1, 2, . . . , n}, we get the desired product for f(x;n, θ) =
(
n
x

)
θx(1 − θ)n−x when

x ∈ {0, 1, . . . , n}.

Mean and variance of Binomial(n, θ) RV: Let X ∼ Binomial(n, θ). Based on the definition of
expectation:

E(X) =
∫
x dF (x;n, θ) =

∑
x

xf(x;n, θ) =
n∑
x=0

x

(
n

x

)
θx(1− θ)n−x .

However, this is a nontrivial sum to evaluate. Instead, we may use (3.10) and (3.13) by noting that
X =

∑n
i=1Xi, where the {X1, X2, . . . , Xn}

IID∼ Bernoulli(θ), E(Xi) = θ and V(Xi) = θ(1− θ):

E(X) = E(X1 +X2, · · · , Xn) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) = nθ ,

V(X) = V

(
n∑
i=1

Xi

)
=

n∑
i=1

V(Xi) =
n∑
i=1

θ(1− θ) = nθ(1− θ) .

Labwork 24 We may implement the Matlab function BinomialCoefficient to compute:(
n

x

)
=

n!
x!(n− x)!

=
n(n− 1)(n− 2) . . . (n− x+ 1)
x(x− 1)(x− 2) · · · (2)(1)

=

∏n
i=(n−x+1) i∏x

i=2

,

with the following M-file:

BinomialCoefficient.m
function BC = BinomialCoefficient(n,x)

% returns the binomial coefficient of n choose x

% i.e. the combination of n objects taken x at a time

% x and n are scalar integers and 0 <= x <= n

NminusX = n-x;

NumeratorPostCancel = prod(n:-1:(max([NminusX,x])+1)) ;

DenominatorPostCancel = prod(2:min([NminusX, x]));

BC = NumeratorPostCancel/DenominatorPostCancel;

and call BinomialCoefficient in the function BinomialPdf to compute the PDF f(x;n, θ) of the
Binomial(n, θ) RV X as follows:

BinomialPdf.m
function fx = BinomialPdf(x,n,theta)

% Binomial probability mass function. Needs BinomialCoefficient(n,x)

% f = BinomialPdf(x,n,theta)

% f is the prob mass function for the Binomial(x;n,theta) RV

% and x can be array of samples.

% Values of x are integers in [0,n] and theta is a number in [0,1]

fx = zeros(size(x));

fx = arrayfun(@(xi)(BinomialCoefficient(n,xi)),x);

fx = fx .* (theta .^ x) .* (1-theta) .^ (n-x);
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For example, we can compute the desired PDF for an array of samples x from Binomial(8, 0.5) RV
X, as follows:

>> x=0:1:8

x = 0 1 2 3 4 5 6 7 8

>> BinomialPdf(x,8,0.5)

ans = 0.0039 0.0312 0.1094 0.2188 0.2734 0.2188 0.1094 0.0312 0.0039

Simulation 11 (Binomial(n, θ) as
∑n

i=1 Bernoulli(θ)) Since the Binomial(n, θ) RV X is the sum
of n IID Bernoulli(θ) RVs we can also simulate from X by first simulating n IID Bernoulli(θ) RVs
and then adding them up as follows:

>> rand(’twister’,17678);

>> theta=0.5; % give some desired theta value, say 0.5

>> n=5; % give the parameter n for Binomial(n,theta) RV X, say n=5

>> xis=floor(rand(1,n)+theta) % produce n IID samples from Bernoulli(theta=0.5) RVs X1,X2,...Xn

xis = 1 1 0 0 0

>> x=sum(xis) % sum up the xis to get a sample from Binomial(n=5,theta=0.5) RV X

x = 2

It is straightforward to produce more than one sample from X by exploiting the column-wise sum-
ming property of Matlab’s sum function when applied to a two-dimensional array:

>> rand(’twister’,17);

>> theta=0.25; % give some desired theta value, say 0.25 this time

>> n=3; % give the parameter n for Binomial(n,theta) RV X, say n=3 this time

>> xis10 = floor(rand(n,10)+theta) % produce an n by 10 array of IID samples from Bernoulli(theta=0.25) RVs

xis10 =

0 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

>> x=sum(xis10) % sum up the array column-wise to get 10 samples from Binomial(n=3,theta=0.25) RV X

x = 0 1 0 1 2 0 0 1 0 0

In Simulation 11, the number of IID Bernoulli(θ) RVs needed to simulate one sample from the
Binomial(n, θ) RV is exactly n. Thus, as n increases, the amount of time needed to simulate from
Binomial(n, θ) is O(n), i.e. linear in n. We can simulate more efficiently by exploiting a simple
relationship between the Geometric(θ) RV and the Binomial(n, θ) RV.
The Binomial(n, θ) RV X is related to the IID Geometric(θ) RV Y1, Y2, . . .: X is the number of
successful Bernoulli(θ) outcomes (outcome is 1) that occur in a total of n Bernoulli(θ) trials, with
the number of trials between consecutive successes distributed according to IID Geometric(θ) RV.

Simulation 12 (Binomial(θ) from IID Geometric(θ) RVs) By this principle, we can simulate
from the Binomial(θ) X by Step 1: generating IID Geometric(θ) RVs Y1, Y2, . . ., Step 2: stopping
as soon as

∑k
i=1(Yi + 1) > n and Step 3: setting x← k − 1.

We implement the above algorithm via the following M-file:

Sim1BinomByGeoms.m
function x = Sim1BinomByGeoms(n,theta)

% Simulate one sample from Binomial(n,theta) via Geometric(theta) RVs

YSum=0; k=0; % initialise

while (YSum <= n),

TrialsToSuccess=floor(log(rand)/log (1-theta)) + 1; % sample from Geometric(theta)+1

YSum = YSum + TrialsToSuccess; % total number of trials

k=k+1; % number of Bernoulli successes

end

x=k-1; % return x
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Figure 6.9: PDF of X ∼ Binomial(n = 10, θ = 0.5) and the relative frequency histogram based on
100, 000 samples from X.
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Here is a call to simulate 12 samples from Binomial(n = 10, θ = 0.5) RV:

>> theta=0.5; % declare theta

>> n=10; % say n=10

>> SampleSize=12;% say you want to simulate 12 samples

>> rand(’twister’,10001) % seed the fundamental sampler

>> Samples=arrayfun(@(T)Sim1BinomByGeoms(n,T),theta*ones(1,SampleSize))

Samples = 7 5 8 8 4 1 4 8 2 4 6 5

Figure 6.9 depicts a comparison of the PDF of Binomial(n = 10, θ = 0.5) RV and a relative
frequency histogram based on 100, 000 simulations from it.

In several situations it becomes cumbersome to model the events using the Binomial(n, θ) RV,
especially when when the parameter θ ∝ 1/n and the events become rare. However, for some real
parameter λ > 0, the Binomial(n, λ/n) RV with probability of the number of successes in n trials,
with per-trial success probability λ/n, approaches the Poisson distribution with expectation λ, as
n approaches ∞ (actually, it converges in distribution as defined later). The Poisson(λ) RV is
much simpler to work with than the combinatorially laden Binomial(n, θ = λ/n) RV. We sketch
the details of this next.
Let X ∼ Binomial(n, θ = λ/n), then for any x ∈ {0, 1, 2, 3, . . . , n},

P(X = x) =
(
n

x

)(
λ

n

)x(
1− λ

n

)n−x
=

n(n− 1)(n− 2) · · · (n− x+ 1)
x(x− 1)(x− 2) · · · (2)(1)

(
λx

nx

)(
1− λ

n

)n(
1− λ

n

)−x
=

︷ ︸︸ ︷(n
n

)(n− 1
n

)(
n− 2
n

)
· · ·
(
n− x+ 1

n

)︷ ︸︸ ︷(
λx

x!

)(
1− λ

n

)n
︸ ︷︷ ︸

(
1− λ

n

)−x
︸ ︷︷ ︸

(6.17)
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As n → ∞, the expression below the first overbrace → 1, while that below the second overbrace,
being independent of n remains the same. By the elementary examples of limits 6 and 7, as n→∞,
the expression over the first underbrace approaches e−λ while that over the second underbrace
approaches 1. Finally, we get the desired limit:

lim
n→∞

P(X = x) =
e−λλx

x!
.

Model 12 (Poisson(λ) RV) Given a real parameter λ > 0, the discrete RV X is said to be
Poisson(λ) distributed if X has PDF:

f(x;λ) =

{
e−λλx

x! if x ∈ Z+ := {0, 1, 2, . . .} ,
0 otherwise .

(6.18)

Note that the PDF integrates to 1:

∞∑
x=0

f(x;λ) =
∞∑
x=0

e−λλx

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1 ,

where we exploit the Taylor series of eλ to obtain the second-last equality above.

Mean and variance of Poisson(λ) RV: Let X ∼ Poisson(λ). Then:

E(X) =
∞∑
x=0

xf(x;λ) =
∞∑
x=0

x
e−λλx

x!
= e−λ

∞∑
x=0

x
λx

x!
= e−λ

∞∑
x−1=0

λλx−1

(x− 1)!
= e−λλeλ = λ .

Similarly, it can be shown that

V(X) = E(X2)− (E(X))2 = λ+ λ2 − λ2 = λ .

Note that Poisson(λ) distribution is one whose mean and variance are the same, namely λ.

The Poisson(λ) RV X is also related to the IID Exponential(λ) RV Y1, Y2, . . .: X is the number
of occurrences, per unit time, of an instantaneous event whose inter-occurrence time is the IID
Exponential(λ) RV. For example, the number of buses arriving at our bus-stop in the next minute,
with exponentially distributed inter-arrival times, has a Poisson distribution.

Simulation 13 (Poisson(λ) from IID Exponential(λ) RVs) By this principle, we can simulate
from the Poisson(λ) X by Step 1: generating IID Exponential(λ) RVs Y1, Y2, . . ., Step 2: stopping
as soon as

∑k
i=1 Yi ≥ 1 and Step 3: setting x← k − 1.

We implement the above algorithm via the following M-file:

Sim1Poisson.m
function x = Sim1Poisson(lambda)

% Simulate one sample from Poisson(lambda) via Exponentials

YSum=0; k=0; % initialise

while (YSum < 1),

YSum = YSum + -(1/lambda) * log(rand);

k=k+1;

end

x=k-1; % return x
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Figure 6.10: PDF of X ∼ Poisson(λ = 10) and the relative frequency histogram based on 1000
samples from X.
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Here is a call to simulate 10 samples from Poisson(λ = 10.0) and Poisson(λ = 0.1) RVs:

>> arrayfun(@(lambda)Sim1Poisson(lambda),10.0*ones(1,10)) % lambda=10.0

ans = 14 7 10 13 11 3 6 5 8 5

>> arrayfun(@(lambda)Sim1Poisson(lambda),0.1*ones(1,10)) % lambda=0.1

ans = 2 0 0 0 0 0 0 0 0 0

Figure 6.10 depicts a comparison of the PDF of Poisson(λ = 10) RV and a relative frequency
histogram based on 1000 simulations from it.

Simulating from a Poisson(λ) RV is also a special case of simulating from the following more general
RV.

Model 13 (GD(θ0, θ1, . . .)) We say X is a General Discrete(θ0, θ1, . . .) or GD(θ0, θ1, . . .) RV over
the countable discrete state space Z+ := {0, 1, 2, . . .} with parameters (θ0, θ1, . . .) if the PMF of X
is defined as follows:

f(X = x; θ0, θ1, . . .) =


0, if x /∈ {0, 1, 2, . . .}
θ0, if x = 0

θ1, if x = 1
...

Algorithm 7 allows us to simulate from any member of the class of non-negative discrete RVs as
specified by the probabilities (θ0, θ1, . . .). When an RV X takes values in another countable set
X 6= Z+, then we can still use the above algorithm provided we have a one-to-one and onto mapping
D from Z+ to X that allows us to think of {0, 1, 2, . . .} as indices of an array D.

Simulation 14 (Binomial(n, θ)) To simulate from a Binomial(n, θ) RV X, we can use Algorithm
7 with:

θ0 = (1− θ)n, C(x+ 1) =
θ(n− x)

(1− θ)(x+ 1)
, Mean Efficiency: O(1 + nθ) .



CHAPTER 6. COMMON RANDOM VARIABLES 96

Algorithm 7 Inversion Sampler for GD(θ0, θ1, . . .) RV X

1: input:

1. θ0 and {C(i) = θi/θi−1} for any i ∈ {1, 2, 3, . . .}.

2. u ∼ Uniform(0, 1)

2: output: a sample from X

3: initialise: p← θ0, q ← θ0, i← 0
4: while u > q do
5: i← i+ 1, p← p C(i), q ← q + p

6: end while
7: return: x = i

Similarly, with the appropriate θ0 and C(x + 1), we can also simulate from the Geometric(θ) and
Poisson(λ) RVs.

Labwork 25 1. Implement Algorithm 7 via a function named MyGenDiscInvSampler in MATLAB.
Hand in the M-file named MyGenDiscInvSampler.m giving detailed comments explaining
your understanding of each step of the code. [Hint: C(i) should be implemented as a function
(use function handles via @) that can be passed as a parameter to the function MyGenDiscInvSampler].

2. Show that your code works for drawing samples from a Binomial(n, p) RV by doing the fol-
lowing:

(a) Seed the fundamental sampler by your Student ID (if your ID is 11424620 then type
rand(’twister’, 11424620);)

(b) Draw 100 samples from the Binomial(n = 20, p = 0.5) RV and report the results in an
2 × 2 table with column headings x and No. of observations. [Hint: the inputs θ0 and
C(i) for the Binomial(n, p) RV is given above].

3. Show that your code works for drawing samples from a Geometric(p) RV by doing the follow-
ing:

(a) Seed the fundamental sampler by your Student ID.

(b) Set the variable Mytheta=rand.

(c) Draw 100 samples from the Geometric(Mytheta) RV and report the sample mean. [Note:
the inputs θ0 and C(i) for the Geometric(θ) RV should be derived and the workings
shown].

To make concrete sense of the Binomial(n, θ) and other more sophisticated concepts in the sequel,
let us take a historical detour into some origins of statistical thinking in 19th century England.

6.5 Sir Francis Galton’s Quincunx

This section is introduced to provide some forms for a kinesthetic (hands-on) and visual understand-
ing of some elementary statistical distributions and laws. The following words are from Sir Francis
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Galton, F.R.S., Natural Inheritance, pp. 62-65, Macmillan, 1889. In here you will already find the
kernels behind the construction of Binomial(θ) RV as sum of IID Bernoulli(θ) RVs, Weak Law of
Large Numbers, Central Limit Theorem, and more. We will mathematically present these concepts
in the sequel as a way of giving precise meanings to Galton’s observations with his Quincunx. “The
Charms of Statistics.–It is difficult to understand why statisticians commonly limit their inquiries
to Averages, and do not revel in more comprehensive views. Their souls seem as dull to the charm
of variety as that of the native of one of our flat English counties, whose retrospect of Switzerland
was that, it its mountains could be thrown into its lakes, two nuances would be got rid of at once.
An Average is but a solitary fact, whereas if a single other fact be added to it, an entire Normal
Scheme, which nearly corresponds to the observed one, starts potentially into existence.
Some people hate the very name of statistics, but I find them full of beauty and interest. Whenever
they are not brutalised, but delicately handled by the higher methods, and are warily interpreted,
their power of dealing with complicated phenomenon is extraordinary. They are the only tools by
which an opening can be cut through the formidable thicket of difficulties that bars the path of those
who pursue the Science of man.

Figure 6.11: Figures from Sir Francis Galton, F.R.S., Natural Inheritance, , Macmillan, 1889.

(a) FIG. 7, FIG. 8, and FIG. 9 (p. 63) (b) FIG. 2 and FIG. 3 (p. 38)

Mechanical Illustration of the Cause of the Curve of Frequency.–The Curve of Frequency, and that
of Distribution, are convertible : therefore if the genesis of either of them can be made clear, that
of the other also becomes intelligible. I shall now illustrate the origin of the Curve of Frequency, by
means of an apparatus shown in Fig. 7, that mimics in a very pretty way the conditions on which
Deviation depends. It is a frame glazed in front, leaving a depth of about a quarter of an inch behind
the glass. Strips are placed in the upper part to act as a funnel. Below the outlet of the funnel stand
a succession of rows of pins stuck squarely into the backboard, and below these again are a series of
vertical compartments. A charge of small shot is inclosed. When the frame is held topsy-turvy, all
the shot runs to the upper end; then, when it is turned back into its working position, the desired
action commences. Lateral strips, shown in the diagram, have the effect of directing all the shot
that had collected at the upper end of the frame to run into the wide moutn of the funnel. The
shot passes through the funnel and issuing from its narrow end, scampers deviously down through
the pins in a curious and interesting way; each of them darting a step to the right or left, as the
case may be, every time it strikes a pin. The pins are disposed in a quincunx fashion, so that every
descending shot strikes against a pin in each successive row. The cascade issuing from the funnel
broadens as it descends, and, at length, every shot finds itself caught in a compartment immediately
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after freeing itself from the last row of pins. The outline of the columns of shot that accumulate in
the successive compartments approximates to the Curve of Frequency (Fig. 3, p. 38), and is closely
of the same shape however often the experiment is repeated. The outline of the columns would
become more nearly identical with the Normal Curve of Frequency, if the rows of pins were much
more numerous, the shot smaller, and the compartments narrower; also if a larger quantity of shot
was used.

The principle on which the action of the apparatus depends is, that a number of small and indepen-
dent accidents befall each shot in its career. In rare cases, a long run of luck continues to favour
the course of a particular shot towards either outside place, but in the large majority of instances
the number of accidents that cause Deviation to the right, balance in a greater or less degree those
that cause Deviation to the left. Therefore most of the shot finds its way into the compartments
that are situated near to a perpendicular line drawn from the outlet of the funnel, and the Frequency
with which shots stray to different distances to the right or left of that line diminishes in a much
faster ratio than those distances increase. This illustrates and explains the reason why mediocrity
is so common.”

6.6 Random Vectors

Let us try to relate some discrete probability models to the Quincunx. First, we need to introduce
simple random vectors (R~V), i.e. ordered pairs, ordered triples, or more generally ordered m-
tuples of random variables (X1, X2, . . . , Xm). We focus on elementary definitions needed to define
bivariate R~V obtained from a pair of RVs. Here is a simple example of a discrete bivariate R~V that
illustrates the notions of joint and marginal probabilities.

Example 16 Let X1 and X2 be a pair of IID Bernoulli(1/2) RVs each taking values in the set
{0, 1} with the following joint probabilities:

X2 = 0 X2 = 1
X1 = 0 1/4 1/4 1/2
X1 = 1 1/4 1/4 1/2

1/2 1/2 1

From the above Table we can read for instance that the joint probability P((X1, X2) = (0, 0)) = 1/4
and that the marginal probability P(X1 = 0) = 1/2.

Definition 32 (Joint PDF, PMF, CDF) A function f(x1, x2) is called a joint PDF (or PMF)
for the ordered pair of random variables (X1, X2) if:

1. f(x1, x2) ≥ 0 for all (x1, x2) ∈ R2

2.

1 =
∫ ∞
−∞

∫ ∞
−∞

dF (x1, x2) =

{∫∞
−∞

∫∞
−∞ f(x1, x2)dx1dx2 if (X1, X2) are continuous∑

x1

∑
x2
f(x1, x2) if (X1, X2) are discrete

3. for any event A ⊂ R2,

P(A) =
∫ ∫

A
dF (x1, x2) =

{∫∞
−∞

∫∞
−∞ 11A((x2, x2))f(x1, x2)dx1dx2 if (X1, X2) are continuous∑

x1

∑
x2

11A((x2, x2))f(x1, x2) if (X1, X2) are discrete
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The joint CDF or joint DF for discrete or continuous R~V (X1, X2) is:

F (x1, x2) := P(X1 ≤ x1, X2 ≤ x2) .

Definition 33 (Marginal PDF or PMF) If the R~V (X1, X2) has f(x1, x2) as its joint density,
i.e. joint PDF or joint PMF, then the marginal PDF or PMF of X1 is defined by:

f(x1) = P(X1 = x1) =

{∫∞
−∞ f(x1, x2)dx2 if (X1, X2) are continuous∑
x2
f(x1, x2) if (X1, X2) are discrete

and the marginal PDF or PMF of X2 is defined by:

f(x2) = P(X2 = x2) =

{∫∞
−∞ f(x1, x2)dx1 if (X1, X2) are continuous∑
x1
f(x1, x2) if (X1, X2) are discrete

Example 17 (Bivariate Uniform) Let (X1, X2) be uniformly distributed on the square [0, 1]2 :=
[0, 1]× [0, 1]. Then,

f(x1, x2) = 11[0,1]2(x1, x2) .

Let the rectangular event A = {X1 < 1/3, Y < 1/2} ⊂ [0, 1]2. By integrating the joint PDF over
A, which amounts here to finding the area of A, we compute P(A) = (1/3)(1/2) = 1/6. Note that
the marginal PDF of X1 or X2 is the PDF of the Uniform(0, 1) RV.

Definition 34 (Conditional PDF or PMF) Let (X1, X2) be a discrete bivariate R~V. The con-
ditional PMF of X1|X2 = x2, where f(X2 = x2) := P(X2 = x2) > 0 is:

f(x1|x2) := P(X1 = x1|X2 = x2) =
P(X1 = x1, X2 = x2)

P(X2 = x2)
=
f(x1, x2)
f(x2)

.

Similarly, if f(X1 = x1) > 0, then the conditional PMF of X2|X1 = x1 is:

f(x2|x1) := P(X2 = x2|X1 = x1) =
P(X1 = x1, X2 = x2)

P(X1 = x1)
=
f(x1, x2)
f(x1)

.

If (X1, X2) are continuous RVs such that f(x2) > 0, then the conditional PDF of X1|X2 = x2 is:

f(x1|x2) =
f(x1, x2)
f(x2)

, P(X1 ∈ A|X2 = x2) =
∫
A
f(x1|x2)dx1 .

Similarly, if f(x1) > 0, then the conditional PDF of X2|X1 = x1 is:

f(x2|x1) =
f(x1, x2)
f(x1)

, P(X2 ∈ A|X1 = x1) =
∫
A
f(x2|x1)dx2 .

We need a new notion for the variance of two RVs.

Definition 35 (Covariance) Suppose X1 and X2 are random variables, such that E(X2
1 ) < ∞

and E(X2)2 <∞. Then, E(|X1X2|) <∞ and E(|(X1−E(X1))(X2−E(X2))|) <∞. We therefore
define the covariance Cov(X1, X2) of X1 and X2 as:

Cov(X1, X2) := E ((X1 −E(X1))(X2 −E(X2))) = E(X1X2)−E(X1)E(X2)
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Let us consider the natural two-dimensional analogue of the Bernoulli(θ) RV in the real plane
R2 := (−∞,∞)2 := (−∞,∞)× (−∞,∞). A natural possibility is to use the ortho-normal basis
vectors in R2:

e1 := (1, 0), e2 := (0, 1) .

Recall that vector addition and subtraction are done component-wise, i.e. (x1, x2) ± (y1, y2) =
(x1 ± y1, x2 ± y2).

Classwork 13 (Geometry of Vector Addition) Recall elementary vector addition in the plane.
What is (1, 0) + (1, 0), (1, 0) + (0, 1), (0, 1) + (0, 1) ? What is the relationship between (1, 0), (0, 1)
and (1, 1) geometrically ? How does the diagonal of the parallelogram relate the its two sides in the
geometry of addition in the plane? What is (1, 0) + (0, 1) + (1, 0) ?

Figure 6.12: Quincunx on the Cartesian plane. Simulations of Binomial(n = 10, θ = 0.5) RV as
the x-coordinate of the ordered pair resulting from the culmination of sample trajectories formed
by the accumulating sum of n = 10 IID Bernoulli(θ = 0.5) random vectors over {(1, 0), (0, 1)}
with probabilities {θ, 1− θ}, respectively. The blue lines and black asterisks perpendicular to and
above the diagonal line, i.e. the line connecting (0, 10) and (10, 0), are the density histogram of the
samples and the PDF of our Binomial(n = 10, θ = 0.5) RV, respectively.

(a) Ten samples (b) Thousand samples

Model 14 (Bernoulli(θ) R~V) Given a parameter θ ∈ [0, 1], we say that X := (X1, X2) is a
Bernoulli(θ) random vector (R~V) if it has only two possible outcomes in the set {e1, e2} ⊂ R2,
i.e. x := (x1, x2) ∈ {(1, 0), (0, 1)}. The PMF of the R~V X := (X1, X2) with realisation x := (x1, x2)
is:

f(x; θ) := P(X = x) = θ 11{e1}(x) + (1− θ) 11{e2}(x) =


θ if x = e1 := (1, 0)

1− θ if x = e2 := (0, 1)

0 otherwise
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Classwork 14 What is the Expectation of Bernoulli(θ) R~V?

Eθ(X) = Eθ((X1, X2)) =
∑

(x1,x2)∈{e1,e2}

(x1, x2)f((x1, x2); θ) = (1, 0)θ + (0, 1)(1− θ) = (θ, 1− θ) .

How about the variance ? [Hint: Use the definitions of E(X) and V(X) for the R~V X. E(X2)
is not a single number and you may need new words such as covariance to deal with terms like
E(X1X2).]

We can write the Binomial(n, θ) RV Y as a Binomial(n, θ) R~V X := (Y, n − Y ). In fact, this is
the underlying model and the bi in the Binomial(n, θ) does refer to two in Latin. In the coin-
tossing context this can be thought of keeping track of the number of Heads and Tails out of an
IID sequence of n tosses of a coin with probability θ of observing Heads. In the Quincunx context,
this amounts to keeping track of the number of right and left turns made by the ball as it drops
through n levels of pegs where the probability of a right turn at each peg is independently and
identically θ. In other words, the Binomial(n, θ) R~V (Y, n − Y ) is the sum of n IID Bernoulli(θ)
R~Vs X1 := (X1,1, X1,2), X2 := (X2,1, X2,2), . . . , Xn := (Xn,1, Xn,2):

(Y, n− Y ) = X1 +X2 + · · ·+Xn = (X1,1, X1,2) + (X2,1, X2,2) + · · ·+ (Xn,1, Xn,2)

Go the Biomathematics Research Centre on the 6th floor of Erskine to play with the Quincunx
built by Ryan Lawrence in 2007 (See the project by Ashman and Lawrence at http://www.math.
canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.
pdf for details). It is important to gain a physical intimacy with the Quincunx to appreciate the
following model of it. We can make a statistical model of Galton’s observations earlier regarding the
dynamics of lead shots through the Quincunx as the sum of n IID Bernoulli(0.5) R~Vs, where n is
number of pegs that each ball bounces on before making a left or right turn with equal probability.
See animations of the balls dropping through the Quincunx with n = 10 for 10 and 100 samples
or balls at http://www.math.canterbury.ac.nz/~r.sainudiin/courses/Demos/Quincunx done
by Bry Ashman in 2007/8. When we drop 1000 balls into our simulated Quincunx the density
histogram is much closer to the PDF of Binomial(n = 10, θ = 0.5) RV than when we only drop 10
balls. See Figure 6.12 for a description of the simulations.

Classwork 15 How does the number of paths that lead to a bucket (x1, x2) with x1 +x2 = n relate
to the binomial coefficient

(
n
x1

)
?

We are now ready to extend the Binomial(n, θ) RV or R~V to its multivariate version called the
Multinomial(n, θ1, θ2, . . . , θk) R~V. We develop this R~V as the sum of n IID de Moivre(θ1, θ2, . . . , θk)
R~V that is defined next.

Model 15 (de Moivre(θ1, θ2, . . . , θk) R~V) The PMF of the de Moivre(θ1, θ2, . . . , θk) R~V X :=
(X1, X2, . . . , Xk) taking value x := (x1, x2, . . . , xk) ∈ {e1, e2, . . . , ek}, where the ei’s are ortho-
normal basis vectors in Rk is:

f(x; θ1, θ2, . . . , θk) := P(X = x) =
k∑
i=1

θi11{ei}(x) =



θ1 if x = e1 := (1, 0, . . . , 0) ∈ Rk

θ1 if x = e1 := (0, 1, . . . , 0) ∈ Rk

...

θk if x = ek := (0, 0, . . . , 1) ∈ Rk

0 otherwise

Of course,
∑k

i=1 θi = 1.

http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/Demos/Quincunx
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/Demos/Quincunx
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When we add n IID de Moivre(θ1, θ2, . . . , θk) R~V together, we get the Multinomial(n, θ1, θ2, . . . , θk)
R~V as defined below.

Model 16 (Multinomial(n, θ1, θ2, . . . , θk) R~V) We say that a R~V Y := (Y1, Y2, . . . , Yk) obtained
from the sum of n IID de Moivre(θ1, θ2, . . . , θk) R~Vs with realisations

y := (y1, y2, . . . , yk) ∈ Y := {(y1, y2, . . . , yk) ∈ Zk+ :
k∑
i=1

yi = n}

has the PMF given by:

f(y;n, θ) := f(y;n, θ1, θ2, . . . , θk) := P(Y = y;n, θ1, θ2, . . . , θk) =
(

n

y1, y2, . . . , yk

) k∏
i=1

θyii ,

where, the multinomial coefficient:(
n

y1, y2, . . . , yk

)
:=

n!
y1!y2! · · · yk!

.

Note that the marginal PMF of Yj is Binomial(n, θj) for any j = 1, 2, . . . , k.

Figure 6.13: Septcunx on the Cartesian co-ordinates. Simulations of Multinomial(n = 2, θ1 =
1/3, θ2 = 1/3, θ3 = 1/3) R~V as the sum of n IID de Moivre(θ1 = 1/3, θ2 = 1/3, θ3 = 1/3) R~Vs over
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} with probabilities {θ1, θ2, θ3}, respectively. The blue lines perpendicular
to the sample space of the Multinomial(3, θ1, θ2, θ3) R~V, i.e. the plane in R3 connecting (n, 0, 0),
(0, n, 0) and (0, 0, n), are the density histogram of the samples.

(a) Thousand Samples with n = 2 (b) Thousand Samples with n = 10

We can visualise the Multinomial(n, θ1, θ2, θ3) process as a sum of n IID de Moivre(θ1, θ2, θ3) R~Vs
via a three dimensional extension of the Quincunx called the “Septcunx” and relate the number
of paths that lead to a given trivariate sum (y1, y2, y3) with

∑3
i−1 yi = n as the multinomial
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coefficient n!
y1!y2!y3! . In the Septcunx, balls choose from one of three paths along e1, e2 and e3 with

probabilities θ1, θ2 and θ3, respectively, in an IID manner at each of the n levels, before they
collect at buckets placed at the integral points in the 3-simplex, Y = {(y1, y2, y3) ∈ Z3

+ :
∑3

i=1 yi =
n}. Once again, we can visualise that the sum of n IID de Moivre(θ1, θ2, θ3) R~Vs constitute the
Multinomial(n, θ1, θ2, θ3) R~V as depicted in Figure 6.13.

Labwork 26 (PDF of Multinomial(n, θ) R~V) We can implement the following Matlab func-
tion MultinomialPdf to compute the PDF of the Multinomial(n, θ) R~V where θ := (θ1, θ2, . . . , θk)
is a point in the k-simplex 4k as follows:

MultinomialPdf.m
function MP = MultinomialPdf(x,n,theta)

% returns the multinomial Pdf of x(1),x(2),...,x(k) given theta(1),...,theta(k).

% x and theta are vectors and sum to the scalars n and 1, respectively and 0 <= x(i) <= n

% Double precision numbers in MATLAB only have about 15 digits, the answer is accurate for n <= 21

NonZeroXs = find(x>0);

MP=exp(log(factorial(n))+sum((log(theta(NonZeroXs)) .* x(NonZeroXs)) - log(factorial(x(NonZeroXs)))));

We can call this function to evaluate the PDF at a specific sample x = (x1, x2, . . . , xk) as follows:

>> MultinomialPdf([2 0 0],2,[1/3 1/3 1/3])

ans = 0.1111

>> MultinomialPdf([0 2 0],2,[1/3 1/3 1/3])

ans = 0.1111

>> MultinomialPdf([0 0 2],2,[1/3 1/3 1/3])

ans = 0.1111

>> MultinomialPdf([1 1 0],2,[1/3 1/3 1/3])

ans = 0.2222

>> MultinomialPdf([1 0 1],2,[1/3 1/3 1/3])

ans = 0.2222

>> MultinomialPdf([0 1 1],2,[1/3 1/3 1/3])

ans = 0.2222

Simulation 15 Using the identity matrix I in R3 that can be created in Matlab using the
eye(3) command, and the de Moivre(1/3, 1/3, 1/3) RV sampler, simulate vector-valued samples
from de Moivre(1/3, 1/3, 1/3) R~V. Finally add up n = 10 samples from de Moivre(1/3, 1/3, 1/3)
R~V to produce samples from Multinomial(10, 1/3, 1/3, 1/3) R~V.

6.7 von Neumann Rejection Sampler (RS)

Rejection sampling [John von Neumann, 1947, in Stanislaw Ulam 1909-1984, a special issue of
Los Alamos Science, Los Alamos National Lab., 1987, p. 135-136] is a Monte Carlo method to
draw independent samples from a target RV X with probability density f(x), where x ∈ X ⊂ Rk.
Typically, the target density f is only known up to a constant and therefore the (normalised)
density f itself may be unknown and it is difficult to generate samples directly from X.

Suppose we have another density or mass function g for which the following are true:

(a) we can generate random variables from g;

(b) the support of g contains the support of f , i.e. Y ⊃ X;

(c) a constant a > 1 exists, such that:

f(x) ≤ ag(x). (6.19)

for any x ∈ X, the support of X. Then x can be generated from Algorithm 8.
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Algorithm 8 Rejection Sampler (RS) of von Neumann
1: input:

(1) a target density f(x),

(2) a proposal density g(x) satisfying (a), (b) and (c) above.

2: output: a sample x from RV X with density f
3: repeat
4: Generate y ∼ g and u ∼ Uniform(0, 1)
5: until u ≤ f(y)

ag(y)

6: return: x← y

Proposition 5 (Fundamental Theorem of Simulation) The von Neumann rejection sampler
of Algorithm 8 produces a sample x from the random variable X with density f(x).

Proof: We shall prove the result for the continuous case. For any real number t:

F (t) = P(X ≤ t) = P
(
Y ≤ t |U ≤ f(Y )

ag(Y )

)
=

P
(
Y ≤ t, U ≤ f(Y )

ag(Y )

)
P
(
U ≤ f(Y )

ag(Y )

)
=

∫ t
−∞

(∫ f(y)/ag(y)
0 1du

)
g(y)dy∫∞

−∞

(∫ f(y)/ag(y)
0 1du

)
g(y)dy

=

∫ t
−∞

(
f(y)
ag(y)

)
g(y)dy∫∞

−∞

(
f(y)
ag(y)

)
g(y)dy

=
∫ t

−∞
f(y)dy

Simulation 16 (Rejection Sampling Normal(0, 1) with Laplace(1) proposals) Suppose we wish
to generate from X ∼ Normal(0, 1). Consider using the rejection sampler with proposals from
Y ∼ Laplace(1) (using inversion sampler of Simulation 3). The support of both RVs is (−∞,∞).
Next:

f(x) =
1√
2π

exp
(
−x

2

2

)
and g(x) =

1
2

exp(−|x|)

and therefore:
f(x)
g(x)

=

√
2
π

exp
(
|x| − x2

2

)
≤
√

2
π

exp
(

1
2

)
= a ≈ 1.3155 .

Hence, we can use the rejection method with:

f(y)
ag(y)

=
f(y)
g(y)

1
a

=

√
2
π

exp
(
|y| − y2

2

)
1√

2
π exp

(
1
2

) = exp
(
|y| − y2

2
− 1

2

)

Let us implement a rejection sampler as a function in the M-file RejectionNormalLaplace.m by
reusing the function in LaplaceInvCDF.m.

RejectionNormalLaplace.m
function x = RejectionNormalLaplace()

Accept = 0; % a binary variable to indicate whether a proposed point is accepted

while ~Accept % ~ is the logical NOT operation

y = LaplaceInvCDF(rand(),1); % sample Laplace(1) RV
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Bound = exp( abs(y) - (y*y+1)/2 );

u = rand();

if u <= Bound

x = y;

Accept = 1;

end % if

end % while

We may obtain a large number of samples an plot them as a histogram using the following com-
mands:

>> % use funarray to convert 1000 zeros into samples from the Normal(0,1)

>> y=arrayfun(@(x)(RejectionNormalLaplace()),zeros(1,1000));

>> hist(y,20) % histogram with 20 bins

Figure 6.14: Rejection Sampling from X ∼ Normal(0, 1) with PDF f based on 100 proposals from
Y ∼ Laplace(1) with PDF g.
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Classwork 16 The condition f(x) ≤ ag(x) is equivalent to f(x)/g(x) ≤ a, which says that
f(x)/g(x) must be bounded; therefore, g must have higher tails than f . The rejection method
cannot be used to generate from a Cauchy distribution using a normal distribution, because the
latter has lower tails than the former.
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The next result tells us how many iterations of the algorithm are needed, on average, to get a
sample value from a RV with PDF f .

Proposition 6 (Acceptance Probability of RS) The expected number of iterations of the re-
jection algorithm to get a sample x is the constant a.

Proof: For the continuous case:

P(‘accept y’) = P
(
u ≤ f(y)

ag(y)

)
=
∫ ∞
−∞

(∫ f(y)/ag(y)

0
du

)
g(y)dy =

∫ ∞
−∞

f(y)
ag(y)

g(y)dy =
1
a
.

And the number of proposals before acceptance is the Geometric(1/a) RV with expectation 1
1/a = a.

The closer ag(x) is to f(x), especially in the tails, the closer a will be to 1, and hence the more
efficient the rejection method will be.
The rejection method can still be used only if the un-normalised form of f or g (or both) is known.
In other words, if we use:

f(x) =
f̃(x)∫
f̃(x)dx

and g(x) =
g̃(x)∫
g̃(x)dx

we know only f̃(x) and/or g̃(x) in closed-form. Suppose the following are satisfied:
(a) we can generate random variables from g;
(b) the support of g contains the support of f , i.e. Y ⊃ X;
(c) a constant ã > 0 exists, such that:

f̃(x) ≤ ãg̃(x), (6.20)

for any x ∈ X, the support of X. Then x can be generated from Algorithm 9.

Algorithm 9 Rejection Sampler (RS) of von Neumann – target shape
1: input:

(1) shape of a target density f̃(x) =
(∫

f̃(x)dx
)
f(x),

(2) a proposal density g(x) satisfying (a), (b) and (c) above.

2: output: a sample x from RV X with density f
3: repeat
4: Generate y ∼ g and u ∼ Uniform(0, 1)
5: until u ≤ f̃(y)

ãg̃(y)

6: return: x← y

Now, the expected number of iterations to get an x is no longer ã but rather the integral ratio:( ∫
X f̃(x)dx∫
Y ãg̃(y)dy

)−1

.

The Ziggurat Method [G. Marsaglia and W. W. Tsang, SIAM Journal of Scientific and Statisti-
cal Programming, volume 5, 1984] is a rejection sampler that can efficiently draw samples from the
Z ∼ Normal(0, 1) RV. The Matlab function randn uses this method to produce samples from Z.
See http://www.mathworks.com/company/newsletters/news_notes/clevescorner/spring01_
cleve.html or http://en.wikipedia.org/wiki/Ziggurat_algorithm for more details.

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/spring01_cleve.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/spring01_cleve.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/spring01_cleve.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/spring01_cleve.html
http://en.wikipedia.org/wiki/Ziggurat_algorithm
http://en.wikipedia.org/wiki/Ziggurat_algorithm
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Labwork 27 (Gaussian Sampling with randn) We can use Matlab function randn that im-
plements the Ziggurat method to draw samples from an RV Z ∼ Normal(0, 1) as follows:

>> randn(’state’,67678); % initialise the seed at 67678 and method as Ziggurat -- TYPE help randn

>> randn % produce 1 sample from Normal(0,1) RV

ans = 1.5587

>> randn(2,8) % produce an 2 X 8 array of samples from Normal(0,1) RV

ans =

1.2558 0.7834 0.6612 0.3247 0.1407 1.0562 0.8034 1.2970

-0.5317 0.0417 -0.3454 0.6182 -1.4162 0.4796 -1.5015 0.3718

If we want to produce samples from X ∼ Normal(µ, σ2) with some user-specified µ and σ, then we
can use the following relationship between X and Z ∼ Normal(0, 1):

X ← µ+ σZ, Z ∼ Normal(0, 1) .

Suppose we want samples from X ∼ Normal(µ = π, σ2 = 2), then we can do the following:

>> randn(’state’,679); % initialise the seed at 679 and method as Ziggurat -- TYPE help randn

>> mu=pi % set the desired mean parameter mu

mu = 3.1416

>> sigma=sqrt(2) % set the desired standard deviation parameter sigma

sigma = 1.4142

>> mu + sigma * randn(2,8) % produces a 2 X 8 array of samples from Normal(3.1416,1.4.42)

ans =

1.3955 1.7107 3.9572 3.2618 6.1652 2.6971 2.4940 4.5928

0.8442 4.7617 3.5397 5.0282 1.6139 5.0977 2.0477 2.3286

6.8 Other Continuous Random Variables

Here, we see other common continuous RVs that can be simulated from transforming RVs we have
already encountered.

Model 17 (Gamma(λ, k) RV) Given a scale parameter λ > 0 and a shape parameter k > 0, the
RV X is said to be Gamma(λ, k) distributed if its PDF is:

f(x;λ, k) =
1

Γ(k)
λ exp(−λx)(λx)k−1, x ≥ 0 ,

where, the gamma function which interpolates the factorial function is:

Γ(k) :=
∫ ∞

0
exp(−y)yk−1dy .

When k ∈ N, then Γ(k) = (k − 1)!. The DF of X is:

F (x;λ, k) = 11R>0(x)
1

Γ(k)

∫ λx

0
yk−1 exp(−y)dy =

{
0 if x ≤ 0

1
Γ(k)

∫ λx
0 yk−1 exp(−y)dy if x > 0

1
Γ(k)

∫ λx
0 yk−1 exp(−y)dy is called the incomplete Gamma function.
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The Gamma function and the incomplete Gamma function are available as Matlab functions
gamma and gammainc, respectively. Thus, gamma(k) returns Γ(k) and gammainc(lambda*x,k)
returns F (x; lambda, k). Using these functions, it is straightforward to evaluate the PDF and CDF
of X ∼ Gamma(λ, k). We use the following script to get a sense for the impact upon the PDF and
CDF of the shape parameter k as it ranges in {1, 2, 3, 4, 5} for a given scale parameter λ = 0.1.

PlotPdfCdfGamma.m
lambda=0.1; % choose soem scale parameter

Xs=0:0.01:150; % choose some x values

% Plot PDFs for k=5,4,3,2,1

k=5; fXsk5=(1/gamma(k))*(lambda*exp(-lambda*Xs).*(lambda*Xs).^(k-1));% PDF for k=5

k=4; fXsk4=(1/gamma(k))*(lambda*exp(-lambda*Xs).*(lambda*Xs).^(k-1));% PDF for k=4

k=3; fXsk3=(1/gamma(k))*(lambda*exp(-lambda*Xs).*(lambda*Xs).^(k-1));% PDF for k=3

k=2; fXsk2=(1/gamma(k))*(lambda*exp(-lambda*Xs).*(lambda*Xs).^(k-1));% PDF for k=2

k=1; fXsk1=(1/gamma(k))*(lambda*exp(-lambda*Xs).*(lambda*Xs).^(k-1));% PDF for k=1

clf; % clear any previous figures

subplot(1,2,1); % make first PDF plot

plot(Xs,fXsk5, Xs, fXsk4, Xs, fXsk3, Xs, fXsk2, Xs, fXsk1)

legend(’f(x;0.1,5)’,’f(x;0.1,4)’,’f(x;0.1,3)’,’f(x;0.1,2)’,’f(x;0.1,1)’)

subplot(1,2,2) % make second CDF plots using MATLAB’s gammainc (incomplete gamma function)

plot(Xs,gammainc(lambda*Xs,5), Xs,gammainc(lambda*Xs,4), Xs,gammainc(lambda*Xs,3),...

Xs,gammainc(lambda*Xs,2), Xs,gammainc(lambda*Xs,1))

legend(’F(x;0.1,5)’,’F(x;0.1,4)’,’F(x;0.1,3)’,’F(x;0.1,2)’,’F(x;0.1,1)’)

Figure 6.15: PDF and CDF of X ∼ Gamma(λ = 0.1, k) with k ∈ {1, 2, 3, 4, 5}.
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Note that if X ∼ Gamma(λ, 1) then X ∼ Exponential(λ), since:

f(x;λ, 1) =
1

Γ(1)
λ exp(−λx)(λx)1−1 =

1
(1− 1)!

λ exp(−λx) = λ exp(−λx) .

More generally, if X ∼ Gamma(λ, k) and k ∈ N, then X ∼
∑k

i=1 Yi, where Yi
IID∼ Exponential(λ)

RVS, i.e. the sum of k IID Exponential(λ) RVs forms the model for the Gamma(λ, k) RV. If you
model the inter-arrival time of buses at a bus-stop by IID Exponential(λ) RV, then you can think
of the arrival time of the kth bus as a Gamma(λ, k) RV.
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Simulation 17 (Gamma(λ, k) for integer k) Using this relationship we can simulate from X ∼
Gamma(λ, k), for an integer-valued k, by simply summing k IID samples from Exponential(λ) RV
as follows:

>> lambda=0.1; %declare some lambda parameter

>> k=5; % declare some k parameter (has to be integer)

>> rand(’twister’,7267); % initialise the fundamental sampler

>> % sum k IID Exponential(lambda) samples for one desired sample from Gamma(lambda,k)

>> x= sum(-1/lambda*log(rand(k,1)))

x = 28.1401

>> % sum the 10 columns of k X 10 IID Exponential(lambda) samples for 10 desired samples from Gamma(lambda,k)

>> x= sum(-1/lambda*log(rand(k,10)))

x =

83.8150 61.2674 80.3683 103.5748 48.4454 20.2269 93.8310 56.1909 77.0656 29.0851

Model 18 (Lognormal(λ, ζ)) X has a Lognormal(λ, ζ) distribution if log(X) has a Normal(λ, ζ2)
distribution. The location parameter λ = E(log(X)) > 0 and the scale parameter ζ > 0. The PDF
is:

f(x;λ, ζ) =
1√

2πζx
exp

(
− 1

2ζ2
(log(x)− λ)2

)
, x > 0 (6.21)

No closed form expression for F (x;λ, ζ) exists and it is simply defined as:

F (x;λ, ζ) =
∫ x

0
f(y;λ, ζ) dy

We can express F (x;λ, ζ) in terms of Φ (and, in turn, via the associated error function erf) as
follows:

F (x;λ, ζ) = Φ
(

log(x)− λ
ζ

)
=

1
2

erf
(

log(x)− λ√
2ζ

)
+

1
2

(6.22)

Labwork 28 Transform a sequence of samples obtained from the fundamental sampler to those
from the Lognormal(λC , ζC) RV C by using only Algorithm 4 or Matlab’s randn as an interme-
diate step. [Hint: If Y is a Normal(λ, ζ2) RV, then Z = eY is said to be a Lognormal(λ, ζ) RV.
]

1. Seed the fundamental sampler by your Student ID,

2. generate 1000 samples from an RV C ∼ Lognormal(λ = 10.36, ζ = 0.26) by exponentiating
the samples from the Normal(10.36, 0.262) RV and

3. and report:

(a) how many of the samples are larger than 35000,

(b) the sample mean, and

(c) the sample standard deviation.

Beta RV

Chi-Square

F distribution

t-distribution

Weibul

Heavy-tail family
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6.9 Other Random Vectors

Multivariate Normal

Uniform Distribution on Sphere

Dirichlet Distribution

6.10 Summary of Random Variables

Model PDF Mean Variance
Point Mass(θ) 11{θ}(x) θ 0
Bernoulli(θ) θx(1− θ)1−x11{0,1}(x) θ θ(1− θ)

Binomial(n, θ) (nθ )θx(1− θ)n−x11{0,1,...,n}(x) nθ nθ(1− θ)
Geometric(θ) θ(1− θ)x11Z+(x) 1

θ − 1 1−θ
θ2

Poisson(λ) λxe−λ

x! 11Z+(x) λ λ

Uniform(θ1, θ2) 11[θ1,θ2](x)/(θ2 − θ1) θ1+θ2
2

(θ2−θ1)2

12

Normal(µ, σ2) 1
σ
√

2π
e(x−µ)2/(2σ2) µ σ2

Exponential(λ) λe−λx λ−1 λ−2

Gamma(α, β) xα−1e−x/β

Γ(α)βα αβ αβ2

Beta(α, β) Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 α
α+β

αβ
(α+β)2(α+β+1)

χ2
p

1
Γ(p/2)2p/2

x(p−2)−1e−x/2 p 2p

Table 6.2: Random Variables with PDF, Mean and Variance

6.11 Statistical Experiments

We formalize the notion of a staistical experiment. Let us first motivate the need for a statistical
experiment. Recall that statistical inference or learning is the process of using observations or data
to infer the distribution that generated it. A generic question is:

Given realizations from X1, X2, . . . , Xn ∼ some unknown DF F , how do we infer F?

However, to make this question tractable or even sensible it is best to restrict ourselves to a
particular class or family of DFs that may be assumed to contain the unknown DF F .

Definition 36 A statistical experiment E is a set of probability distributions (DFs, PDFs or PMFs)
P := {Pθ : θ ∈ ΘΘ} associated with a RV X and indexed by the set ΘΘ. We refer to ΘΘ as the parameter
space or the index set and d : ΘΘ → P that associates to each θ ∈ ΘΘ a probability Pθ ∈ P as the
index map.

Next, let’s formally consider some experiments we have already encountered.

Experiment 2 (The Fundamental Experiment) The ‘uniformly pick a number in the interval
[0, 1]’ experiment is the following singleton family of DFs :

P = {F (x) = x11[0,1](x) }
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where, the only distribution F (x) in the family P is a re-expression of (3.7) using the indicator
function 11[0,1](x). The parameter space of the fundamental experiment is a singleton whose DF is
its own inverse, ie. F (x) = F [−1](x).

Experiment 3 (Bernoulli) The ‘toss 1 times’ experiment is the following family of densities
(PMFs) :

P = { f(x; p) : p ∈ [0, 1] }

where, f(x; p) is given in (3.4). The one dimensional parameter space or index set for this experi-
ment is ΘΘ = [0, 1] ⊂ R.

Experiment 4 (Point Mass) The ‘deterministically choose a specific real number’ experiment is
the following family of DFs :

P = {F (x; a) : a ∈ R }

where, F (x; a) is given in (6.11). The one dimensional parameter space or index set for this
experiment is ΘΘ = R, the entire real line.

Note that we can use the PDF’s or the DF’s to specify the family P of an experiment. When an
experiment can be parametrized by finitely many parameters it is said to a parametric experiment.
Experiment 3 involving discrete RVs as well as Experiment 4 are parametric since they both
have only one parameter (the parameter space is one dimensional for Experiments 3 and 4). The
Fundamental Experiment 2 involving the continuous RV of Model 2 is also parametric since its
parameter space, being a point, is zero-dimensional. The next example is also parametric and
involves (k − 1)-dimensional families of discrete RVs.

Experiment 5 (de Moivre[k]) The ‘pick a number from the set [k] := {1, 2, . . . , k} somehow’
experiment is the following family of densities (PMFs) :

P = { f(x; θ1, θ2, . . . , θk) : (θ1, θ2, . . . , θk) ∈ 4k }

where, f(x; θ1, θ2, . . . , θk) is any PMF such that

f(x; θ1, θ2, . . . , θk) = θx, x ∈ {1, 2, . . . , k} .

The k−1 dimensional parameter space ΘΘ is the k-Simplex 4k. This as an ‘exhaustive’ experiment
since all possible densities over the finite set [k] := {1, 2, . . . , k} are being considered that can be
thought of as “the outcome of rolling a convex polyhedral die with k faces and an arbirtary center
of mass specified by the θi’s.”

An experiment with infinite dimensional parameter space ΘΘ is said to be nonparametric . Next
we consider two nonparametric experiments.

Experiment 6 (All DFs) The ‘pick a number from the Real line in an arbitrary way’ experiment
is the following family of distribution functions (DFs) :

P = {F (x;F ) : F is a DF } = ΘΘ

where, the DF F (x;F ) is indexed or parameterized by itself. Thus, the parameter space

ΘΘ = P = {all DFs}

is the infinite dimensional space of All DFs ”.
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Figure 6.16: Geometry of the ΘΘ’s for de Moivre[k] Experiments with k ∈ {1, 2, 3, 4}.

Next we consider a nonparametric experiment involving continuous RVs.

Experiment 7 (Sobolev Densities) The ‘pick a number from the Real line in some reasonable
way’ experiment is the following family of densities (pdfs) :

P =
{
f(x; f) :

∫
(f ′′(x))2 <∞

}
= ΘΘ

where, the density f(x; f) is indexed by itself. Thus, the parameter space ΘΘ = P is the infinite
dimensional Sobolev space of “not too wiggly functions”.

Some of the concrete problems involving experiments include:

• Simulation: Often it is necessary to simulate a RV with some specific distribution to gain
insight into its features or simulate whole systems such as the air-traffic queues at ‘London
Heathrow’ to make better management decisions.

• Estimation:

1. Parametric Estimation: Using samples from some unknown DF F parameterized by
some unknown θ, we can estimate θ from a statistic Tn called the estimator of θ using one
of several methods (maximum likelihood, moment estimation, or parametric bootstrap).

2. Nonparametric Estimation of the DF: Based on n IID observations from an un-
known DF F , we can estimate it under the general assumption that F ∈ {all DFs}.

3. Confidence Sets: We can obtain a 1− α confidence set for the point estimates, of the
unknown parameter θ ∈ ΘΘ or the unknown DF F ∈ {all DFs}

• Hypothesis Testing: Based on observations from some DF F that is hypothesized to belong
to a subset ΘΘ0 of ΘΘ called the space of null hypotheses, we will learn to test (attempt to
reject) the falsifiable null hypothesis that F ∈ ΘΘ0 ⊂ ΘΘ.

• . . .
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Limits of Random Variables

7.1 Convergence of Random Variables

This important topic is concerned with the limiting behavior of sequences of RVs

{Xi}ni=1 := X1, X2, X3, . . . Xn−1, Xn as n→∞ .

From a statistical viewpoint n → ∞ is associated with the amount of data or information → ∞.
Refresh yourself with notions of convergence, limits and continuity in the real line (§ 1.7) before
proceeding further.

Classwork 17 Suppose you are given an independent sequence of RVs {Xi}ni=1, where Xi ∼
Normal(0, 1/i). How would you talk about the convergence of Xn ∼ Normal(0, 1/n) as n approaches
∞ ? Take a look at Figure 7.1 for insight. The probability mass of Xn increasingly concentrates
about 0 as n approaches ∞ and the variance 1/n approaches 0, as depicted in Figure 7.1. Based
on this observation, can we expect limn→∞Xn = X, where the limiting RV X ∼ Point Mass(0) ?

The answer is no. This is because P(Xn = X) = 0 for any n, since X ∼ Point Mass(0) is a
discrete RV with exactly one outcome 0 and Xn ∼ Normal(0, 1/n) is a continuous RV for every
n, however large. In other words, a continuous RV, such as Xn, has 0 probability of realizing any
single real number in its support, such as 0.

Figure 7.1: Distribution functions of several Normal(µ, σ2) RVs for σ2 = 1, 1
10 ,

1
100 ,

1
1000 .
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Thus, we need more sophisticated notions of convergence for sequences of RVs. Two such notions
are formalized next as they are minimal prerequisites for a clear understanding of three basic
propositions in Statistics :

113
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1. Weak Law of Large Numbers,

2. Central Limit Theorem,

3. Gilvenko-Cantelli Theorem.

Definition 37 (Convergence in Distribution) Let X1, X2, . . . , be a sequence of RVs and let
X be another RV. Let Fn denote the DF of Xn and F denote the DF of X. The we say that Xn

converges to X in distribution, and write:

Xn  X

if for any real number t at which F is continuous,

lim
n→∞

Fn(t) = F (t) [in the sense of Definition 4].

The above limit, by (3.2) in our Definition 12 of a DF, can be equivalently expressed as follows:

lim
n→∞

P( {ω : Xn(ω) ≤ t} ) = P( {ω : X(ω) ≤ t} ),

i.e. P( {ω : Xn(ω) ≤ t} )→ P( {ω : X(ω) ≤ t} ), as n→∞ .

Definition 38 (Convergence in Probability) Let X1, X2, . . . , be a sequence of RVs and let X
be another RV. Let Fn denote the DF of Xn and F denote the DF of X. The we say that Xn

converges to X in probability, and write:

Xn
P−→ X

if for every real number ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0 [in the sense of Definition 4].

Once again, the above limit, by (3.1) in our Definition 11 of a RV, can be equivalently expressed as
follows:

lim
n→∞

P( {ω : |Xn(ω)−X(ω)| > ε} ) = 0, ie, P( {ω : |Xn(ω)−X(ω)| > ε} )→ 0, as n→∞ .

Let us revisit the problem of convergence in Classwork 17 armed with our new notions of conver-
gence.

Example 18 Suppose you are given an independent sequence of RVs {Xi}ni=1, where Xi ∼ Normal(0, 1/i)
with DF Fn and let X ∼ Point Mass(0) with DF F . We can formalize our observation in Classwork
17 that Xn is concentrating about 0 as n→∞ by the statement:

Xn is converging in distribution to X, ie, Xn  X .

Proof: To check that the above statement is true we need to verify that the definition of convergence in distribution is satisfied

for our sequence of RVs X1, X2, . . . and the limiting RV X. Thus, we need to verify that for any continuity point t of the

Point Mass(0) DF F , limn→∞ Fn(t) = F (t). First note that

Xn ∼ Normal(0, 1/n) =⇒ Z :=
√
nXn ∼ Normal(0, 1) ,
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and thus

Fn(t) = P(Xn < t) = P(
√
nXn <

√
nt) = P(Z <

√
nt) .

The only discontinuous point of F is 0 where F jump from 0 to 1.

When t < 0, F (t), being the constant 0 function over the interval (−∞, 0), is continuous at t. Since
√
nt→ −∞, as n→∞,

lim
n→∞

Fn(t) = lim
n→∞

P(Z <
√
nt) = 0 = F (t) .

And, when t > 0, F (t), being the constant 1 function over the interval (0,∞), is again continuous at t. Since
√
nt → ∞, as

n→∞,

lim
n→∞

Fn(t) = lim
n→∞

P(Z <
√
nt) = 1 = F (t) .

Thus, we have proved that Xn  X by verifying that for any t at which the Point Mass(0) DF F is continuous, we also have

the desired equality: limn→∞ Fn(t) = F (t).

However, note that

Fn(0) =
1

2
6= F (0) = 1 ,

and so convergence fails at 0, i.e. limn→∞ Fn(t) 6= F (t) at t = 0. But, t = 0 is not a continuity point of F and the definition

of convergence in distribution only requires the convergence to hold at continuity points of F .

For the same sequence of RVs in Classwork 17 and Example 18 we are tempted to ask whether
Xn ∼ Normal(0, 1/n) converges in probability to X ∼ Point Mass(0), i.e. whether Xn

P−→ X. We
need some elementary inequalities in Probability to help us answer this question. We visit these
inequalities next.

Proposition 7 (Markov’s Inequality) Let (Ω,F , P ) be a probability triple and let X = X(ω)
be a non-negative RV. Then,

P(X ≥ ε) ≤ E(X)
ε

, for any ε > 0 . (7.1)

Proof:

X = X11{y:y≥ε}(x) +X11{y:y<ε}(x)

≥ X11{y:y≥ε}(x)

≥ ε11{y:y≥ε}(x)

(7.2)

Finally, taking expectations on both sides of the above inequality and then using the fact that the expectation of an indicator

function of an event is simply the probability of that event (3.14), we get the desired result:

E(X) ≥ εE(11{y:y≥ε}(x)) = εP(X ≥ ε) .

Let us look at some immediate consequences of Markov’s inequality.

Proposition 8 (Chebychev’s Inequality) For any RV X and any ε > 0,

P(|X| > ε) ≤ E(|X|)
ε

(7.3)

P(|X| > ε) = P(X2 ≥ ε2) ≤ E(X2)
ε2

(7.4)

P(|X −E(X)| ≥ ε) = P((X −E(X))2 ≥ ε2) ≤ E(X −E(X))2

ε2
=

V(X)
ε2

(7.5)

Proof: All three forms of Chebychev’s inequality are mere corollaries (careful reapplications) of Markov’s inequality.
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Armed with Markov’s inequality we next enquire the convergence in probability for the sequence
of RVs in Classwork 17 and Example 18.

Example 19 Does the the sequence of RVs {Xn}∞n=1, where Xn ∼ Normal(0, 1/n), converge in

probability to X ∼ Point Mass(0), i.e. does Xn
P−→ X ?

To find out if Xn
P−→ X, we need to show that for any ε > 0, limn→∞P(|Xn −X| > ε) = 0.

Let ε be any real number greater than 0, then

P(|Xn| > ε) = P(|Xn|2 > ε2)

=
E(X2

n)
ε2

[by Markov’s Inequality (7.1)]

=
1
n

ε2
→ 0, as n→∞ [in the sense of Definition 4].

Hence, we have shown that for any ε > 0, limn→∞P(|Xn−X| > ε) = 0 and therefore by Definition
38, Xn

P−→ X or Xn
P−→ 0.

Convention: When X has a Point Mass(θ) distribution and Xn
P−→ X, we simply write Xn

P−→ θ.

Now that we have been introduced to two notions of convergence for sequences of RVs we can begin
to appreciate the statements of the basic limit theorems of Statistics.

7.2 Some Basic Limit Laws of Statistics

Proposition 9 (Weak Law of Large Numbers (WLLN)) If we are given a sequence if inde-
pendent and identically distributed RVs, X1, X2, . . .

IID∼ X1 and if E(X1) exists, as per (3.9), then
the sample mean Xn converges in probability to the expectation of any one of the IID RVs, say
E(X1) by convention. More formally, we wtite:

If X1, X2, . . .
IID∼ X1 and if E(X1) exists, then Xn

P−→ E(X1) .

Proof: For simplicity, we will prove a slightly weaker result by assuming finite variance of X1. Suppose V(X1) <∞, then:

P(|Xn −E(Xn)| ≥ ε) =
V(Xn)

ε2
[by applying Chebychev’s inequality (7.5) to the RV Xn]

=
1
n
V(X1)

ε2
[by the IID assumption of X1, X2, . . . we can apply (5.3)]

Therefore, for any given ε > 0,

P(|Xn −E(X1)| ≥ ε) = P(|Xn −E(Xn)| ≥ ε) [by the IID assumption of X1, X2, . . ., E(Xn) = E(X1), as per (5.2)]

=
1
n
V(X1)

ε2
→ 0, as n→∞ ,

or equivalently, limn→∞P(|Xn−E(X1)| ≥ ε) = 0. And the last statement is the definition of the claim made by the weak law

of large numbers (WLLN), namely that Xn
P−→ E(X1) .

Heuristic Interpretation of WLLN: The distribution of the sample mean RV Xn obtained from
an independent and identically distributed sequence of RVs X1, X2, . . . [i.e. all the RVs Xi’s are independent

of one another and have the same distribution function, and thereby the same expectation, variance and higher moments],
concentrates around the expectation of any one of the RVs in the sequence, say that of the first one
E(X1) [without loss of generality], as n approaches infinity.
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Example 20 (Bernoulli WLLN and Galton’s Quincunx) We can appreciate the WLLN for
Xn = n−1Sn =

∑n
i=1Xi, where X1, X2, . . . , Xn

IID∼ Bernoulli(p) using the paths of balls dropped
into a device built by Galton called the Quincunx.

Proposition 10 (Central Limit Theorem (CLT)) Let X1, X2, . . .
IID∼ X1 and suppose E(X1)

and V(X1) exists, then

Xn =
1
n

n∑
i=1

Xi  X ∼ Normal
(

E(X1),
V(X1)
n

)
, (7.6)

Xn −E(X1)  X −E(X1) ∼ Normal
(

0,
V(X1)
n

)
, (7.7)

√
n
(
Xn −E(X1)

)
 
√
n (X −E(X1)) ∼ Normal (0,V(X1)) , (7.8)

Zn :=
Xn −E(Xn)√

V(Xn)
=
√
n
(
Xn −E(X1)

)√
V(X1)

 Z ∼ Normal (0, 1) , (7.9)

lim
n→∞

P

Xn −E(Xn)√
V(Xn)

≤ z

 = lim
n→∞

P(Zn ≤ z) = Φ(z) :=
∫ z

−∞

(
1√
2π

exp
(
−x2

2

))
dx . (7.10)

Thus, for sufficiently large n (say n > 30) we can make the following approximation:

P

Xn −E(Xn)√
V(Xn)

≤ z

 u P(Z ≤ z) = Φ(z) :=
∫ z

−∞

(
1√
2π

exp
(
−x2

2

))
dx . (7.11)

Proof: See any intermediate to advanced undergraduate text in Probability. Start from the index looking for “Central Limit

Theorem” to find the page number for the proof . . . .

Heuristic Interpretation of CLT: Probability statements about the sample mean RV Xn can be
approximated using a Normal distribution.

Here is a simulation showing CLT in action.

>> % a demonstration of Central Limit Theorem --

>> % the sample mean of a sequence of n IID Exponential(lambda) RVs

>> % itself a Gaussian(1/lambda,lambda/n) RV

>> lambda=0.1; Reps=10000; n=10; hist(sum(-1/lambda * log(rand(n,Reps)))/n)

>> lambda=0.1; Reps=10000; n=100; hist(sum(-1/lambda * log(rand(n,Reps)))/n,20)

>> lambda=0.1; Reps=10000; n=1000; hist(sum(-1/lambda * log(rand(n,Reps)))/n,20)

Let us look at an example that makes use of the CLT next.

Example 21 (Errors in computer code (Wasserman03, p. 78)) Suppose the collection of RVs
X1, X2, . . . , Xn model the number of errors in n computer programs named 1, 2, . . . , n, respectively.
Suppose that the RV Xi modeling the number of errors in the i-th program is the Poisson(λ = 5)
for any i = 1, 2, . . . , n. Further suppose that they are independently distributed. Succinctly, we
suppose that

X1, X2, . . . , Xn
IID∼ Poisson(λ = 5) .

Suppose we have n = 125 programs and want to make a probability statement about Xn which is the
average error per program out of these 125 programs. Since E(Xi) = λ = 5 and V(Xi) = λ = 5,
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we may want to know how often our sample mean X125 differs from the expectation of 5 errors per
program. Using the CLT we can approximate P(Xn < 5.5), for instance, as follows:

P(Xn < 5.5) = P

(√
n(Xn −E(X1))√

V(X1)
<

√
n(5.5−E(X1))√

V(X1)

)

u P

(
Z <

√
n(5.5− λ)√

λ

)
[by (7.11), and E(X1) = V(X1) = λ]

= P

(
Z <

√
125(5.5− 5)√

5

)
[Since, λ = 5 and n = 125 in this Example]

= P(Z ≤ 2.5) = Φ(2.5) =
∫ 2.5

−∞

(
1√
2π

exp
(
−x2

2

))
dx u 0.993790334674224 .

The last number above needed the following:

Labwork 29 The numerical approximation of Φ(2.5) was obtained via the following call to our
erf-based NormalCdf function from 47.

>> format long

>> disp(NormalCdf(2.5,0,1))

0.993790334674224

The CLT says that if X1, X2, . . .
IID∼ X1, then Zn :=

√
n(Xn − E(X1))/

√
V(X1) is approximately

distributed as Normal(0, 1). In Example 21, we knew
√

V(X1). However, in general, we may
not know

√
V(X1). The next proposition says that we may estimate

√
V(X1) using the sample

standard deviation Sn of X1, X2, . . . , Xn, according to (5.5), and still make probability statements
about the sample mean Xn using a Normal distribution.

Proposition 11 (CLT based on Sample Variance) Let X1, X2, . . .
IID∼ X1 and suppose E(X1)

and V(X1) exists, then √
n
(
Xn −E(X1)

)
Sn

 Normal(0, 1) . (7.12)

We will use (7.12) for statistical estimation in the sequel.



Chapter 8

Fundamentals of Estimation

8.1 Introduction

Now that we have been introduced to two notions of convergence for RV sequences, we can begin
to appreciate the basic limit theorems used in statistical inference. The problem of estimation
is of fundamental importance in statistical inference and learning. We will formalise the general
estimation problem here. There are two basic types of estimation. In point estimation we are
interested in estimating a particular point of interest that is supposed to belong to a set of points.
In (confidence) set estimation, we are interested in estimating a set with a particular form that has
a specified probability of “trapping” the particular point of interest from a set of points. Here, a
point should be interpreted as an element of a collection of elements from some space.

8.2 Point Estimation

Point estimation is any statistical methodology that provides one with a “single best guess”
of some specific quantity of interest. Traditionally, we denote this quantity of interest as θ∗ and
its point estimate as θ̂ or θ̂n. The subscript n in the point estimate θ̂n emphasises that our
estimate is based on n observations or data points from a given statistical experiment to estimate
θ∗. This quantity of interest, which is usually unknown, can be:

• an integral ϑ∗ :=
∫
A h(x) dx ∈ ΘΘ. If ϑ∗ is finite, then ΘΘ = R, or

• a parameter θ∗ which is an element of the parameter space ΘΘ, denoted θ∗ ∈ ΘΘ,

• a distribution function (DF) F ∗ ∈ F := the set of all DFs

• a density function (pdf) f ∈ {“not too wiggly Sobolev functions”}, or

• a regression function g∗ ∈ G, where G is a class of regression functions in a regression
experiment with model: Y = g∗(X) + ε, such that E(ε) = 0, from pairs of observations
{(Xi, Yi)}ni=1, or

• a classifier g∗ ∈ G, i.e. a regression experiment with discrete Y = g∗(X) + ε, or

• a prediction in a regression experiment, i.e. when you want to estimate Yi given Xi.

Recall that a statistic is an RV T (X) that maps every data point x in the data space X with
T (x) = t in its range T, i.e. T (x) : X 7→ T (Definition 25). Next, we look at a specific class of
statistics whose range is the parameter space ΘΘ.
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Definition 39 A point estimator Θ̂ of some fixed and possibly unknown θ∗ ∈ ΘΘ is a statistic
that associates each data point x ∈ X with an estimate Θ̂(x) = θ̂ ∈ ΘΘ,

Θ̂ := Θ̂(x) = θ̂ : X 7→ ΘΘ .

If our data point x := (x1, x2, . . . , xn) is an n-vector or a point in the n-dimensional real space,
i.e. x := (x1, x2, . . . , xn) ∈ Xn ⊂ Rn, then we emphasise the dimension n in our point estimator
Θ̂n of θ∗ ∈ ΘΘ.

Θ̂n := Θ̂n(x := (x1, x2, . . . , xn)) = θ̂n : Xn 7→ ΘΘ, Xn ⊂ Rn .

The typical situation for us involves point estimation of θ∗ ∈ ΘΘ on the basis of one realisation x ∈
Xn ⊂ Rn of an independent and identically distributed (IID) random vector X = (X1, X2, . . . , Xn),
such that X1, X2, . . . , Xn

IID∼ X1 and the DF of X1 is F (x1; θ∗), i.e. the distribution of the IID RVs,
X1, X2, . . . , Xn, is parameterised by θ∗ ∈ ΘΘ.

Example 22 (Coin Tossing Experiment (X1, . . . , Xn
IID∼ Bernoulli(θ∗))) I tossed a coin that

has an unknown probability θ∗ of landing Heads independently and identically 10 times in a row.
Four of my outcomes were Heads and the remaining six were Tails, with the actual sequence of
Bernoulli outcomes (Heads 7→ 1 and Tails 7→ 0) being (1, 0, 0, 0, 1, 1, 0, 0, 1, 0). I would like to esti-
mate the probability θ∗ ∈ ΘΘ = [0, 1] of observing Heads using the natural estimator Θ̂n((X1, X2, . . . , Xn))
of θ∗:

Θ̂n((X1, X2, . . . , Xn)) := Θ̂n =
1
n

n∑
i=1

Xi =: Xn

For the coin tossing experiment I just performed (n = 10 times), the point estimate of the unknown
θ∗ is:

θ̂10 = Θ̂10((x1, x2, . . . , x10)) = Θ̂10((1, 0, 0, 0, 1, 1, 0, 0, 1, 0))

=
1 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 0

10
=

4
10

= 0.40 .

Labwork 30 (Bernoulli(38/75) Computer Experiment) Simulate one thousand IID samples
from a Bernoulli(θ∗ = 38/75) RV and store this data in an array called Samples. Use your stu-
dent ID to initialise the fundamental sampler. Now, pretend that you don’t know the true θ∗

and estimate θ∗ using our estimator Θ̂n = Xn from the data array Samples for each sample size
n = 1, 2, . . . , 1000. Plot the one thousand estimates θ̂1, θ̂2, . . . , θ̂1000 as a function of the correspond-
ing sample size. Report your observations regarding the behaviour of our estimator as the sample
size increases.

8.3 Some Properties of Point Estimators

Given that an estimator is merely a function from the data space to the parameter space, we need
choose only the best estimators available. Recall that a point estimator Θ̂n, being a statistic or
an RV of the data has a probability distribution over its range ΘΘ. This distribution over ΘΘ is
called the sampling distribution of Θ̂n. Note that the sampling distribution not only depends
on the statistic Θ̂n := Θ̂n(X1, X2, . . . , Xn) but also on θ∗ which in turn determines the distribution
of the IID data vector (X1, X2, . . . , Xn). The following definitions are useful for selecting better
estimators from some lot of them.
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Definition 40 (Bias of a Point Estimator) The biasn of an estimator Θ̂n of θ∗ ∈ ΘΘ is:

biasn = biasn(Θ̂n) := Eθ∗(Θ̂n)− θ∗ =
∫

Xn
Θ̂n(x) dF (x; θ∗)− θ∗ . (8.1)

We say that the estimator Θ̂n is unbiased if biasn(Θ̂n) = 0 or if Eθ∗(Θ̂n) = θ∗ for every n. If
limn→∞ biasn(Θ̂n) = 0, we say that the estimator is asymptotically unbiased.

Since the expectation of the sampling distribution of the point estimator Θ̂n depends on the un-
known θ∗, we emphasise the θ∗-dependence by Eθ∗(Θ̂n).

Example 23 (Bias of our Estimator of θ∗) Consider the sample mean estimator Θ̂n := Xn

of θ∗, from X1, X2, . . . , Xn
IID∼ Bernoulli(θ∗). That is, we take the sample mean of the n IID

Bernoulli(θ∗) trials to be our point estimator of θ∗ ∈ [0, 1]. Then, this estimator is unbiased
since:

Eθ∗(Θ̂n) = Eθ∗

(
n−1

n∑
i=1

Xi

)
= n−1Eθ∗

(
n∑
i=1

Xi

)
= n−1

n∑
i=1

Eθ∗(Xi) = n−1nθ∗ = θ∗ .

Definition 41 (Standard Error of a Point Estimator) The standard deviation of the point
estimator Θ̂n of θ∗ ∈ ΘΘ is called the standard error:

sen = sen(Θ̂n) =
√

Vθ∗(Θ̂n) =

√∫
Xn

(
Θ̂n(x)−Eθ∗(Θ̂n)

)2
dF (x; θ∗) . (8.2)

Since the variance of the sampling distribution of the point estimator Θ̂n depends on the fixed and
possibly unknown θ∗, as emphasised by Vθ∗ in (8.2), the sen is also a possibly unknown quantity
and may itself be estimated from the data. The estimated standard error, denoted by ŝen, is
calculated by replacing Vθ∗(Θ̂n) in (8.2) with its appropriate estimate.

Example 24 (Standard Error of our Estimator of θ∗) Consider the sample mean estimator
Θ̂n := Xn of θ∗, from X1, X2, . . . , Xn

IID∼ Bernoulli(θ∗). Observe that the statistic:

Tn((X1, X2, . . . , Xn)) := n Θ̂n((X1, X2, . . . , Xn)) =
n∑
i=1

Xi

is the Binomial(n, θ∗) RV. The standard error sen of this estimator is:

sen =
√

Vθ∗(Θ̂n) =

√√√√Vθ∗

(
n∑
i=1

Xi

n

)
=

√√√√( n∑
i=1

1
n2

Vθ∗(Xi)

)
=
√

n

n2
Vθ∗(Xi) =

√
θ∗(1− θ∗)/n .

Another reasonable property of an estimator is that it converge to the “true” parameter θ∗ – here
“true” means the supposedly fixed and possibly unknown θ∗, as we gather more and more IID data
from a θ∗-specified DF F (x; θ∗). This property is stated precisely next.

Definition 42 (Asymptotic Consistency of a Point Estimator) A point estimator Θ̂n of θ∗ ∈
ΘΘ is said to be asymptotically consistent if:

Θ̂n
P−→ θ∗ i.e., for any real ε > 0, lim

n→∞
P(|Θ̂n − θ∗| > ε) = 0 .
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Definition 43 (Mean Squared Error (MSE) of a Point Estimator) Often, the quality of a
point estimator Θ̂n of θ∗ ∈ ΘΘ is assessed by the mean squared error or MSEn defined by:

MSEn = MSEn(Θ̂n) := Eθ∗

(
(Θ̂n − θ∗)2

)
=
∫

X
(Θ̂n(x)− θ∗)2 dF (x; θ∗) . (8.3)

The following proposition shows a simple relationship between the mean square error, bias and
variance of an estimator Θ̂n of θ∗.

Proposition 12 (The
√

MSEn : sen : biasn–Sided Right Triangle of an Estimator) Let Θ̂n be
an estimator of θ∗ ∈ ΘΘ. Then:

MSEn(Θ̂n) = (sen(Θ̂n))2 + (biasn(Θ̂n))2 . (8.4)

Proof:

LHS

= MSEn(bΘn)

:= Eθ∗
“

(bΘn − θ∗)2
”
, by definition of MSEn (8.3)

= Eθ∗

0BB@
0BB@ “bΘn −Eθ∗ (bΘn)

”
| {z }

A

+
“
Eθ∗ (bΘn)− θ∗

”
| {z }

B

1CCA
21CCA , by subtracting and adding the constant Eθ∗ (bΘn)

= Eθ∗

0BBB@“bΘn −Eθ∗ (bΘn)
”2

| {z }
A2

+ 2
“bΘn −Eθ∗ (bΘn)

”“
Eθ∗ (bΘn)− θ∗

”
| {z }

2AB

+
“
Eθ∗ (bΘn)− θ∗

”2

| {z }
B2

1CCCA , ∵ (A+B)2 = A2 + 2AB +B2

= Eθ∗

„“bΘn −Eθ∗ (bΘn)
”2
«

+ Eθ∗
“

2
“bΘn −Eθ∗ (bΘn)

”“
Eθ∗ (bΘn)− θ∗

””
+ Eθ∗

„“
Eθ∗ (bΘn)− θ∗

”2
«
,

= Eθ∗

„“bΘn −Eθ∗ (bΘn)
”2
«

+ 2
“
Eθ∗ (bΘn)− θ∗

”
| {z }

C

Eθ∗
““bΘn −Eθ∗ (bΘn)

””
| {z }

D

+ Eθ∗

„“
Eθ∗ (bΘn)− θ∗

”2
«
, ∵ C is constant

= Eθ∗

„“bΘn −Eθ∗ (bΘn)
”2
«

+ 0 + Eθ∗

„“
Eθ∗ (bΘn)− θ∗

”2
«
, ∵ D := Eθ∗

““bΘn −Eθ∗ (bΘn)
””

= Eθ∗ (bΘn)−Eθ∗ (bΘn) = 0

= Vθ∗ (bΘn) + Eθ∗

„“
Eθ∗ (bΘn)− θ∗

”2
«
, ∵ Vθ∗ (bΘn) := Eθ∗

„“bΘn −Eθ∗ (bΘn)
”2
«

, by definition of variance

=

„q
Vθ∗ (bΘn)

«2

+ Eθ∗

„“
biasn(bΘn)

”2
«
, ∵ biasn(bΘn) = Eθ∗ (bΘn)− θ∗, by definition of biasn of an estimator bΘn

=
“
sen(bΘn)

”2
+ Eθ∗

„“
biasn(bΘn)

”2
«
, ∵ sen(bΘn) :=

q
Vθ∗ (bΘn), by definition (8.2)

=
“
sen(bΘn)

”2
+
“
biasn(bΘn)

”2
, ∵ biasn(bΘn) = Eθ∗ (bΘn)− θ∗ and

“
biasn(bΘn)

”2
are constants.

= RHS

Proposition 13 Let Θ̂n be an estimator of θ∗ ∈ ΘΘ. Then, if biasn(Θ̂n)→ 0 and sen(Θ̂n)→ 0 as
n→∞, the estimator Θ̂n is asymptotically consistent:

Θ̂n
P−→ θ∗ .

Proof: If biasn(bΘn) → 0 and sen(bΘn) → 0, then by (8.4), MSEn(bΘn) → 0, i.e. that Eθ∗
“

(bΘn − θ∗)2
”
→ 0. This type of

convergence of the RV bΘn to the Point Mass(θ∗) RV as n→∞ is called convergence in quadratic mean or convergence

in L2 and denoted by bΘn qm−→ θ∗. Convergence in quadratic mean is a stronger notion of convergence than convergence in

probability, in the sense that

Eθ∗
“

(bΘn − θ∗)2
”
→ 0 or bΘn qm−→ θ∗ =⇒ bΘn P−→ θ∗ .
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Thus, if we prove the above implication we are done with the proof of our proposition. To show that convergence in quadratic

mean implies convergence in probability for general sequence of RVs Xn converging to an RV X, we first assume that Xn
qm−→ X.

Now, fix any ε > 0. Then by Markov’s inequality (7.1),

P(|Xn −X| > ε) = P(|Xn −X|2 > ε2) ≤
E(|Xn −X|2)

ε2
→ 0 ,

and we have shown that the definition of convergence in probability holds provided convergence in quadratic mean holds.

We want our estimator to be unbiased with small standard errors as the sample size n gets large.
The point estimator Θ̂n will then produce a point estimate θ̂n:

Θ̂n((x1, x2, . . . , xn)) = θ̂n ∈ ΘΘ ,

on the basis of the observed data (x1, x2, . . . , xn), that is close to the true parameter θ∗ ∈ ΘΘ.

Example 25 (Asymptotic consistency of our Estimator of θ∗) Consider the sample mean
estimator Θ̂n := Xn of θ∗, from X1, X2, . . . , Xn

IID∼ Bernoulli(θ∗). Since biasn(Θ̂n) = 0 for any
n and sen =

√
θ∗(1− θ∗)/n → 0, as n → ∞, by Proposition 13, Θ̂n

P−→ θ∗. That is Θ̂n is an
asymptotically consistent estimator of θ∗.

8.4 Confidence Set Estimation

As we saw in Section 8.2, the point estimate θ̂n is a “single best guess” of the fixed and possibly
unknown parameter θ∗ ∈ ΘΘ. However, if we wanted to make a statement about our confidence in
an estimation procedure, then one possibility is to produce subsets from the parameter space ΘΘ
called confidence sets that “engulf” θ∗ with a probability of at least 1− α.
Formally, an 1− α confidence interval for the parameter θ∗ ∈ ΘΘ ⊂ R, based on n observations
or data points X1, X2, . . . , Xn, is an interval Cn that is a function of the data:

Cn := [C n, C n] = [C n(X1, X2, . . . , Xn), C n(X1, X2, . . . , Xn)] ,

such that:
Pθ∗

(
θ∗ ∈ Cn := [C n, C n]

)
≥ 1− α .

Note that the confidence interval Cn := [C n, C n] is a two-dimensional RV or a random vector in
R2 that depends on the two statistics C n(X1, X2, . . . , Xn) and C n(X1, X2, . . . , Xn), as well as θ∗,
which in turn determines the distribution of the data (X1, X2, . . . , Xn). In words, Cn engulfs the
true parameter θ∗ ∈ ΘΘ with a probability of at least 1− α. We call 1− α as the coverage of the
confidence interval Cn.
Formally, a 1−α confidence set Cn for a vector-valued θ∗ ∈ ΘΘ ⊂ Rk is any subset of ΘΘ such that
Pθ∗(θ∗ ∈ Cn) ≥ 1 − α. The typical forms taken by Cn are k-dimensional boxes or hyper-cuboids,
hyper-ellipsoids and subsets defined by inequalities involving level sets of some estimator of θ∗.
Typically, we take α = 0.05 because we are interested in the 1 − α = 0.95 or 95% confidence
interval/set Cn ⊂ ΘΘ of θ∗ ∈ ΘΘ from an estimator Θ̂n of θ∗.
The following property of an estimator makes it easy to obtain confidence intervals.

Definition 44 (Asymptotic Normality of Estimators) An estimator Θ̂n of a fixed and pos-
sibly unknown parameter θ∗ ∈ ΘΘ is asymptotically normal if:

Θ̂n − θ∗

sen
 Normal(0, 1) . (8.5)

That is, Θ̂n  Normal(θ∗, se2
n). By a further estimation of sen :=

√
Vθ∗(Θ̂n) by ŝen, we can see

that Θ̂n  Normal(θ∗, ŝe2
n) on the basis of (7.12).
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Proposition 14 (Normal-based Asymptotic Confidence Interval) Suppose an estimator Θ̂n

of parameter θ∗ ∈ ΘΘ ⊂ R is asymptotically normal:

Θ̂n  Normal(θ∗, ŝe2
n) .

Let the RV Z ∼ Normal(0, 1) have DF Φ and inverse DF Φ−1. Let:

zα/2 = Φ−1(1− (α/2)), that is, P(Z > zα/2) = α/2 and P(−zα/2 < Z < zα/2) = 1− α .

Then:
Pθ∗(θ∗ ∈ Cn) = P

(
θ∗ ∈ [Θ̂n − zα/2ŝen, Θ̂n + zα/2ŝen]

)
→ 1− α .

Therefore:
Cn := [C n, C n] = [Θ̂n − zα/2ŝen, Θ̂n + zα/2ŝen]

is the 1−α Normal-based asymptotic confidence interval that relies on the asymptotic normality of
the estimator Θ̂n of θ∗ ∈ ΘΘ ⊂ R.

Proof: Define the centralised and scaled estimator as Zn := (bΘn − θ∗)/bsen. By assumption, Zn  Z ∼ Normal(0, 1).

Therefore,

Pθ∗ (θ∗ ∈ Cn) = Pθ∗
“
θ∗ ∈ [bΘn − zα/2 bsen, bΘn + zα/2 bsen]

”
= Pθ∗

“bΘn − zα/2 bsen ≤ θ∗ ≤ bΘn + zα/2 bsen”
= Pθ∗

“
−zα/2 bsen ≤ bΘn − θ∗ ≤ zα/2 bsen”

= Pθ∗

 
−zα/2 ≤

bΘn − θ∗bsen ≤ zα/2

!
→ Pθ∗

`
−zα/2 ≤ Z ≤ zα/2

´
= 1− α

Figure 8.1: Density and Confidence Interval of the Asymptotically Normal Point Estimator

For 95% confidence intervals, α = 0.05 and zα/2 = z0.025 = 1.96 u 2. This leads to the approx-
imate 95% confidence interval of θ̂n ± 2ŝen, where θ̂n = Θ̂n(x1, x2, . . . , xn) and x1, x2, . . . , xn
are the data or observations of the RVs X1, X2, . . . , Xn.

Example 26 (Confidence interval for θ∗ from n Bernoulli(θ∗) trials) Let X1, X2, . . . , Xn
IID∼

Bernoulli(θ∗) for some fixed but unknown parameter θ∗ ∈ ΘΘ = [0, 1]. Consider the following point
estimator of θ∗:

Θ̂n((X1, X2, . . . , Xn)) = n−1
n∑
i=1

Xi .
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That is, we take the sample mean of the n IID Bernoulli(θ∗) trials to be our point estimator of
θ∗ ∈ [0, 1]. Then, we already saw that this estimator is unbiased

We already saw that the standard error sen of this estimator is:

sen =
√
θ∗(1− θ∗)/n .

Since θ∗ is unknown, we obtain the estimated standard error ŝen from the point estimate θ̂n of θ∗

on the basis of n observed data points x = (x1, x2, . . . , xn) of the experiment:

ŝen =
√
θ̂n(1− θ̂n)/n, where, θ̂n = Θ̂n((x1, x2, . . . , xn)) = n−1

n∑
i=1

xi .

By the central limit theorem, Θ̂n  Normal(θ∗, ŝen), i.e. Θ̂n is asymptotically normal. Therefore,
an asymptotically (for large sample size n) approximate 1− α normal-based confidence interval is:

θ̂n ± zα/2ŝen = θ̂n ± zα/2

√
θ̂n(1− θ̂n)

n
:=

 θ̂n − zα/2
√
θ̂n(1− θ̂n)

n
, θ̂n + zα/2

√
θ̂n(1− θ̂n)

n


We also saw that Θ̂n is an asymptotically consistent estimator of θ∗ due to Proposition 13.

The confidence Interval for the coin tossing experiment in Example 28 with the observed sequence
of Bernoulli outcomes (Heads 7→ 1 and Tails 7→ 0) being (1, 0, 0, 0, 1, 1, 0, 0, 1, 0). We estimated
the probability θ∗ of observing Heads with the unbiased, asymptotically consistent estimator
Θ̂n((X1, X2, . . . , Xn)) = n−1

∑n
i=1Xi of θ∗. The point estimate of θ∗ was:

θ̂10 = Θ̂10((x1, x2, . . . , x10)) = Θ̂10((1, 0, 0, 0, 1, 1, 0, 0, 1, 0))

=
1 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 0

10
=

4
10

= 0.40 .

The normal-based confidence interval for θ∗ may not be a valid approximation here with just n = 10
samples. Nevertheless, we will compute a 95% normal-based confidence interval:

C10 = 0.40± 1.96

√
0.40(1− 0.40)

10
= 0.40± 0.3036 = [0.0964, 0.7036]

with a width of 0.6072. When I increased the sample size n of the experiment from 10 to 100 by
tossing the same coin another 90 times, I discovered that a total of 57 trials landed as Heads. Thus
my point estimate and confidence interval for θ∗ are:

θ̂100 =
57
100

= 0.57 and C100 = 0.57±1.96

√
0.57(1− 0.57)

100
= 0.57±0.0495 = [0.5205, 0.6195]

with a much smaller width of 0.0990. Thus our confidence interval shrank considerably from a width
of 0.6072 after an additional 90 Bernoulli trials. Thus, we can make the width of the confidence
interval as small as we want by making the number of observations or sample size n as large as we
can.

8.5 Likelihood

We take a look at one of the most fundamental concepts in Statistics.
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Definition 45 (Likelihood Function) Suppose X1, X2, . . . , Xn have joint density f(x1, x2, . . . , xn; θ)
specified by parameter θ ∈ ΘΘ. Let the observed data be x1, x2, . . . , xn.

The likeihood function given by Ln(θ) is proportional to f(x1, x2, . . . , xn; θ), the joint probability
of the data, with the exception that we see it as a function of the parameter:

Ln(θ) := Ln(x1, x2, . . . , xn; θ) = f(x1, x2, . . . , xn; θ) . (8.6)

The likelihood function has a simple product structure when the observations are independently and
identically distributed:

X1, X2, . . . , Xn
IID∼ f(x; θ) =⇒ Ln(θ) := Ln(x1, x2, . . . , xn; θ) = f(x1, x2, . . . , xn; θ) :=

n∏
i=1

f(xi; θ) .

(8.7)
The log-likelihood function is defined by:

`n(θ) := log(Ln(θ)) (8.8)

Example 27 (Likelihood of the IID Bernoulli(θ∗) experiment) Consider our IID Bernoulli
experiment:

X1, X2, . . . , Xn
IID∼ Bernoulli(θ∗), with PDF f(x; θ) = θx(1− θ)1−x11{0,1}(x) .

Let us understand the likelihood function for one observation first. There are two possibilities for
the first observation.

If we only have one observation and it happens to be x1 = 1, then our likelihood function is:

L1(θ) = L1(x1; θ) = f(x1; θ) = θ1(1− θ)1−111{0,1}(1) = θ(1− θ)01 = θ

If we only have one observation and it happens to be x1 = 0, then our likelihood function is:

L1(θ) = L1(x1; θ) = f(x1; θ) = θ0(1− θ)1−011{0,1}(0) = 1(1− θ)11 = 1− θ

If we have n observations (x1, x2, . . . , xn), i.e. a vertex point of the unit hyper-cube {0, 1}n, then
our likelihood function is obtained by multiplying the densities:

Ln(θ) := Ln(x1, x2, . . . , xn; θ) = f(x1, x2, . . . , xn; θ)

= f(x1; θ)f(x2; θ) · · · f(xn; θ) :=
n∏
i=1

f(xi; θ)

= θ
Pn
i=1 xi(1− θ)n−

Pn
i=1 xi := θtn(1− θ)n−tn

In the last step, we have formally defined the following statistic of the data:

Tn(X1, X2, . . . , Xn) =
n∑
i=1

Xi : Xn → Tn

with the corresponding realisation tn := Tn(x1, x2, . . . , xn) =
∑n

i=1 xi ∈ Tn.
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Figure 8.2: Data Spaces X1 = {0, 1}, X2 = {0, 1}2 and X3 = {0, 1}3 for one, two and three IID
Bernoulli trials, respectively and the corresponding likelihood functions.
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Figure 8.3: 100 realisations of C10, C100, C1000 based on samples of size n = 10, 100 and 1000 drawn from
the Bernoulli(θ∗ = 0.5) RV as per Labwork 54. The MLE θ̂n (cyan dot) and the log-likelihood function
(magenta curve) for each of the 100 replications of the experiment for each sample size n are depicted.
The approximate normal-based 95% confidence intervals with blue boundaries are based on the exact sen =√
θ∗(1− θ∗)/n =

√
1/4, while those with red boundaries are based on the estimated ŝen =

√
θ̂n(1− θ̂n)/n.

The fraction of times the true parameter θ∗ = 0.5 was engulfed by the exact and approximate confidence
interval (empirical coverage) over the 100 replications of the experiment for each of the three sample sizes
are given by the numbers after Cvrg.= and ∼=, above each sub-plot, respectively.



Chapter 9

Maximum Likelihood Estimator

Next we look at a specific point estimator called the maximum likelihood estimator (MLE) of a
possibly unknown but fixed parameter θ∗ in a parametric experiment, i.e. θ∗ ∈ ΘΘ ⊂ Rk with k <∞.
Other point estimators in such a setting include the moment estimator (MME).
Recall that the likelihood function (See Definition 45) for an IID experiment with observations
x1, x2, . . . , xn is simply the product of the densities:

Ln(θ) =
n∏
i=1

f(xi; θ) : ΘΘ 7→ (0,∞) ,

and its logarithm or log-likelihood function is:

`n(θ) = log(Ln(θ)) =
n∑
i=1

log(f(xi)) : ΘΘ 7→ (−∞,∞) .

9.1 Introduction to Maximum Likelihood Estimation

Definition 46 (Maximum Likelihood Estimator (MLE)) Let X1, . . . , Xn ∼ f(x1, . . . , xn; θ∗).
The maximum likelihood estimator (MLE) Θ̂n of the fixed and possibly unknown parameter θ∗ ∈ ΘΘ
is the value of θ that maximises the likelihood function:

Θ̂n := Θ̂n(X1, X2, . . . , Xn) := arg max
θ∈ΘΘ

Ln(θ) ,

Equivalently, MLE is the value of θ that maximises the log-likelihood function:

Θ̂n := arg max
θ∈ΘΘ

`n(θ) ,

since the maximum of the likelihood coincides with that of the log-likelihood. It is analytically
and numerically convenient to work with the log-likelihood instead of the likelihood. Optimisation
algorithms can be used to find the MLE numerically. Such algorithms by convention tend to find
the minimum and the value that minimises a function. So, the MLE is also the the value of θ that
minimises the negative likelihood or negative log-likelihood functions:

Θ̂n := arg min
θ∈ΘΘ

−Ln(θ), Θ̂n := arg min
θ∈ΘΘ

−`n(θ) .

Once again, the realisation of the MLE, namely θ̂n = Θ̂n(x1, . . . , xn) based on the observation is
the maximum likelihood estimate (MLe) of the θ∗.

128
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Example 28 (Coin Tossing Experiment (X1, . . . , Xn
IID∼ Bernoulli(θ∗))) I tossed a coin that

has an unknown probability θ∗ of landing Heads independently and identically 10 times in a row.
Four of my outcomes were Heads and the remaining six were Tails, with the actual sequence of
Bernoulli outcomes (Heads 7→ 1 and Tails 7→ 0) being (1, 0, 0, 0, 1, 1, 0, 0, 1, 0). I would like to
estimate the probability θ∗ ∈ ΘΘ = [0, 1] of observing Heads using the maximum likelihood estimator
or MLE Θ̂n((X1, X2, . . . , Xn)) of θ. We derive the MLE next.

First, the likelihood function is:

Ln(θ) := Ln(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi|θ) = θ
Pn
i=1 xi(1− θ)n−

Pn
i=1 xi := θtn(1− θ)n−tn

In the last step, we have formally defined the following statistic of the data:

Tn(X1, X2, . . . , Xn) =
n∑
i=1

Xi : Xn → Tn

with the corresponding realisation tn := Tn(x1, x2, . . . , xn) =
∑n

i=1 xi ∈ Tn. Let us now take the
natural logarithm of both sides:

log(Ln(θ)) := log(L(x1, x2, . . . , xn; θ)) = log
(
θtn(1− θ)n−tn

)
= tn log(θ) + (n− tn) log(1− θ)

Next, we take the derivative with respect to the parameter θ:

∂

∂θ
log(Ln(θ)) =

∂

∂θ
tn log(θ) +

∂

∂θ
(n− tn) log(1− θ)

=
tn
θ
− n− tn

1− θ

Now, set ∂
∂θ log(Ln(θ)) = 0 and solve for θ to obtain the maximum likelihood estimate θ̂n:

∂

∂θ
log(L(θ)) = 0 ⇐⇒ tn

θ
=
n− tn
1− θ

⇐⇒ 1− θ
θ

=
n− tn
tn

⇐⇒ 1
θ
− 1 =

n

tn
− 1 ⇐⇒ θ̂n =

tn
n

Therefore the MLE is:

Θ̂n(X1, X2, . . . , Xn) =
1
n
Tn(X1, X2, . . . , Xn) =

1
n

n∑
i=1

Xi = Xn

For the coin tossing experiment I just performed (n = 10 times), the point estimate of θ is:

θ̂10 = Θ̂10((x1, x2, . . . , x10)) = Θ̂10((1, 0, 0, 0, 1, 1, 0, 0, 1, 0))

=
1 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 0

10
=

4
10

= 0.40 .

9.2 Practical Excursion in One-dimensional Optimisation

Numerically maximising a log-likelihood function of one parameter is a useful technique. This can be
used for models with no analytically known MLE. A fairly large field of maths, called optimisation,
exists for this sole purpose. Conventionally, in optimisation, one is interested in minimisation.
Therefore, the basic algorithms are cast in the “find the minimiser and the minimum” of a target
function f : R 7→ R. Since we are interested in maximising our target, which is the likelihood
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or log-likelihood function, say log(L(x1, . . . , xn; θ)) : ΘΘ 7→ R, we will simply apply the standard
optimisation algorithms directly to − log(L(x1, . . . , xn; θ)) : ΘΘ 7→ R.

The algorithm implemented in fminbnd is based on the golden section search and an inverse
parabolic interpolation, and attempts to find the minimum of a function of one variable within
a given fixed interval. Briefly, the golden section search proceeds by successively bracketing the
minimum of the target function within an acceptably small interval inside the given starting inter-
val [see Section 8.2 of Forsythe, G. E., M. A. Malcolm, and C. B. Moler, 1977, Computer Methods
for Mathematical Computations, Prentice-Hall]. Matlab’s fminbnd also relies on Brent’s inverse
parabolic interpolation [see Chapter 5 of Brent, Richard. P., 1973, Algorithms for Minimization
without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey]. Briefly, additional smoothness
conditions are assumed for the target function to aid in a faster bracketing strategy through poly-
nomial interpolations of past function evaluations. Matlab’s fminbnd has several limitations,
including:

• The likelihood function must be continuous.

• Only local MLE solutions, i.e. those inside the starting interval, are given.

• One needs to know or carefully guess the starting interval that contains the MLE.

• Matlab’s fminbnd exhibits slow convergence when the solution is on a boundary of the
starting interval.

Figure 9.1: Plot of log(L(1, 0, 0, 0, 1, 1, 0, 0, 1, 0; θ)) as a function of the parameter θ over the pa-
rameter space ΘΘ = [0, 1] and the MLE θ̂10 of 0.4 for the coin-tossing experiment.
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Labwork 31 (Coin-tossing experiment) The following script was used to study the coin-tossing
experiment in Matlab. The plot of the log-likelihood function and the numerical optimisation of
MLE are carried out using Matlab’s built-in function fminbnd (See Figure 9.1).

BernoulliMLE.m
% To simulate n coin tosses, set theta=probability of heads and n

% Then draw n IID samples from Bernoulli(theta) RV

% theta=0.5; n=20; x=floor(rand(1,n) + theta);

% enter data from a real coin tossing experiment

x=[1 0 0 0 1 1 0 0 1 0]; n=length(x);
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t = sum(x); % statistic t is the sum of the x_i values

% display the outcomes and their sum

display(x)

display(t)

% Analyticaly MLE is t/n

MLE=t/n

% l is the log-likelihood of data x as a function of parameter theta

l=@(theta)log(theta ^ t * (1-theta)^(n-t));

ThetaS=[0:0.001:1]; % sample some values for theta

% plot the log-likelihood function and MLE in two scales

subplot(1,2,1);

plot(ThetaS,arrayfun(l,ThetaS),’m’,’LineWidth’,2);

hold on; stem([MLE],[-89],’b--’); % plot MLE as a stem plot

subplot(1,2,2);

semilogx(ThetaS,arrayfun(l,ThetaS),’m’,’LineWidth’,2);

hold on; stem([MLE],[-89],’b--’); % plot MLE as a stem plot

% Now we will find the MLE by finding the minimiser or argmin of -l

% negative log-likelihood function of parameter theta

negl=@(theta)-(log(theta ^ t * (1-theta)^(n-t)));

% read help fminbnd

% you need to supply the function to be minimised and its search interval

% NumericalMLE = fminbnd(negl,0,1)

% to see the iteration in the numerical minimisation

NumericalMLE = fminbnd(negl,0,1,optimset(’Display’,’iter’))

>> BernoulliMLE

x = 1 0 0 0 1 1 0 0 1 0

t = 4

MLE = 0.4000

Func-count x f(x) Procedure

1 0.381966 6.73697 initial

2 0.618034 7.69939 golden

3 0.236068 7.3902 golden

4 0.408979 6.73179 parabolic

5 0.399339 6.73013 parabolic

6 0.400045 6.73012 parabolic

7 0.400001 6.73012 parabolic

8 0.399968 6.73012 parabolic

Optimisation terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04

NumericalMLE = 0.4000

Example 29 (MLE of an IID Exponential(λ∗) experiment) Let us derive the MLE Λ̂n of the
fixed and possibly unknown λ∗ for the IID experiment:

X1, . . . , Xn
IID∼ Exponential(λ∗), λ∗ ∈ ΛΛ = (0,∞) .

Note that ΛΛ is the parameter space.

We first obtain the log-likelihood function of λ for the data x1, x2, . . . , xn
IID∼ Exponential(λ).

`(λ) := log(L(x1, x2, . . . , xn;λ)) = log

(
n∏
i=1

f(xi;λ)

)
= log

(
n∏
i=1

λe−λxi

)
= log

(
λe−λx1 · λe−λx2 · · ·λe−λxn

)
= log

(
λne−λ

Pn
i=1 xi

)
= log (λn) + log

(
e−λ

Pn
i=1 xi

)
= log (λn)− λ

n∑
i=1

xi
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Now, let us take the derivative with respect to λ,

∂

∂λ
(`(λ)) :=

∂

∂λ

(
log (λn)− λ

n∑
i=1

xi

)
=

∂

∂λ
(log (λn))− ∂

∂λ

(
λ

n∑
i=1

xi

)

=
1
λn

∂

∂λ
(λn)−

n∑
i=1

xi =
1
λn
nλn−1 −

n∑
i=1

xi =
n

λ
−

n∑
i=1

xi .

Next, we set the derivative to 0, solve for λ, and set the solution equal to the ML estimate λ̂n.

0 =
∂

∂λ
(`(λ)) ⇐⇒ 0 =

n

λ
−

n∑
i=1

xi ⇐⇒
n∑
i=1

xi =
n

λ
⇐⇒ λ =

n∑n
i=1 xi

⇐⇒ λ̂n =
1
xn

.

Therefore, the ML estimate λ̂n of the unknown rate parameter λ∗ ∈ ΛΛ on the basis of n IID
observations x1, x2, . . . , xn

IID∼ Exponential(λ∗) is 1/xn and the ML estimator Λ̂n = 1/Xn. Let us
apply this ML estimator of the rate parameter for the supposedly exponentially distributed waiting
times at the on-campus Orbiter bus-stop.

Labwork 32 (Numerical MLE of λ from n IID Exponential(λ) RVs) Joshua Fenemore and
Yiran Wang collected data on waiting times between buses at an Orbiter bus-stop close to campus
and modelled the waiting times as IID Exponential(λ∗) RVs (http: // www. math. canterbury. ac.
nz/ ~ r. sainudiin/ courses/ STAT218/ projects/ Stat218StudentProjects2007. pdf ). We can
use their data sampleTimes to find the MLE of λ∗ under the assumption that the waiting times
X1, . . . , X132 are IID Exponential(λ∗). We find the ML estimate λ̂132 = 0.1102 and thus the esti-
mated mean waiting time is 1/λ̂132 = 9.0763 minutes. The estimated mean waiting time for a bus
to arrive is well within the 10 minutes promised by the Orbiter bus company. The following script
was used to generate the Figure 9.2:

ExponentialMLEOrbiter.m
% Joshu Fenemore’s Data from 2007 on Waiting Times at Orbiter Bust Stop

%The raw data -- the waiting times i minutes for each direction

antiTimes=[8 3 7 18 18 3 7 9 9 25 0 0 25 6 10 0 10 8 16 9 1 5 16 6 4 1 3 21 0 28 3 8 ...

6 6 11 8 10 15 0 8 7 11 10 9 12 13 8 10 11 8 7 11 5 9 11 14 13 5 8 9 12 10 13 6 11 13];

clockTimes=[0 0 11 1 9 5 14 16 2 10 21 1 14 2 10 24 6 1 14 14 0 14 4 11 15 0 10 2 13 2 22 ...

10 5 6 13 1 13 10 11 4 7 9 12 8 16 15 14 5 10 12 9 8 0 5 13 13 6 8 4 13 15 7 11 6 23 1];

sampleTimes=[antiTimes clockTimes];% pool all times into 1 array

% L = Log Likelihood of data x as a function of parameter lambda

L=@(lambda)sum(log(lambda*exp(-lambda * sampleTimes)));

LAMBDAS=[0.0001:0.01:1]; % sample some values for lambda

clf;

subplot(1,3,1);

plot(LAMBDAS,arrayfun(L,LAMBDAS)); % plot the Log Likelihood function

% Now we will find the Maximum Likelihood Estimator by finding the minimizer of -L

MLE = fminbnd(@(lambda)-sum(log(lambda*exp(-lambda * sampleTimes))),0.0001,1)

MeanEstimate=1/MLE

hold on; % plot the MLE

plot([MLE],[-1300],’r.’,’MarkerSize’,25); ylabel(’log-likelihood’); xlabel(’\lambda’);

subplot(1,3,2); % plot a histogram estimate

histogram(sampleTimes,1,[min(sampleTimes),max(sampleTimes)],’m’,2);

hold on; TIMES=[0.00001:0.01:max(sampleTimes)+20]; % points on support

plot(TIMES,MLE*exp(-MLE * TIMES ),’k-’) % plot PDF at MLE to compare with histogram

% compare the empirical DF to the best fitted DF

subplot(1,3,3)

ECDF(sampleTimes,5,0.0,20); hold on

plot(TIMES,ExponentialCdf(TIMES,MLE),’b-’)

ylabel(’DF or empirical DF’); xlabel(’support’);

http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/Stat218StudentProjects2007.pdf
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The script output the following in addition to the plot:

>> ExponentialMLEOrbiter

MLE = 0.1102

MeanEstimate = 9.0763

Figure 9.2: Plot of log(L(λ)) as a function of the parameter λ and the MLE λ̂132 of 0.1102 for
Fenemore-Wang Orbiter Waiting Times Experiment from STAT 218 S2 2007. The density or PDF
and the DF at the MLE of 0.1102 are compared with a histogram and the empirical DF.
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Notice how poorly the exponential PDF f(x; λ̂132 = 0.1102) and the DF F (x; λ̂132 = 0.1102) based
on the MLE fits with the histogram and the empirical DF, respectively. This is an indication of
the inadequacy of our parametric model. Partly this discrepancy is due to the resolution of the
the measurements being confined to whole minutes. We can overcome this problem by fitting a
minute-discretized PMF from the Exponential(λ) PDF. In the next Labwork, we simulate data
from an Exponential(λ∗ = 0.1) RV to conduct point estimation in the theoretically ideal setting.

Labwork 33 (MLE of the rate parameter for waiting times at my bus stop) Recall Lab-
work 19 where you modeled the arrival of buses at a bus stop using the IID Exponential(λ∗ = 0.1)
distributed inter-arrival times with a mean of 1/λ∗ = 10 minutes. Once again, seed the fun-
damental sampler by your Student ID (e.g. if your ID is 11424620 then type rand(’twister’,

11424620);), just before simulating the inter-arrival times of the next seven buses. Hand in the
following six items:
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1. Waiting times x1, x2, . . . , x7 between arrivals of the next seven buses at your ID-seeded bus
stop;

2. A plot of the empirical DF F̂n from your (simulated) data x1, x2, . . . , x7. [You may use the
Matlab function ECDF of Labwork 49)];

3. The first, second and third sample quartiles as well as the 0.20th sample quantile for your data
x1, x2, . . . , x7. [You may use the Matlab function qthSampleQuantile of Labwork 50];

4. Pretending that you did not know the true parameter (λ∗ = 0.1) used in the simulation,
produce the maximum likelihood estimate (ML estimate) λ̂7 from your seven observations
x1, x2, . . . , x7;

5. Plot the log-likelihood function for your data x1, x2, . . . , x7 as a function of the parameter λ;
and

6. Show that you have verified that the numerical optimisation routine fminbnd returns the
correct ML estimate λ̂7.

Figure 9.3: Comparing the Exponential(λ̂6128 = 28.6694) PDF and DF with a histogram and
empirical DF of the times (in units of days) between earth quakes in NZ. The epicentres of 6128
earth quakes are shown in left panel.
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Labwork 34 (Time between Earth Quakes in NZ) We model the time between 6128 earth-
quakes in NZ from 18-Jan-2008 02:23:44 to 18-Aug-2008 19:29:29 as:

X1, X2, . . . , X6128
IID∼ Exponential(λ∗) .

Then, the ML estimate of λ∗ = 1/x6128 = 1/0.0349 = 28.6694 as computed in the following script:

NZSIEarthQuakesExponentialMLE.m
%% The columns in earthquakes.csv file have the following headings

%%CUSP_ID,LAT,LONG,NZMGE,NZMGN,ORI_YEAR,ORI_MONTH,ORI_DAY,ORI_HOUR,ORI_MINUTE,ORI_SECOND,MAG,DEPTH

EQ=dlmread(’earthquakes.csv’,’,’); % load the data in the matrix EQ

size(EQ) % report thr size of the matrix EQ

% Read help datenum -- converts time stamps into numbers in units of days

MaxD=max(datenum(EQ(:,6:11)));% maximum datenum

MinD=min(datenum(EQ(:,6:11)));% minimum datenum

disp(’Earth Quakes in NZ between’)

disp(strcat(datestr(MinD),’ and ’,datestr(MaxD)))% print MaxD and MinD as a date string

% get an array of sorted time stamps of EQ events starting at 0

Times=sort(datenum(EQ(:,6:11))-MinD);

TimeDiff=diff(Times); % inter-EQ times = times between successtive EQ events

clf % clear any current figures

%figure

%plot(TimeDiff) % plot the inter-EQ times

subplot(1,3,1)

plot(EQ(:,3),EQ(:,2),’.’)

axis([164 182 -48 -34])

xlabel(’Longitude’); ylabel(’Latitude’);

subplot(1,3,2) % construct a histogram estimate of inter-EQ times

histogram(TimeDiff’,1,[min(TimeDiff),max(TimeDiff)],’r’,2);

SampleMean=mean(TimeDiff) % find the sample mean

% the MLE of LambdaStar if inter-EQ times are IID Exponential(LambdaStar)

MLELambdaHat=1/SampleMean

hold on;

TIMES=linspace(0,max(TimeDiff),100);

plot(TIMES,MLELambdaHat*exp(-MLELambdaHat*TIMES),’b.-’)

axis([0 0.5 0 30])

xlabel(’Inter-EQ times in days’); ylabel(’PDF’);

subplot(1,3,3)

[x y]=ECDF(TimeDiff,0,0,0); % get the coordinates for empirical DF

stairs(x,y,’r’,’linewidth’,1) % draw the empirical DF

hold on; plot(TIMES,ExponentialCdf(TIMES,MLELambdaHat),’b.-’);% plot the DF at MLE

axis([0 0.5 0 1])

xlabel(’Inter-EQ times in days’); ylabel(’DF’); legend(’EDF’,’ML DF’)

We first load the data in the text file earthquakes.csv into a matrix EQ. Using the datenum func-
tion in Matlab we transform the time stamps into a number starting at zero. These transformed
time stamps are in units of days. Then we find the times between consecutive events and esti-
mate a histogram. We finally compute the ML estimate of λ∗ and super-impose the PDF of the
Exponential(λ̂6128 = 28.6694) upon the histogram.

>> NZSIEarthQuakesExponentialMLE

ans = 6128 13

Earth Quakes in NZ between

18-Jan-2008 02:23:44 and18-Aug-2008 19:29:29

SampleMean = 0.0349

MLELambdaHat = 28.6694
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Thus, the average time between earth quakes is 0.0349 ∗ 24 ∗ 60 = 50.2560 minutes.

Figure 9.4: The ML fitted Rayleigh(α̂10 = 2) PDF and a histogram of the ocean wave heights.
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Labwork 35 (6.7, p. 275 of Ang & Tang) The distribution of ocean wave heights, H, may be
modeled with the Rayleigh(α) RV with parameter α and probability density function,

f(h;α) =
h

α2
exp

(
−1

2
(h/α)2

)
, h ∈ H := [0,∞) .

The parameter space for alpha is AA = (0,∞). Suppose that the following measurements h1, h2, . . . , h10

of wave heights in meters were observed to be

1.50, 2.80, 2.50, 3.20, 1.90, 4.10, 3.60, 2.60, 2.90, 2.30 ,

respectively. Under the assumption that the 10 samples are IID realisations from a Rayleigh(α∗)
RV with a fixed and unknown parameter α∗, find the ML estimate α̂10 of α∗.
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We first obtain the log-likelihood function of α for the data h1, h2, . . . , hn
IID∼ Rayleigh(α).

`(α) := log(L(h1, h2, . . . , hn;α)) = log

(
n∏
i=1

f(hi;α)

)
=

n∑
i=1

log(f(hi;α))

=
n∑
i=1

log
(
hi
α2
e−

1
2

(hi/α)2

)
=

n∑
i=1

(
log(hi)− 2 log(α)−1

2
(hi/α)2

)

=
n∑
i=1

(log(hi))− 2n log(α)−
n∑
i=1

(
1
2
h2
iα
−2

)
Now, let us take the derivative with respect to α,

∂

∂α
(`(α)) :=

∂

∂α

(
n∑
i=1

(log(hi))− 2n log(α)−
n∑
i=1

(
1
2
h2
iα
−2

))

=
∂

∂α

(
n∑
i=1

(log(hi))

)
− ∂

∂α
(2n log(α))− ∂

∂α

(
n∑
i=1

(
1
2
h2
iα
−2

))

= 0− 2n
1
α
−

n∑
i=1

(
1
2
h2
i (−2α−3)

)
= −2nα−1 + α−3

n∑
i=1

(
h2
i

)
Next, we set the derivative to 0, solve for α, and set the solution equal to the ML estimate α̂n.

0 =
∂

∂α
(`(α)) ⇐⇒ 0 = −2nα−1 + α−3

n∑
i=1

h2
i ⇐⇒ 2nα−1 = α−3

n∑
i=1

h2
i

⇐⇒ 2nα−1α3 =
n∑
i=1

h2
i ⇐⇒ α2 =

1
2n

n∑
i=1

h2
i ⇐⇒ α̂n =

√√√√ 1
2n

n∑
i=1

h2
i

Therefore, the ML estimate of the unknown α∗ ∈ AA on the basis of our 10 observations h1, h2, . . . , h10

of wave heights is

α̂10 =

√√√√ 1
2 ∗ 10

10∑
i=1

h2
i

=

√
1
20

(1.502 + 2.802 + 2.502 + 3.202 + 1.902 + 4.102 + 3.602 + 2.602 + 2.902 + 2.302) u 2

We use the following script file to compute the MLE α̂10 and plot the PDF at α̂10 in Figure 9.4.

RayleighOceanHeightsMLE.m
OceanHeights=[1.50, 2.80, 2.50, 3.20, 1.90, 4.10, 3.60, 2.60, 2.90, 2.30];% data

histogram(OceanHeights,1,[min(OceanHeights),max(OceanHeights)],’r’,2); % make a histogram

Heights=0:0.1:10; % get some heights for plotting

AlphaHat=sqrt(sum(OceanHeights .^ 2)/(2*length(OceanHeights))) % find the MLE

hold on; % superimpose the PDF at the MLE

plot(Heights,(Heights/AlphaHat^2) .* exp(-((Heights/AlphaHat).^2)/2))

xlabel(’Ocean Wave Heights’); ylabel(’Density’);

>> RayleighOceanHeightsMLE

AlphaHat = 2.0052
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9.3 Properties of the Maximum Likelihood Estimator

Next, we list some nice properties of the ML Estimator Θ̂n for the fixed and possibly unknown
θ∗ ∈ ΘΘ.

1. The ML Estimator is asymptotically consistent, i.e. Θ̂n
P−→ θ∗.

2. The ML Estimator is asymptotically normal, i.e. (Θ̂n − θ∗)/ŝen  Normal(0, 1).

3. The estimated standard error of the ML Estimator, ŝen, can usually be computed analytically
using the Fisher Information.

4. Because of the previous two properties, the 1 − α confidence interval can also be computed
analytically as Θ̂n ± zα/2ŝen.

5. The ML Estimator is equivariant, i.e. ψ̂n = g(θ̂n) is the ML Estimate of ψ∗ = g(θ∗), for
some smooth function g(θ) = ψ : ΘΘ 7→ ΨΨ.

6. We can also obtain the estimated standard error of the estimator Ψ̂n of ψ∗ ∈ ΨΨ via the Delta
Method.

7. The ML Estimator is asymptotically optimal or efficient. This means that the MLE
has the smallest variance among the well-behaved class of estimators as the sample size gets
larger.

8. ML Estimator is close to the Bayes estimator (obtained in the Bayesian inferential paradigm).

9.4 Fisher Information

Let X1, X2, . . . , Xn
IID∼ f(X1; θ). Here, f(X1; θ) is the probability density function (pdf) or the

probability mass function (pmf) of the RV X1. Since all RVs are identically distributed, we simply
focus on X1 without loss of generality.

Definition 47 (Fisher Information) The score function of an RV X for which the density is
parameterised by θ is defined as:

S(X; θ) :=
∂logf(X; θ)

∂θ
, and Eθ(S(X; θ)) = 0 .

The Fisher Information is

In := Vθ

(
n∑
i=1

S(Xi; θ)

)
=

n∑
i=1

Vθ (S(Xi; θ)) = nI1(θ), (9.1)

where I1 is the Fisher Information of just one of the RVs Xi,e.g. X:

I1(θ) := Vθ (S(X; θ)) = Eθ

(
S2(X, θ)

)
= −Eθ

(
∂2logf(X; θ)

∂2θ

)
=

−
∑

x∈X

(
∂2 log f(x;θ)

∂2θ

)
f(x; θ) for discrete X

−
∫
x∈X

(
∂2 log f(x;θ)

∂2θ

)
f(x; θ)dx for continuous X

(9.2)

Next, we give a general method for obtaining:
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1. The standard error sen(Θ̂n) of any maximum likelihood estimator Θ̂n of the possibly unknown
and fixed parameter of interest θ∗ ∈ ΘΘ, and

2. The 1− α confidence interval for θ∗.

Proposition 15 (Asymptotic Normality of the ML Estimator & Confidence Intervals)

Let Θ̂n be the maximum likelihood estimator of θ∗ ∈ ΘΘ with standard error sen :=
√

Vθ∗(Θ̂n). Un-
der appropriate regularity conditions, the following propositions are true:

1. The standard error sen can be approximated by the side of a square whose area is the inverse
Fisher Information at θ∗, and the distribution of Θ̂n approaches that of the Normal(θ∗, se2

n)
distribution as the samples size n gets larger. In other terms:

sen u
√

1/In(θ∗) and
Θ̂n − θ∗

sen
 Normal(0, 1)

2. The approximation holds even if we substitute the ML Estimate θ̂n for θ∗ and use the estimated

standard error ŝen instead of sen. Let ŝen =
√

1/In(θ̂n). Then:

Θ̂n − θ∗

ŝen
 Normal(0, 1)

3. Using the fact that Θ̂n  Normal(θ∗, ŝe2
n), we can construct the estimate of an approximate

Normal-based 1− α confidence interval as:

Cn = [Cn, Cn] = [θ̂n − zα/2ŝen, θ̂n + zα/2ŝen] = θ̂n ± zα/2ŝen

Now, let us do an example.

Example 30 (MLE and Confidence Interval for the IID Poisson(λ) experiment) Suppose
the fixed parameter λ∗ ∈ ΛΛ = (0,∞) is unknown. Let X1, X2, . . . , Xn

IID∼ Poisson(λ∗). We want to
find the ML Estimate λ̂n of λ∗ and produce a 1− α confidence interval for λ∗.

The MLE can be obtained as follows:

The likelihood function is:

L(λ) := L(x1, x2, . . . , xn;λ) =
n∏
i=1

f(xi;λ) =
n∏
i=1

e−λ
λxi
xi!

Hence, the log-likelihood function is:

`(θ) := log(L(λ)) = log

(
n∏
i=1

e−λ
λxi

xi!

)
=

n∑
i=1

log
(
e−λ

λxi

xi!

)
=

n∑
i=1

(
log(e−λ) + log(λxi)− log(xi!)

)
=

n∑
i=1

(−λ+ xi log(λ)− log(xi!)) =
n∑
i=1

−λ+
n∑
i=1

xi log(λ)−
n∑
i=1

log(xi!)

= n(−λ) + log(λ)

(
n∑
i=1

xi

)
−

n∑
i=1

log(xi!)
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Next, take the derivative of `(λ):

∂

∂λ
`(λ) =

∂

∂λ

(
n(−λ) + log(λ)

(
n∑
i=1

xi

)
−

n∑
i=1

log(xi!)

)
= n(−1) +

1
λ

(
n∑
i=1

xi

)
+ 0

and set it equal to 0 to solve for λ, as follows:

0 = n(−1) +
1
λ

(
n∑
i=1

xi

)
+ 0 ⇐⇒ n =

1
λ

(
n∑
i=1

xi

)
⇐⇒ λ =

1
n

(
n∑
i=1

xi

)
= xn

Finally, the ML Estimator of λ∗ is Λ̂n = Xn and the ML estimate is λ̂n = xn.

Now, we want an 1 − α confidence interval for λ∗ using the ŝen u
√

1/In(λ̂n) that is based
on the Fisher Information In(λ) = nI1(λ) given in (9.1). We need I1 given in (9.2). Since
X1, X2, . . . , Xn ∼ Poisson(λ), we have discrete RVs:

I1 = −
∑
x∈X

(
∂2 log(f(x;λ))

∂2λ

)
f(x;λ) = −

∞∑
x=0

(
∂2 log(f(x;λ))

∂2λ

)
f(x;λ)

First find

∂2 log(f(x;λ))
∂2λ

=
∂

∂λ

(
∂

∂λ
log (f(x;λ))

)
=

∂

∂λ

(
∂

∂λ
log
(
e−λ

λx

x!

))
=

∂

∂λ

(
∂

∂λ
(−λ+ x log(λ)− log(x!))

)
=

∂

∂λ

(
−1 +

x

λ
− 0
)

= − x

λ2

Now, substitute the above expression into the right-hand side of I1 to obtain:

I1 = −
∞∑
x=0

(
− x

λ2

)
f(x;λ) =

1
λ2

∞∑
x=0

(x) f(x;λ) =
1
λ2

∞∑
x=0

(x) e−λ
λx

x!
=

1
λ2

Eλ(X) =
1
λ2
λ =

1
λ

In the third-to-last step above, we recognise the sum as the expectation of the Poisson(λ) RV X,
namely Eλ(X) = λ. Therefore, the estimated standard error is:

ŝen u
√

1/In(λ̂n) =
√

1/(nI1(λ̂n)) =
√

1/(n(1/λ̂n)) =
√
λ̂n/n

and the approximate 1− α confidence interval is

λ̂n ± zα/2ŝen = λ̂n ± zα/2
√
λ̂n/n

Thus, using the MLE and the estimated standard error via the Fisher Information, we can carry
out point estimation and confidence interval construction in most parametric families of RVs
encountered in typical engineering applications.

Example 31 (Fisher Information of the Bernoulli Experiment) Suppose X1, X2, . . . , Xn
IID∼

Bernoulli(θ∗). Also, suppose that θ∗ ∈ ΘΘ = [0, 1] is unknown. We have already shown in Exam-
ple 28 that the ML estimator of θ∗ is θ̂n = Xn. Using the identity:

ŝen =
1√
In(θ̂n)
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(1) we can compute ŝen(Θ̂n), the estimated standard error of the unknown parameter θ∗ as follows:

ŝen(Θ̂n) =
1√
In(θ̂n)

=
1√

nI1(θ̂n)
.

So, we need to first compute I1(θ), the Fisher Information of one sample. Due to (9.2) and the
fact that the Bernoulli(θ∗) distributed RV X is discrete with probability mass function f(x; θ) =
θx(1− θ)1−x, for x ∈ X := {0, 1}, we have,

I1(θ) = −Eθ

(
∂2logf(X; θ)

∂2θ

)
= −

∑
x∈X={0,1}

(
∂2 log

(
θx(1− θ)1−x)
∂2θ

)
θx(1− θ)1−x

Next, let us compute,

∂2 log
(
θx(1− θ)1−x)
∂2θ

:=
∂

∂θ

(
∂

∂θ

(
log
(
θx(1− θ)1−x))) =

∂

∂θ

(
∂

∂θ
(x log(θ) + (1− x) log(1− θ))

)
=

∂

∂θ

(
xθ−1 + (1− x)(1− θ)−1(−1)

)
=

∂

∂θ

(
xθ−1 − (1− x)(1− θ)−1

)
= x(−1)θ−1−1 − (1− x)(−1)(1− θ)−1−1(−1) = −xθ−2 − (1− x)(1− θ)−2

Now, we compute the expectation I1, i.e. the sum over the two possible values of x ∈ {0, 1},

I1(θ) = −
∑

x∈X={0,1}

(
∂2 log

(
θx(1− θ)1−x)
∂2θ

)
θx(1− θ)1−x

= −
((
−0 θ−2 − (1− 0)(1− θ)−2

)
θ0(1− θ)1−0 +

(
−1 θ−2 − (1− 1)(1− θ)−2

)
θ1(1− θ)1−1

)
= −

((
0− 1(1− θ)−2

)
1 (1− θ)1 +

(
−θ−2 − 0

)
θ1 1

)
= (1− θ)−2(1− θ)1 + θ−2θ1

= (1− θ)−1 + θ−1 =
1

1− θ
+

1
θ

=
θ

θ(1− θ)
+

1− θ
θ(1− θ)

=
θ + (1− θ)
θ(1− θ)

=
1

θ(1− θ)

Therefore, the desired estimated standard error of our estimator, can be obtained by substituting
the ML estimate θ̂n = xn := n−1

∑n
i=1 xi of the unknown θ∗ as follows:

ŝen(θ̂n) =
1√
In(θ̂n)

=
1√

nI1(θ̂n)
=
√

1
n 1bθn(1−bθn)

=

√
θ̂n(1− θ̂n)

n
=

√
xn(1− xn)

n
.

(2) Using ŝen(θ̂n) we can construct an approximate 95% confidence interval Cn for θ∗, due to the
asymptotic normality of the ML estimator of θ∗, as follows:

Cn = θ̂n ± 1.96

√
θ̂n(1− θ̂n)

n
= xn ± 1.96

√
xn(1− xn)

n

Recall that Cn is the realisation of a random set based on your observed samples or data x1, x2, . . . , xn.
Furthermore, Cn’s construction procedure ensures the engulfing of the unknown θ∗ with probability
approaching 0.95 as the sample size n gets large.

Example 32 ([Fisher Information of the Exponential Experiment) ] Let us get our hands
dirty with a continuous RV next. Let X1, X2, . . . , Xn

IID∼ Exponential(λ∗). We saw that the ML
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estimator of λ∗ ∈ ΛΛ = (0,∞) is Λ̂n = 1/Xn and its ML estimate is λ̂n = 1/xn, where x1, x2, . . . , xn
are our observed data.

(1) Let us obtain the Fisher Information In for this experiment to find the standard error:

ŝen(Λ̂n) =
1√

In(λ̂n)
=

1√
nI1(λ̂n)

and construct an approximate 95% confidence interval for λ∗ using the asymptotic normality of its
ML estimator Λ̂n.

So, we need to first compute I1(θ), the Fisher Information of one sample. Due to (9.2) and the
fact that the Exponential(λ∗) distributed RV X is continuous with probability density function
f(x;λ) = λe−λx, for x ∈ X := [0,∞), we have,

I1(θ) = −Eθ

(
∂2logf(X; θ)

∂2θ

)
= −

∫
x∈X=[0,∞)

(
∂2 log

(
λe−λx

)
∂2λ

)
λe−λx dx

Let us compute the above integrand next.

∂2 log
(
λe−λx

)
∂2λ

:=
∂

∂λ

(
∂

∂λ

(
log
(
λe−λx

)))
=

∂

∂λ

(
∂

∂λ

(
log(λ) + log(e−λx

))
=

∂

∂λ

(
∂

∂λ
(log(λ)− λx)

)
=

∂

∂λ

(
λ−1 − x

)
= −λ−2 − 0 = − 1

λ2

Now, let us evaluate the integral by recalling that the expectation of the constant 1 is 1 for any
RV X governed by some parameter, say θ. For instance when X is a continuous RV, Eθ(1) =∫
x∈X 1 f(x; θ) =

∫
x∈X f(x; θ) = 1. Therefore, the Fisher Information of one sample is

I1(θ) = −
∫
x∈X=[0,∞)

(
∂2 log

(
λe−λx

)
∂2λ

)
λe−λx dx = −

∫ ∞
0

(
− 1
λ2

)
λe−λx dx

= −
(
− 1
λ2

)∫ ∞
0

λe−λx dx =
1
λ2

1 =
1
λ2

Now, we can compute the desired estimated standard error, by substituting in the ML estimate
λ̂n = 1/(xn) := 1/ (

∑n
i=1 xi) of λ∗, as follows:

ŝen(Λ̂n) =
1√

In(λ̂n)
=

1√
nI1(λ̂n)

=
1√
n 1bλ2

n

=
λ̂n√
n

=
1√
n xn

Using ŝen(λ̂n) we can construct an approximate 95% confidence interval Cn for λ∗, due to the
asymptotic normality of the ML estimator of λ∗, as follows:

Cn = λ̂n ± 1.96
λ̂n√
n

=
1
xn
± 1.96

1√
n xn

.

Let us compute the ML estimate and the 95% confidence interval for the rate parameter for the
waiting times at the Orbiter bus-stop (see labwork 32). The sample mean x132 = 9.0758 and the
ML estimate is:

λ̂132 = 1/x132 = 1/9.0758 = 0.1102 ,
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and the 95% confidence interval is:

Cn = λ̂132 ± 1.96
λ̂132√

132
=

1
x132

± 1.96
1√

132 x132

= 0.1102± 1.96 · 0.0096 = [0.0914, 0.1290] .

Notice how poorly the exponential PDF f(x; λ̂132 = 0.1102) and the DF F (x; λ̂132 = 0.1102) based
on the MLE fits with the histogram and the empirical DF, respectively, in Figure 9.5, despite taking
the the confidence interval into account. This is a further indication of the inadequacy of our
parametric model.

Figure 9.5: Plot of log(L(λ)) as a function of the parameter λ, the MLE λ̂132 = 0.1102 and 95%
confidence interval Cn = [0.0914, 0.1290] for Fenemore-Wang Orbiter Waiting Times Experiment
from STAT 218 S2 2007. The PDF and the DF at (1) the MLE 0.1102 (black), (2) lower 95%
confidence bound 0.0914 (red) and (3) upper 95% confidence bound 0.1290 (blue) are compared
with a histogram and the empirical DF.
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Labwork 36 The above analysis was undertaken with the following M-file:

ExponentialMLECIOrbiter.m
OrbiterData; % load the Orbiter Data sampleTimes

% L = Log Likelihood of data x as a function of parameter lambda

L=@(lambda)sum(log(lambda*exp(-lambda * sampleTimes)));

LAMBDAS=[0.01:0.01:1]; % sample some values for lambda
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clf;

subplot(1,3,1);

semilogx(LAMBDAS,arrayfun(L,LAMBDAS)); % plot the Log Likelihood function

axis([0.05 0.25 -500 -400])

SampleMean = mean(sampleTimes) % sample mean

MLE = 1/SampleMean % ML estimate is 1/mean

n=length(sampleTimes) % sample size

StdErr=1/(sqrt(n)*SampleMean) % Standard Error

MLE95CI=[MLE-(1.96*StdErr), MLE+(1.96*StdErr)] % 95 % CI

hold on; % plot the MLE

plot([MLE], [-500],’k.’,’MarkerSize’,25);

plot([MLE95CI(1)],[-500],’r.’,’MarkerSize’,25);

plot([MLE95CI(2)],[-500],’b.’,’MarkerSize’,25);

ylabel(’log-likelihood’); xlabel(’\lambda’);

subplot(1,3,2); % plot a histogram estimate

histogram(sampleTimes,1,[min(sampleTimes),max(sampleTimes)],’m’,2);

hold on; TIMES=[0.00001:0.01:max(sampleTimes)+20]; % points on support

% plot PDF at MLE and 95% CI to compare with histogram

plot(TIMES,MLE*exp(-MLE*TIMES),’k-’)

plot(TIMES,MLE*exp(-MLE95CI(1)*TIMES),’r-’); plot(TIMES,MLE*exp(-MLE95CI(2)*TIMES),’b-’)

% compare the empirical DF to the best fitted DF at MLE and 95% CI

subplot(1,3,3)

ECDF(sampleTimes,5,0.0,20); hold on; plot(TIMES,ExponentialCdf(TIMES,MLE),’k-’);

plot(TIMES,ExponentialCdf(TIMES,MLE95CI(1)),’r-’); plot(TIMES,ExponentialCdf(TIMES,MLE95CI(2)),’b-’)

ylabel(’DF or empirical DF’); xlabel(’support’);

A call to the script generates Figure 9.5 and the following output of the sample mean, MLE, sample
size, standard error and the 95% confidence interval.

>> ExponentialMLECIOrbiter

SampleMean = 9.0758

MLE = 0.1102

n = 132

StdErr = 0.0096

MLE95CI = 0.0914 0.1290

Labwork 37 Recall labwork 19 where you modeled the arrival of buses using Exponential(λ∗ = 0.1)
distributed inter-arrival time with a mean of 1/λ∗ = 10 minutes. Using the data of these seven
inter-arrival times at your ID-seeded bus stop and pretending that you do not know the true λ∗,
report (1) the ML estimate of λ∗, (2) 95% confidence interval for it and (3) whether the true value
λ∗ = 1/10 is engulfed by your confidence interval.

9.5 Delta Method

A more general estimation problem of interest concerns some function of the parameter θ ∈ ΘΘ, say
g(θ) = ψ : ΘΘ 7→ ΨΨ. So, g(θ) = ψ is a function from the parameter space ΘΘ to ΨΨ. Thus, we are
not only interested in estimating the fixed and possibly unknown θ∗ ∈ ΘΘ using the ML estimator
Θ̂n and its ML estimate θ̂n, but also in estimating ψ∗ = g(θ∗) ∈ ΨΨ via an estimator Ψ̂n and its
estimate ψ̂n. We exploit the equivariance property of the ML estimator Θ̂n of θ∗ and use the Delta
method to find the following analytically:

1. The ML estimator of ψ∗ = g(θ∗) ∈ ΨΨ is

Ψ̂n = g(Θ̂n)
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and its point estimate is

ψ̂n = g(θ̂n)

2. Suppose g(θ) = ψ : ΘΘ 7→ ΨΨ is any smooth function of θ, i.e. g is differentiable, and
g′(θ) := ∂

∂θg(θ) 6= 0. Then, the distribution of the ML estimator Ψ̂n is asymptotically

Normal(ψ∗, ŝen(Ψ̂n)
2
), i.e.:

Ψ̂n − ψ∗

ŝen(Ψ̂n)
 Normal(0, 1)

where the standard error ŝen(Ψ̂n) of the ML estimator Ψ̂n of the unknown quantity ψ∗ ∈ ΨΨ
can be obtained from the standard error ŝen(Θ̂n) of the ML estimator Θ̂n of the parameter
θ∗ ∈ ΘΘ, as follows:

ŝen(Ψ̂n) = |g′(θ̂n)|ŝen(Θ̂n)

3. Using Normal(ψ∗, ŝen(Ψ̂n)
2
), we can construct the estimate of an approximate Normal-based

1− α confidence interval for ψ∗ ∈ ΨΨ:

Cn = [Cn, Cn] = ψ̂n ± zα/2ŝen(ψ̂n)

Let us do an example next.

Example 33 Let X1, X2, . . . , Xn
IID∼ Bernoulli(θ∗). Let ψ = g(θ) = log(θ/(1 − θ)). Suppose we

are interested in producing a point estimate and confidence interval for ψ∗ = g(θ∗). We can use
the Delta method as follows:

First, the estimated standard error of the ML estimator of θ∗, as shown in Example 31, is

ŝen(Θ̂n) =

√
θ̂n(1− θ̂n)

n
.

The ML estimator of ψ∗ is:
Ψ̂n = log(Θ̂n/(1− Θ̂n))

and the ML estimate of ψ∗ is:
ψ̂n = log(θ̂n/(1− θ̂n)) .

Since, g′(θ) = 1/(θ(1− θ)), by the Delta method, the estimated standard error of the ML estimator
of ψ∗ is:

ŝen(Ψ̂n) = |g′(θ̂n)|(ŝen(Θ̂n)) =
1

θ̂n(1− θ̂n)

√
θ̂n(1− θ̂n)

n
=

1√
nθ̂n(1− θ̂n)

=
1√

nxn(1− xn)
.

An approximate 95% confidence interval for ψ∗ = log(θ∗/(1− θ∗)) is:

ψ̂n ±
1.96√

nθ̂n(1− θ̂n)
= log(θ̂n/(1− θ̂n))± 1.96√

nθ̂n(1− θ̂n)
= log(xn/(1− xn))± 1.96√

nxn(1− xn)
.
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Example 34 (Delta Method for a Normal Experiment) Let us try the Delta method on a
continuous RV. Let X1, X2, . . . , Xn

IID∼ Normal(µ∗, σ∗2). Suppose that µ∗ is known and σ∗ is
unknown. Let us derive the ML estimate ψ̂n of ψ∗ = log(σ∗) and a 95% confidence interval for it
in 6 steps.

(1) First let us find the log-likelihood function `(σ)

`(σ) := log(L(σ)) := log(L(x1, x2, . . . , xn;σ)) = log

(
n∏
i=1

f(xi;σ)

)
=

n∑
i=1

log (f(xi;σ))

=
n∑
i=1

log
(

1
σ
√

2π
exp

(
− 1

2σ2
(xi − µ)2

))
∵ f(xi;σ) in (6.9) is pdf of Normal(µ, σ2) RV with known µ

=
n∑
i=1

(
log
(

1
σ
√

2π

)
+ log

(
exp

(
− 1

2σ2
(xi − µ)2

)))

=
n∑
i=1

log
(

1
σ
√

2π

)
+

n∑
i=1

(
− 1

2σ2
(xi − µ)2

)
= n log

(
1

σ
√

2π

)
+
(
− 1

2σ2

) n∑
i=1

(xi − µ)2

= n

(
log
(

1√
2π

)
+ log

(
1
σ

))
−
(

1
2σ2

) n∑
i=1

(xi − µ)2

= n log
(√

2π
−1
)

+ n log
(
σ−1

)
−
(

1
2σ2

) n∑
i=1

(xi − µ)2

= −n log
(√

2π
)
− n log (σ)−

(
1

2σ2

) n∑
i=1

(xi − µ)2

(2) Let us find its derivative with respect to the unknown parameter σ next.

∂

∂σ
`(σ) :=

∂

∂σ

(
−n log

(√
2π
)
− n log (σ)−

(
1

2σ2

) n∑
i=1

(xi − µ)2

)

=
∂

∂σ

(
−n log

(√
2π
))
− ∂

∂σ
(n log (σ))− ∂

∂σ

((
1

2σ2

) n∑
i=1

(xi − µ)2

)

= 0− n ∂

∂σ
(log(σ))−

(
1
2

n∑
i=1

(xi − µ)2

)
∂

∂σ

(
σ−2

)
= −nσ−1 −

(
1
2

n∑
i=1

(xi − µ)2

)(
−2σ−3

)
= −nσ−1 + σ−3

n∑
i=1

(xi − µ)2

(3) Now, let us set the derivative equal to 0 and solve for σ.

0 = −nσ−1 + σ−3
n∑
i=1

(xi − µ)2 ⇐⇒ nσ−1 = σ−3
n∑
i=1

(xi − µ)2 ⇐⇒ nσ−1σ+3 =
n∑
i=1

(xi − µ)2

⇐⇒ nσ−1+3 =
n∑
i=1

(xi − µ)2 ⇐⇒ nσ2 =
n∑
i=1

(xi − µ)2

⇐⇒ σ2 =

(
n∑
i=1

(xi − µ)2

)
/n ⇐⇒ σ =

√√√√ n∑
i=1

(xi − µ)2/n

Finally, we set the solution, i.e. the maximiser of the concave-down log-likelihood function of σ with
a known and fixed µ∗ as our ML estimate σ̂n =

√∑n
i=1(xi − µ∗)2/n. Analogously, the ML estimator
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of σ∗ is Σ̂n =
√∑n

i=1(Xi − µ∗)2/n. Don’t confuse Σ, the upper-case sigma, with
∑n

i=1©i, the
summation over some ©i’s. This is usually clear from the context.

(4) Next, let us get the estimated standard error ŝen for the estimator of σ∗ via Fisher Information.
The Log-likelihood function of σ, based on one sample from the Normal(µ, σ2) RV with known µ is,

log f(x;σ) = log
(

1
σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

))
= − log

(√
2π
)
− log (σ)−

(
1

2σ2

)
(x− µ)2

Therefore, in much the same way as in part (2) earlier,

∂2 log f(x;σ)
∂2σ

:=
∂

∂σ

(
∂

∂σ

(
− log

(√
2π
)
− log (σ)−

(
1

2σ2

)
(x− µ)2

))
=

∂

∂σ

(
−σ−1 + σ−3(x− µ)2

)
= σ−2 − 3σ−4(x− µ)2

Now, we compute the Fisher Information of one sample as an expectation of the continuous RV X

over X = (−∞,∞) with density f(x;σ),

I1(σ) = −
∫
x∈X=(−∞,∞)

(
∂2 log f(x;σ)

∂2λ

)
f(x;σ) dx = −

∫ ∞
−∞

(
σ−2 − 3σ−4(x− µ)2

)
f(x;σ) dx

=
∫ ∞
−∞
−σ−2f(x;σ) dx+

∫ ∞
−∞

3σ−4(x− µ)2f(x;σ) dx

= −σ−2

∫ ∞
−∞

f(x;σ) dx+ 3σ−4

∫ ∞
−∞

(x− µ)2f(x;σ) dx

= −σ−2 + 3σ−4σ2 ∵ σ2 = V(X) = E(X −E(X))2 =
∫ ∞
−∞

(x− µ)2f(x;σ) dx

= −σ−2 + 3σ−4+2 = −σ−2 + 3σ−2 = 2σ−2

Therefore, the estimated standard error of the estimator of the unknown σ∗ is

ŝen(Σ̂n) =
1√

In(σ̂n)
=

1√
nI1(σ̂n)

=
1√

n2σ−2
=

σ√
2n

.

(5) Given that ψ = g(σ) = log(σ), we derive the estimated standard error of ψ∗ = log(σ∗) via the
Delta method as follows:

ŝen(Ψ̂n) = |g′(σ)|ŝen(Σ̂n) =
∣∣∣∣ ∂∂σ log(σ)

∣∣∣∣ σ√
2n

=
1
σ

σ√
2n

=
1√
2n

.

(6) Finally, the 95% confidence interval for ψ∗ is ψ̂n ± 1.96ŝen(Ψ̂n) = log(σ̂n)± 1.96 1√
2n

.



Chapter 10

Non-parametric DF Estimation

So far, we have been interested in some estimation problems involved in parametric experiments.
In parametric experiments, the parameter space ΘΘ can have many dimensions, but these are finite.
For example, in the n IID Bernoulli(θ∗) and the n IID Exponential(λ∗) experiments:

X1, . . . , Xn
IID∼ Bernoulli(θ∗), θ∗ ∈ ΘΘ = [0, 1] ⊂ R1 ,

X1, . . . , Xn
IID∼ Exponential(λ∗), λ∗ ∈ ΛΛ = (0,∞) ⊂ R1 ,

the parameter spaces ΘΘ and ΛΛ are of dimension 1. Similarly, in the n IID Normal(µ, σ2) and the
n IID Lognormal(λ, ζ), experiments:

X1, . . . , Xn
IID∼ Normal(µ, σ2), (µ, σ2) ∈ ΘΘ = (−∞,+∞)× (0,+∞) ⊂ R2

X1, . . . , Xn
IID∼ Lognormal(λ, ζ), (λ, ζ) ∈ ΘΘ = (0,+∞)× (0,+∞) ⊂ R2

the parameter space is of dimension 2.

An experiment with an infinite dimensional parameter space ΘΘ is said to be non-parametric .
Next we consider a non-parametric experiment in which n IID samples are drawn according to
some fixed and possibly unknown DF F ∗ from the space of All Distribution Functions:

X1, X2, . . . , Xn
IID∼ F ∗, F ∗ ∈ ΘΘ = {All DFs} := {F (x;F ) : F is a DF }

where the DF F (x;F ) is indexed or parameterised by itself. Thus, the parameter space ΘΘ =
{All DFs} is the infinite dimensional space of All DFs. In this section, we look at estimation
problems in non-parametric experiments with an infinite dimensional parameter space. That is, we
want to estimate the DF F ∗ from which our IID data are drawn.

The next proposition is often referred to as the fundamental theorem of statistics and is at the
heart of non-parametric inference, empirical processes, and computationally intensive bootstrap
techniques. Recall Definition 30 of the n-sample empirical distribution function (EDF or ECDF)
F̂n that assigns a probability mass of 1/n at each data point xi:

F̂n(x) =
∑n

i=1 11(Xi ≤ x)
n

, where 11(Xi ≤ x) :=

{
1 if xi ≤ x
0 if xi > x

Proposition 16 (Gilvenko-Cantelli Theorem) Let X1, X2, . . . , Xn
IID∼ F ∗. Then:

sup
x
|F̂n(x)− F ∗(x)| P−→ 0 .

148
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Figure 10.1: Plots of ten distinct ECDFs F̂n based on 10 sets of n IID samples from Uniform(0, 1)
RV X, as n increases from 10 to 100 to 1000. The DF F (x) = x over [0, 1] is shown in red. The
script of Labwork 55 was used to generate this plot.

Heuristic Interpretation of the Gilvenko-Cantelli Theorem: As the sample size n increases,
the empirical distribution function F̂n converges to the true DF F ∗ in probability, as shown in
Figure 10.1.

Proposition 17 (The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality) Let X1, X2, . . . , Xn
IID∼

F ∗. Then, for any ε > 0:

P

(
sup
x
|F̂n(x)− F ∗(x)| > ε

)
≤ 2 exp (−2nε2) (10.1)

Recall that sup(A) or supremum of a set A ⊂ R is the least upper bound of every element in A.

10.1 Estimating DF

Let X1, X2, . . . , Xn
IID∼ F ∗, where F ∗ is some particular DF in the space of all possible DFs,

i.e. the experiment is non-parametric. Then, based on the data sequence X1, X2, . . . , Xn we want
to estimate F ∗.

For any fixed value of x, the expectation and variance of the empirical DF (10.1) are:

E
(
F̂n(x)

)
= F ∗(x) =⇒ biasn

(
F̂n(x)

)
= 0 (10.2)

V
(
F̂n(x)

)
=

F ∗(x)(1− F ∗(x))
n

=⇒ lim
n→∞

sen
(
F̂n(x)

)
= 0 (10.3)

Therefore, by Proposition 13, the empirical DF evaluated at x, i.e. F̂n(x) is an asymptotically
consistent estimator of the DF evaluated at x, i.e. F ∗(x). More formally, (10.2) and (10.3), by
Proposition 13, imply that for any fixed value of x:

F̂n(x) P−→ F ∗(x) .

We are interested in a point estimate of the entire DF F ∗, i.e. F ∗(x) over all x. A point estimator
Tn = Tn(X1, X2, . . . , Xn) of a fixed and possibly unknown F ∈ {All DFs} is the empirical DF F̂n.
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This estimator has an asymptotically desirable property:

sup
x
|F̂n(x)− F ∗(x)| P−→ 0

because of the Gilvenko-Cantelli theorem in Proposition 16. Thus, we can simply use F̂n, based on
the realized data (x1, x2, . . . , xn), as a point estimate of F ∗.

On the basis of the DKW inequality (10.1), we can obtain a 1 − α confidence set or confidence
band Cn(x) := [C n(x), C n(x)] about our point estimate of F ∗:

C n(x) = max{F̂n(x)− εn, 0},
C n(x) = min{F̂n(x) + εn, 1},

εn =

√
1

2n
log
(

2
α

)
. (10.4)

It follows from (10.1) that for any fixed and possibly unknown F ∗:

P
(
C n(x) ≤ F ∗(x) ≤ C n(x)

)
≥ 1− α .

Let us look at a simple example next.

Labwork 38 (Estimating the DF of Uniform(0, 1) RV) Consider the problem of estimating the
DF of Uniform(0, 1) RV U on the basis of n=10 samples. We use the function ECDF of Lab-
work 49 and Matlab’s built-in function stairs to render the plots. Figure 10.2 was generated by
PlotUniformECDFsConfBands.m given below.

PlotUniformECDFsConfBands.m
% script PlotUniformECDFsConfBands.m to plot the ECDF from 10 and 100 samples

% from Uniform(0,1) RV

rand(’twister’,76534); % initialize the Uniform(0,1) Sampler

N = 3; % 10^N is the maximum number of samples from Uniform(0,1) RV

u = rand(1,10^N); % generate 1000 samples from Uniform(0,1) RV U

% plot the ECDF from the first 10 samples using the function ECDF

for i=1:N

SampleSize=10^i;

subplot(1,N,i)

% Get the x and y coordinates of SampleSize-based ECDF in x1 and y1 and

% plot the ECDF using the function ECDF

if (i==1) [x1 y1] = ECDF(u(1:SampleSize),2,0.2,0.2);

else

[x1 y1] = ECDF(u(1:SampleSize),0,0.1,0.1);

stairs(x1,y1,’k’);

end

% Note PlotFlag is 1 and the plot range of x-axis is

% incremented by 0.1 or 0.2 on either side due to last 2 parameters to ECDF

% being 0.1 or 0.2

Alpha=0.05; % set alpha to 5% for instance

Epsn = sqrt((1/(2*SampleSize))*log(2/Alpha)); % epsilon_n for the confidence band

hold on;

stairs(x1,max(y1-Epsn,zeros(1,length(y1))),’g’); % lower band plot

stairs(x1,min(y1+Epsn,ones(1,length(y1))),’g’); % upper band plot

axis([-0.1 1.1 -0.1 1.1]);

axis square;

x=[0:0.001:1];

plot(x,x,’r’); % plot the DF of Uniform(0,1) RV in red

LabelString=[’n=’ num2str(SampleSize)];

text(0.75,0.05,LabelString)

hold off;

end



CHAPTER 10. NON-PARAMETRIC DF ESTIMATION 151

Figure 10.2: The empirical DFs F̂ (1)
n from sample size n = 10, 100, 1000 (black), is the point

estimate of the fixed and known DF F (x) = x, x ∈ [0, 1] of Uniform(0, 1) RV (red). The 95%
confidence band for each F̂n are depicted by green lines.
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Next we look at a more interesting example involving real-world data.

Labwork 39 (Non-parametric Estimation of the DF of Times Between Earth Quakes)
Suppose that the 6, 128 observed times between Earth quakes in NZ between 18-Jan-2008 02:23:44
and 18-Aug-2008 19:29:29 are:

X1, . . . , X6128
IID∼ F ∗, F ∗ ∈ {all DFs} .

Then the non-parametric point estimate of the unknown F ∗ is F̂6128, the ECDF of the inter earth
quake times. We plot the non-parametric point estimate as well as the 95% confidence bands for
F ∗ in Figure 10.3.

Figure 10.3: The empirical DF F̂6128 for the inter earth quake times and the 95% confidence bands
for the non-parametric experiment.
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NZSIEQTimesECDFsConfBands.m
%% The columns in earthquakes.csv file have the following headings

%%CUSP_ID,LAT,LONG,NZMGE,NZMGN,ORI_YEAR,ORI_MONTH,ORI_DAY,ORI_HOUR,ORI_MINUTE,ORI_SECOND,MAG,DEPTH

EQ=dlmread(’earthquakes.csv’,’,’); % load the data in the matrix EQ

size(EQ) % report thr size of the matrix EQ

% Read help datenum -- converts time stamps into numbers in units of days

MaxD=max(datenum(EQ(:,6:11)));% maximum datenum

MinD=min(datenum(EQ(:,6:11)));% minimum datenum

% get an array of sorted time stamps of EQ events starting at 0

Times=sort(datenum(EQ(:,6:11))-MinD);

TimeDiff=diff(Times); % inter-EQ times = times between successtive EQ events

n=length(TimeDiff); %sample size

clf % clear any current figures

%% Non-parametric Estimation X_1,X_2,...,X_132 ~ IID F

[x y] = ECDF(TimeDiff,0,0,0); % get the coordinates for empirical DF
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stairs(x,y,’k’,’linewidth’,1) % draw the empirical DF

hold on;

% get the 5% non-parametric confidence bands

Alpha=0.05; % set alpha to 5% for instance

Epsn = sqrt((1/(2*n))*log(2/Alpha)); % epsilon_n for the confidence band

stairs(x,max(y-Epsn,zeros(1,length(y))),’g’); % non-parametric 95% lower confidence band

stairs(x,min(y+Epsn,ones(1,length(y))),’g’); % non-parametric 95% upper confidence band

plot(TimeDiff,zeros(1,n),’+’)

axis([0 0.5 0 1])

xlabel(’Inter-EQ times in days’); ylabel(’Empirical DF’);

legend(’Non-Param. Point Estim.’,’Non-Param.95% Lower Conf. band’,’Non-Param. 95% Upper Conf. Band’,’data’)

Recall the poor fit of the Exponential PDF at the MLE for the Orbiter waiting time data. We can
attribute the poor fit to coarse resolution of the waiting time measurements in minutes and the
rigid decaying form of the exponential PDFs. Let us revisit the Orbiter waiting time problem with
our non-parametric estimator.

Labwork 40 (Non-parametric Estimation of Orbiter Waiting Times DF) Suppose that the
waiting times at the Orbiter bus stop are:

X1, . . . , X132
IID∼ F ∗, F ∗ ∈ {all DFs} .

Then the non-parametric point estimate of F ∗ is F̂132, the ECDF of the 132 Orbiter waiting times.
We compute and plot the non-parametric point estimate as well as the 95% confidence bands for

Figure 10.4: The empirical DF F̂132 for the Orbiter waiting times and the 95% confidence bands
for the non-parametric experiment.
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the unknown DF F ∗ beside the parametric estimate and 95% confidence bands from Labwork 36.
Clearly, the non-parametric estimate is preferable to the parametric one for this example. Notice
how the non-parametric confidence bands do not contain the parametric estimate of the DF.
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OrbiterECDFsConfBands.m
OrbiterData; % load the Orbiter Data sampleTimes

clf; % clear any current figures

%% Parametric Estimation X_1,X_2,...,X_132 ~ IID Exponential(lambda)

SampleMean = mean(sampleTimes) % sample mean

MLE = 1/SampleMean % ML estimate is 1/mean

n=length(sampleTimes) % sample size

StdErr=1/(sqrt(n)*SampleMean) % Standard Error

MLE95CI=[MLE-(1.96*StdErr), MLE+(1.96*StdErr)] % 95 % CI

TIMES=[0.00001:0.01:max(sampleTimes)+10]; % points on support

plot(TIMES,ExponentialCdf(TIMES,MLE),’k-.’); hold on; % Parametric Point Estimate

plot(TIMES,ExponentialCdf(TIMES,MLE95CI(1)),’r-.’);% Normal-based Parametric 95% lower C.I.

plot(TIMES,ExponentialCdf(TIMES,MLE95CI(2)),’b-.’);% Normal-based Parametric 95% upper C.I.

ylabel(’DF or empirical DF’); xlabel(’Waiting Times in Minutes’);

%% Non-parametric Estimation X_1,X_2,...,X_132 ~ IID F

[x1 y1] = ECDF(sampleTimes,0,0.0,10); stairs(x1,y1,’k’);% plot the ECDF

% get the 5% non-parametric confidence bands

Alpha=0.05; % set alpha to 5% for instance

Epsn = sqrt((1/(2*n))*log(2/Alpha)); % epsilon_n for the confidence band

stairs(x1,max(y1-Epsn,zeros(1,length(y1))),’r--’); % non-parametric 95% lower confidence band

stairs(x1,min(y1+Epsn,ones(1,length(y1))),’b--’); % non-parametric 95% upper confidence band

axis([0 40 -0.1 1.05]);

legend(’Param. Point Estim.’,’Param.95% Lower Conf. band’,’Param. 95% Upper Conf. Band’,...

’Non-Param. Point Estim.’,’Non-Param.95% Lower Conf. band’,’Non-Param. 95% Upper Conf. Band’)

Example 35 First take a look at Data 1 to understand how the web login times to our Maths &
Stats Department’s web server (or requests to our WWW server) were generated. Figure 10.5 shows
the login times in units of seconds over a 24 hour period starting at 0357 hours and 30 seconds (just
before 4:00AM) on October 1st, 2007 (red line) and on October 2nd, 2007 (magenta). If we assume

Figure 10.5: The empirical DFs F̂ (1)
n1 with n1 = 56485, for the web log times starting October 1,

and F̂
(2)
n2 with n2 = 53966, for the web log times starting October 2. Their 95% confidence bands

are indicated by the green.
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that some fixed and unknown DF F (1) specifies the distribution of login times for October 1st data
and another DF F (2) for October 2nd data, then the non-parametric point estimates of F (1) and
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F (2) are simply the empirical DFs F̂ (1)
n1 with n1 = 56485 and F̂

(2)
n2 with n2 = 53966, respectively,

as depicted in Figure 10.5. See the script of WebLogDataProc.m in Data 1 to appreciate how the
ECDF plots in Figure 10.5 were made.

10.2 Plug-in Estimators of Statistical Functionals

Recall from Chapter 5 that a statistical functional is simply any function of the DF F . For
example, the median T (F ) = F [−1](1/2) is a statistical functional. Thus, T (F ) : {All DFs } 7→ T,
being a map or function from the space of DFs to its range T, is a functional. The idea behind the
plug-in estimator for a statistical functional is simple: just plug-in the point estimate F̂n instead
of the unknown DF F ∗ to estimate the statistical functional of interest.

Definition 48 (Plug-in Estimator) Suppose, X1, . . . , Xn
IID∼ F ∗. The plug-in estimator of a

statistical functional of interest, namely, T (F ∗), is defined by:

T̂n := T̂n(X1, . . . , Xn) = T (F̂n) .

Definition 49 (Linear Functional) If T (F ) =
∫
r(x)dF (x) for some function r(x) : X 7→ R,

then T is called a linear functional. Thus, T is linear in its arguments:

T (aF + a′F ′) = aT (F ) + a′T (F ′) .

Proposition 18 The plug-in estimator for a linear functional T =
∫
r(x)dF (x) is:

T (F̂n) =
∫
r(x)dF̂n(x) =

1
n

n∑
i=1

r(Xi) .

Some specific examples of statistical linear functionals we have already seen include:

1. The mean of RV X ∼ F is a function of the DF F :

T (F ) = E(X) =
∫
x dF (x) .

2. The variance of RV X ∼ F is a function of the DF F :

T (F ) = E(X −E(X))2 =
∫

(x−E(X))2 dF (x) .

3. The value of DF at a given x ∈ R of RV X ∼ F is also a function of DF F :

T (F ) = F (x) .

4. The qth quantile of RV X ∼ F :

T (F ) = F [−1](q) where q ∈ [0, 1] .

5. The first quartile or the 0.25th quantile of the RV X ∼ F :

T (F ) = F [−1](0.25) .
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6. The median or the second quartile or the 0.50th quantile of the RV X ∼ F :

T (F ) = F [−1](0.50) .

7. The third quartile or the 0.75th quantile of the RV X ∼ F :

T (F ) = F [−1](0.75) .

Labwork 41 (Plug-in Estimate for Median of Web Login Data) Compute the plug-in es-
timates for the median for each of the data arrays:

WebLogSeconds20071001035730 and WebLogSeconds20071002035730

that can be loaded into memory by following the commands in the first 13 lines of the script file
WebLogDataProc.m of Data 1.

Labwork 42 (Plug-in Estimates of Times Between Earth Quakes) Compute the plug-in es-
timates for the median and mean time in minutes between earth quakes in NZ using the data in
earthquakes.csv.

NZSIEQTimesPlugInEstimates.m
%% The columns in earthquakes.csv file have the following headings

%%CUSP_ID,LAT,LONG,NZMGE,NZMGN,ORI_YEAR,ORI_MONTH,ORI_DAY,ORI_HOUR,ORI_MINUTE,ORI_SECOND,MAG,DEPTH

EQ=dlmread(’earthquakes.csv’,’,’); % load the data in the matrix EQ

% Read help datenum -- converts time stamps into numbers in units of days

MaxD=max(datenum(EQ(:,6:11)));% maximum datenum

MinD=min(datenum(EQ(:,6:11)));% minimum datenum

% get an array of sorted time stamps of EQ events starting at 0

Times=sort(datenum(EQ(:,6:11))-MinD);

TimeDiff=diff(Times); % inter-EQ times = times between successtive EQ events

n=length(TimeDiff); %sample size

PlugInMedianEstimate=median(TimeDiff) % plug-in estimate of median

PlugInMedianEstimateMinutes=PlugInMedianEstimate*24*60 % median estimate in minutes

PlugInMeanEstimate=mean(TimeDiff) % plug-in estimate of mean

PlugInMeanEstimateMinutes=PlugInMeanEstimate*24*60 % mean estimate in minutes

>> NZSIEQTimesPlugInEstimates

PlugInMedianEstimate = 0.0177

PlugInMedianEstimateMinutes = 25.5092

PlugInMeanEstimate = 0.0349

PlugInMeanEstimateMinutes = 50.2278

Note that any statistical functional can be estimated using the plug-in estimator. However, to
produce a 1 − α confidence set for the plug-in point estimate, we need bootstrap methods. The
subject of next chapter.



Chapter 11

Bootstrap

The bootstrap is a statistical method for estimating standard errors and confidence sets of statis-
tics, such as estimators.

11.1 Non-parametric Bootstrap for Confidence Sets

Let Tn := Tn((X1, X2, . . . , Xn)) be a statistic, i.e. any function of the data X1, X2, . . . , Xn
IID∼ F ∗.

Suppose we want to know its variance VF ∗(Tn), which clearly depends on the fixed and possibly
unknown DF F ∗.

If our statistic Tn is one with an analytically unknown variance, then we can use the bootstrap to
estimate it. The bootstrap idea has the following two basic steps:

Step 1: Estimate VF ∗(Tn) with V bFn(Tn).

Step 2: Approximate V bFn(Tn) using simulated data from the “Bootstrap World.”

For example, if Tn = Xn, in Step 1, V bFn(Tn) = s2
n/n, where s2

n = n−1
∑n

i=1(xi − xn) is the sample
variance and xn is the sample mean. In this case, Step 1 is enough. However, when the statistic
Tn is more complicated (e.g. Tn = X̃n = F [−1](0.5)), the sample median, then we may not be able
to find a simple expression for V bFn(Tn) and may need Step 2 of the bootstrap.

Real World Data come from F ∗ =⇒ X1, X2, . . . , Xn =⇒ Tn((X1, X2, . . . , Xn)) = tn

Bootstrap World Data come from F̂n =⇒ X•1 , X
•
2 , . . . , X

•
n =⇒ Tn((X•1 , X

•
2 , . . . , X

•
n)) = t•n

Observe that drawing an observation from the ECDF F̂n is equivalent to drawing one point at
random from the original data (think of the indices [n] := {1, 2, . . . , n} of the original data
X1, X2, . . . , Xn being drawn according to the equi-probable de Moivre(1/n, 1/n, . . . , 1/n) RV on
[n]). Thus, to simulate X•1 , X

•
2 , . . . , X

•
n from F̂n, it is enough to drawn n observations with replace-

ment from X1, X2, . . . , Xn.

In summary, the algorithm for Bootstrap Variance Estimation is:

Step 1: Draw X•1 , X
•
2 , . . . , X

•
n ∼ F̂n

Step 2: Compute t•n = Tn((X•1 , X
•
2 , . . . , X

•
n))

156
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Step 3: Repeat Step 1 and Step 2 B times, for some large B, say B > 1000, to get t•n,1, t
•
n,2, . . . , t

•
n,B

Step 4: Several ways of estimating the bootstrap confidence intervals are possible:

(a) The 1− α Normal-based bootstrap confidence interval is:

Cn = [Tn − zα/2ŝeboot, Tn + zα/2ŝeboot] ,

where the bootstrap-based standard error estimate is:

ŝeboot =
√
vboot =

√√√√ 1
B

B∑
b=1

(
t•n,b −

1
B

B∑
r=1

t•n,r

)2

(b) The 1− α percentile-based bootstrap confidence interval is:

Cn = [Ĝ•
−1

n (α/2), Ĝ•
−1

n (1− α/2)],

where Ĝ•n is the empirical DF of the bootstrapped t•n,1, t
•
n,2, . . . , t

•
n,B and Ĝ•

−1

n (q) is the
qth sample quantile (5.9) of t•n,1, t

•
n,2, . . . , t

•
n,B.

Labwork 43 (Confidence Interval for Median Estimate of Inter Earth Quake Times) Let
us find the 95% Normal-based bootstrap confidence interval as well as the 95% percentile-based boot-
strap confidence interval for our plug-in estimate of the median of inter earth quake times from
Labwork 42 using the following script:

NZSIEQTimesMedianBootstrap.m
%% The columns in earthquakes.csv file have the following headings

%%CUSP_ID,LAT,LONG,NZMGE,NZMGN,ORI_YEAR,ORI_MONTH,ORI_DAY,ORI_HOUR,ORI_MINUTE,ORI_SECOND,MAG,DEPTH

EQ=dlmread(’earthquakes.csv’,’,’); % load the data in the matrix EQ

% Read help datenum -- converts time stamps into numbers in units of days

MaxD=max(datenum(EQ(:,6:11)));% maximum datenum

MinD=min(datenum(EQ(:,6:11)));% minimum datenum

% get an array of sorted time stamps of EQ events starting at 0

Times=sort(datenum(EQ(:,6:11))-MinD);

TimeDiff=diff(Times); % inter-EQ times = times between successtive EQ events

n=length(TimeDiff) %sample size

Medianhat=median(TimeDiff)*24*60 % plug-in estimate of median in minutes

B= 1000 % Number of Bootstrap replications

% REPEAT B times: PROCEDURE of sampling n indices uniformly from 1,...,n with replacement

BootstrappedDataSet = TimeDiff([ceil(n*rand(n,B))]);

size(BootstrappedDataSet) % dimension of the BootstrappedDataSet

BootstrappedMedians=median(BootstrappedDataSet)*24*60; % get the statistic in Bootstrap world

% 95% Normal based Confidence Interval

SehatBoot = std(BootstrappedMedians); % std of BootstrappedMedians

% 95% C.I. for median from Normal approximation

ConfInt95BootNormal = [Medianhat-1.96*SehatBoot, Medianhat+1.96*SehatBoot]

% 95% Percentile based Confidence Interval

ConfInt95BootPercentile = ...

[qthSampleQuantile(0.025,sort(BootstrappedMedians)),...

qthSampleQuantile(0.975,sort(BootstrappedMedians))]

We get the following output when we call the script file.

>> NZSIEQTimesMedianBootstrap

n = 6127

Medianhat = 25.5092

B = 1000

ans = 6127 1000

ConfInt95BootNormal = 24.4383 26.5800

ConfInt95BootPercentile = 24.4057 26.4742
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Labwork 44 (Confidence Interval for Median Estimate of Web Login Data) Find the 95%
Normal-based bootstrap confidence interval as well as the 95% percentile-based bootstrap confidence
interval for our plug-in estimate of the median for each of the data arrays:

WebLogSeconds20071001035730 and WebLogSeconds20071002035730 .

Once again, the arrays can be loaded into memory by following the commands in the first 13 lines
of the script file WebLogDataProc.m of Section 1. Produce four intervals (two for each data-set).
Do the confidence intervals for the medians for the two days intersect?

>> WebLogDataProc % load in the data

>> Medianhat = median(WebLogSeconds20071001035730) % plug-in estimate of median

Medianhat = 37416

>> % store the length of data array

>> K=length(WebLogSeconds20071001035730)

K = 56485

>> B= 1000 % Number of Bootstrap replications

B = 1000

>> BootstrappedDataSet = WebLogSeconds20071001035730([ceil(K*rand(K,B))]);

>> size(BootstrappedDataSet) % dimension of the BootstrappedDataSet

ans = 56485 1000

>> BootstrappedMedians=median(BootstrappedDataSet); % get the statistic in Bootstrap world

>> % 95% Normal based Confidence Interval

>> SehatBoot = std(BootstrappedMedians); % std of BootstrappedMedians

>> % 95% C.I. for median from Normal approximation

>> ConfInt95BootNormal = [Medianhat-1.96*SehatBoot, Medianhat+1.96*SehatBoot]

ConfInt95BootNormal = 37242 37590

>> % 95% Percentile based Confidence Interval

ConfInt95BootPercentile = ...

[qthSampleQuantile(0.025,sort(BootstrappedMedians)),...

qthSampleQuantile(0.975,sort(BootstrappedMedians))]

ConfInt95BootPercentile = 37239 37554

Labwork 45 (Confidence interval for correlation) Here is a classical data set used by Bradley
Efron (the inventor of bootstrap) to illustrate the method. The data are LSAT (Law School Admis-
sion Test in the U.S.A.) scores and GPA of fifteen individuals.

Thus, we have bivariate data of the form (Yi, Zi), where Yi = LSATi and Zi = GPAi. For example,
the first individual had an LSAT score of y1 = 576 and a GPA of z1 = 3.39 while the fifteenth
individual had an LSAT score of y15 = 594 and a GPA of z15 = 3.96. We supose that the bivariate
data (Yi, Zi)

IID∼ F ∗, such that F ∗ ∈ {all bivariate DFs}. This is a bivariate non-parametric
experiment. The bivariate data are plotted in Figure .

The law school is interested in the correlation between the GPA and LSAT scores:

θ∗ =
∫ ∫

(y −E(Y ))(z −E(Z))dF (y, z)√∫
(y −E(Y ))2dF (y)

∫
(z −E(Z))2dF (z)

The plug-in estimate of the population correlation θ∗ is the sample correlation:

Θ̂n =
∑n

i=1(Yi − Y n)(Zi − Zn)√∑n
i=1(Yi − Y n)2

∑n
i=1(Zi − Zn)2

%% Data from Bradley Efron’s LSAT,GPA correlation estimation

LSAT=[576 635 558 578 666 580 555 661 651 605 653 575 545 572 594]; % LSAT data
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GPA=[3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13 3.12 2.74 2.76 2.88 3.96]; % GPA data

subplot(1,2,1); plot(LSAT,GPA,’o’); xlabel(’LSAT’); ylabel(’GPA’) % make a plot of the data

CC=corrcoef(LSAT,GPA); % use built-in function to compute sample correlation coefficient matrix

SampleCorrelation=CC(1,2) % plug-in estimate of the correlation coefficient

%% Bootstrap

B = 1000; % Number of Bootstrap replications

BootstrappedCCs=zeros(1,B); % initialise a vector of zeros

N = length(LSAT); % sample size

rand(’twister’,767671); % initialise the fundamental sampler

for b=1:B

Indices=ceil(N*rand(N,1));% uniformly sample random indices from 1 to 15 with replacement

BootstrappedLSAT = LSAT([Indices]); % bootstrapped LSAT data

BootstrappedGPA = GPA([Indices]); % bootstrapped GPA data

CCB=corrcoef(BootstrappedLSAT,BootstrappedGPA);

BootstrappedCCs(b)=CCB(1,2); % sample correlation of bootstrapped data

end

%plot the histogram ofBootstrapped Sample Correlations with 15 bins

subplot(1,2,2);hist(BootstrappedCCs,15);xlabel(’Bootstrapped Sample Correlations’)

% 95% Normal based Confidence Interval

SehatBoot = std(BootstrappedCCs); % std of BootstrappedMedians

% 95% C.I. for median from Normal approximation

ConfInt95BootNormal = [SampleCorrelation-1.96*SehatBoot, SampleCorrelation+1.96*SehatBoot]

% 95% Percentile based Confidence Interval

ConfInt95BootPercentile = ...

[qthSampleQuantile(0.025,sort(BootstrappedCCs)),...

qthSampleQuantile(0.975,sort(BootstrappedCCs))]

We get the following output when we call the script file.

>> LSATGPACorrBootstap

SampleCorrelation = 0.5459

ConfInt95BootNormal = 0.1770 0.9148

ConfInt95BootPercentile = 0.2346 0.9296

11.2 Parametric Bootstrap for Confidence Sets

The bootstrap may also be employed for estimating standard errors and confidence sets of statis-
tics, such as estimators, even in a parametric setting. This is much easier than the the variance
calculation based on Fisher Information and/or the Delta method.

The only difference in the parametric bootstrap as opposed to the non-parametric bootstrap
we saw earlier is that our statistic of interest Tn := Tn((X1, X2, . . . , Xn)) is a function of the data:

X1, X2, . . . , Xn
IID∼ F (x; θ∗) .

That is, our data come from a parametric distribution F (x; θ∗) and we want to know the variance
of our statistic Tn, i.e. Vθ∗(Tn).

The parametric bootstrap concept has the following two basic steps:

Step 1: Estimate Vθ∗(Tn) with Vbθn(Tn), where θ̂n is an estimate of θ∗ based on maximum likelihood
or the method of moments.

Step 2: Approximate Vbθn(Tn) using simulated data from the “Bootstrap World.”
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Figure 11.1: Data from Bradley Efrons LSAT and GPA scores for fifteen individuals (left). The
confidence interval of the sample correlation, the plug-in estimate of the population correlation, is
obtained from the sample correlation of one thousand bootstrapped data sets (right).
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For example, if Tn = Xn, the sample mean, then in Step 1, Vbθn(Tn) = n−1
∑n

i=1(xi − xn) is the
sample variance. Thus, in this case, Step 1 is enough. However, when the statistic Tn is more
complicated, say Tn = X̃n = F [−1](0.5), the sample median, then we may not be able to write
down a simple expression for Vbθn(Tn) and may need Step 2 of the bootstrap.

Real World Data come from F (θ∗) =⇒ X1, X2, . . . , Xn =⇒ Tn((X1, X2, . . . , Xn)) = tn

Bootstrap World Data come from F (θ̂n) =⇒ X•1 , X
•
2 , . . . , X

•
n =⇒ Tn((X•1 , X

•
2 , . . . , X

•
n)) = t•n

To simulate X•1 , X
•
2 , . . . , X

•
n from F (θ̂n), we must have a simulation algorithm that allows us to

draw IID samples from F (θ), for instance the inversion sampler. In summary, the algorithm for
Bootstrap Variance Estimation is:

Step 1: Draw X•1 , X
•
2 , . . . , X

•
n ∼ F (θ̂n)

Step 2: Compute t•n = Tn((X•1 , X
•
2 , . . . , X

•
n))

Step 3: Repeat Step 1 and Step 2 B times, for some large B, say B ≥ 1000, to get t•n,1, t
•
n,2, . . . , t

•
n,B

Step 4: We can estimate the bootstrap confidence intervals in several ways:

(a) The 1− α normal-based bootstrap confidence interval is:

Cn = [Tn − zα/2ŝeboot, Tn + zα/2ŝeboot] ,

where the bootstrap-based standard error estimate is:

ŝeboot =
√
vboot =

√√√√ 1
B

B∑
b=1

(
t•n,b −

1
B

B∑
r=1

t•n,r

)2
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(b) The 1− α percentile-based bootstrap confidence interval:

Cn = [Ĝ•
−1

n (α/2), Ĝ•
−1

n (1− α/2)],

where Ĝ•n is the empirical DF of the bootstrapped t•n,1, t
•
n,2, . . . , t

•
n,B and Ĝ•

−1

n (q) is the
qth sample quantile (5.9) of t•n,1, t

•
n,2, . . . , t

•
n,B.

Let us apply the bootstrap method to the previous problem of estimating the standard error of the
coefficient of variation from n = 100 samples from Normal(100, 102) RV. The confidence intervals
from bootstrap-based methods are similar to those from the Delta method.

CoeffOfVarNormalBoot.m
n=100; Mustar=100; Sigmastar=10; % sample size, true mean and standard deviation

rand(’twister’,67345);

x=arrayfun(@(u)(Sample1NormalByNewRap(u,Mustar,Sigmastar^2)),rand(n,1)); % normal samples

Muhat=mean(x) Sigmahat=std(x) Psihat=Sigmahat/Muhat % MLE of Mustar, Sigmastar and Psistar

Sehat = sqrt((1/Muhat^4)+(Sigmahat^2/(2*Muhat^2)))/sqrt(n) % standard error estimate

% 95% Confidence interval by Delta Method

ConfInt95DeltaMethod=[Psihat-1.96*Sehat, Psihat+1.96*Sehat] % 1.96 since 1-alpha=0.95

B = 1000; % B is number of bootstrap replications

% Step 1: draw n IID samples in Bootstrap World from Normal(Muhat,Sigmahat^2)

xBoot = arrayfun(@(u)(Sample1NormalByNewRap(u,Muhat,Sigmahat^2)),rand(n,B));

% Step 2: % Compute Bootstrapped Statistic Psihat

PsihatBoot = std(xBoot) ./ mean(xBoot);

% 95% Normal based Confidence Interval

SehatBoot = std(PsihatBoot); % std of PsihatBoot

ConfInt95BootNormal = [Psihat-1.96*SehatBoot, Psihat+1.96*SehatBoot] % 1-alpha=0.95

% 95% Percentile based Confidence Interval

ConfInt95BootPercentile = ...

[qthSampleQuantile(0.025,sort(PsihatBoot)),qthSampleQuantile(0.975,sort(PsihatBoot))]

>> CoeffOfVarNormal

Muhat = 100.3117

Sigmahat = 10.9800

Psihat = 0.1095

Sehat = 0.0077

ConfInt95DeltaMethod = 0.0943 0.1246

ConfInt95BootNormal = 0.0943 0.1246

ConfInt95BootPercentile = 0.0946 0.1249



Chapter 12

Hypothesis Testing

The subset of all posable hypotheses that remain falsifiable is the space of scientific hypothe-
ses. Roughly, a falsifiable hypothesis is one for which a statistical experiment can be designed to
produce data that an experimenter can use to falsify or reject it. In the statistical decision prob-
lem of hypothesis testing, we are interested in empirically falsifying a scientific hypothesis, i.e. we
attempt to reject an hypothesis on the basis of empirical observations or data. Thus, hypothesis
testing has its roots in the philosophy of science and is based on Karl Popper’s falsifiability criterion
for demarcating scientific hypotheses from the set of all posable hypotheses.

12.1 Introduction

Usually, the hypothesis we attempt to reject or falsify is called the null hypothesis or H0 and its
complement is called the alternative hypothesis or H1. For example, consider the following two
hypotheses:

H0: The average waiting time at an Orbiter bus stop is less than or equal to 10 minutes.
H1: The average waiting time at an Orbiter bus stop is more than 10 minutes.

If the sample mean xn is much larger than 10 minutes then we may be inclined to reject the null
hypothesis that the average waiting time is less than or equal to 10 minutes. We will learn to
formally test hypotheses in the sequel.

Suppose we are interested in the following hypothesis test for the bus-stop problem:

H0: The average waiting time at an Orbiter bus stop is equal to 10 minutes.
H1: The average waiting time at an Orbiter bus stop is not 10 minutes.

Once again we can use the sample mean as the test statistic. Our procedure for rejecting this null
hypothesis is different and is often called the Wald test.

More generally, suppose X1, X2, . . . , Xn
IID∼ F (x1; θ∗), with an unknown and fixed θ∗ ∈ ΘΘ. Let

us partition the parameter space ΘΘ into ΘΘ0, the null parameter space, and ΘΘ1, the alternative
parameter space, ie,

ΘΘ0 ∪ΘΘ1 = ΘΘ, and ΘΘ0 ∩ΘΘ1 = ∅ .
Then, we can formalise testing the null hypothesis versus the alternative as follows:

H0 : θ∗ ∈ ΘΘ0 versus H1 : θ∗ ⊂ ΘΘ1 .

The basic idea involves finding an appropriate rejection region XR within the data space X and
rejecting H0 if the observed data x := (x1, x2, . . . , xn) falls inside the rejection region XR,

If x := (x1, x2, . . . , xn) ∈ XR ⊂ X, then reject H0, else do not reject H0.

162



CHAPTER 12. HYPOTHESIS TESTING 163

Typically, the rejection region XR is of the form:

XR := {x := (x1, x2, . . . , xn) : T (x) > c}

where, T is the test statistic and c is the critical value. Thus, the problem of finding XR boils
down to that of finding T and c that are appropriate. Once the rejection region is defined, the
possible outcomes of a hypothesis test are summarised in the following table.

Table 12.1: Outcomes of an hypothesis test.
Do not Reject H0 Reject H0

H0 is True OK Type I Error
H1 is True Type II Error OK

Definition 50 (Power, Size and Level of a Test) The power function of a test with rejec-
tion region XR is

β(θ) := Pθ(x ∈ XR) . (12.1)

So β(θ) is the power of the test at the parameter value θ, i.e. the probability that the observed data
x, sampled from the distribution specified by θ, falls in XR and thereby leads to a rejection of the
null hypothesis.

The size of a test with rejection region XR is the supreme power under the null hypothesis, i.e. the
supreme probability of rejecting the null hypothesis when the null hypothesis is true:

size := sup
θ∈ΘΘ0

β(θ) := sup
θ∈ΘΘ0

Pθ(x ∈ XR) . (12.2)

The size of a test is often denoted by α. A test is said to have level α if its size is less than or equal
to α.

Let us familiarize ourselves with some terminology in hypothesis testing next.

Table 12.2: Some terminology in hypothesis testing.
ΘΘ Test: H0 versus H1 Nomenclature

ΘΘ ⊂ Rm,m ≥ 1 H0 : θ∗ = θ0 versus H1 : θ∗ 6= θ1 Simple Hypothesis Test
ΘΘ ⊂ Rm,m ≥ 1 H0 : θ∗ ∈ ΘΘ0 versus H1 : θ∗ ∈ ΘΘ1 Composite Hypothesis Test

ΘΘ ⊂ R1 H0 : θ∗ = θ0 versus H1 : θ∗ 6= θ0 Two-sided Hypothesis Test
ΘΘ ⊂ R1 H0 : θ∗ ≥ θ0 versus H1 : θ∗ < θ0 One-sided Hypothesis Test
ΘΘ ⊂ R1 H0 : θ∗ ≤ θ0 versus H1 : θ∗ > θ0 One-sided Hypothesis Test

We introduce some widely used tests next.

12.2 The Wald Test

The Wald test is based on a direct relationship between the 1− α confidence interval and a size α
test. It can be used for testing simple hypotheses involving a scalar parameter.
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Definition 51 (The Wald Test) Let Θ̂n be an asymptotically normal estimator of the fixed and
possibly unknown parameter θ∗ ∈ ΘΘ ⊂ R in the parametric IID experiment:

X1, X2, . . . , Xn
IID∼ F (x1; θ∗) .

Consider testing:
H0 : θ∗ = θ0 versus H1 : θ∗ 6= θ0 .

Suppose that the null hypothesis is true and the estimator Θ̂n of θ∗ = θ0 is asymptotically normal:

θ∗ = θ0,
Θ̂n − θ0

ŝen
 Normal(0, 1) .

Then, the Wald test based on the test statistic W is:

Reject H0 when |W | > zα/2, where W := W ((X1, . . . , Xn)) =
Θ̂n((X1, . . . , Xn))− θ0

ŝen
.

The rejection region for the Wald test is:

XR = {x := (x1, . . . , xn) : |W (x1, . . . , xn)| > zα/2} .

Proposition 19 As the sample size n approaches infinity, the size of the Wald test approaches α :

size = Pθ0

(
|W | > zα/2

)
→ α .

Proof: Let Z ∼ Normal(0, 1). The size of the Wald test, i.e. the supreme power under H0 is:

size := sup
θ∈ΘΘ0

β(θ) := sup
θ∈{θ0}

Pθ(x ∈ XR) = Pθ0(x ∈ XR)

= Pθ0

(
|W | > zα/2

)
= Pθ0

(
|θ̂n − θ0|

ŝen
> zα/2

)
→ P

(
|Z| > zα/2

)
= α .

Next, let us look at the power of the Wald test when the null hypothesis is false.

Proposition 20 Suppose θ∗ 6= θ0. The power β(θ∗), which is the probability of correctly rejecting
the null hypothesis, is approximately equal to:

Φ
(
θ0 − θ∗

ŝen
− zα/2

)
+
(

1− Φ
(
θ0 − θ∗

ŝen
+ zα/2

))
,

where, Φ is the DF of Normal(0, 1) RV. Since ŝen → 0 as n → 0 the power increase with sample
size n. Also, the power increases when |θ0 − θ∗| is large.

Now, let us make the connection between the size α Wald test and the 1 − α confidence interval
explicit.
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Proposition 21 The size α Wald test rejects:

H0 : θ∗ = θ0 versus H1 : θ∗ 6= θ0 if and only if θ0 /∈ Cn := (θ̂n − ŝenzα/2, θ̂n + ŝenzα/2).

Therefore, testing the hypothesis is equivalent to verifying whether the null value θ0 is in the confi-
dence interval.

Example 36 Let us use the Wald test to attempt to reject the null hypothesis that the mean waiting
time at our Orbiter bus-stop is 10 minutes under an IID Exponential(λ∗) model. Let α = 0.05 for
this test. We can formulate this test as follows:

H0 : λ∗ = λ0 =
1
10

versus H1 : λ∗ 6= 1
10
, where, X1 . . . , X132

IID∼ Exponential(λ∗) .

Based on Example 32 and Labwork 36 we obtained the 95% confidence interval to be [0.0914, 0.1290].
Since our null value λ0 = 0.1 belongs to this confidence interval, we fail to reject the null hypothesis
from a size α = 0.05 Wald test.

We can use bootstrap-based confidence interval Cn in conjunction with Wald test as shown by the
next example.

Example 37 Recall the problem of estimating the confidence interval for the correlation coefficient
between the LSAT scores (Y1, . . . , Y15) and the GPA (Z1, . . . , Z15) in Labwork 45. We assumed that
the bivariate data (Yi, Zi)

IID∼ F ∗, such that F ∗ ∈ {all bivariate DFs}. Suppose we are interested
in testing the null hypothesis that the true correlation coefficient θ∗ is 0:

H0 : θ∗ = θ0 = 0 versus H1 : θ∗ 6= 0, where θ∗ =
∫ ∫

(y −E(Y ))(z −E(Z))dF (y, z)√∫
(y −E(Y ))2dF (y)

∫
(z −E(Z))2dF (z)

.

Since the percentile-based 95% bootstrap confidence interval for the plug-in estimate of the correla-
tion coefficient from Labwork 45 was [0.2346, 0.9296] and this interval does not contain 0, we can
reject the null hypothesis that the correlation coefficient is 0 using a size α = 0.05 Wald test.

12.3 A Composite Hypothesis Test

Often, we are interested in a testing a composite hypothesis, i.e. one in which the null hypothesis
is not a singleton set. We revisit the Orbiter waiting time problem from this perspective next.

Example 38 (Testing the Mean Waiting Time at an Orbiter Bus-stop) Let us test the fol-
lowing null hypothesis H0.

H0: The average waiting time at an Orbiter bus stop is less than or equal to 10 minutes.
H1: The average waiting time at an Orbiter bus stop is more than 10 minutes.

We have observations of n = 132 waiting times x1, x2, . . . , x132 at the Orbter bus-stop with x132 =
9.0758. Let us assume a parametric model, say,

X1, X2, . . . , Xn
IID∼ Exponential(λ∗)
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Figure 12.1: Plot of power function β(λ) for different values of the critical value c and the size α

as function of the critical values.
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with an unknown and fixed λ∗ ∈ ΛΛ = (0,∞). Since the parameter λ of an Exponential(λ) RV is
the reciprocal of the mean waiting time, we can formalise the above hypothesis testing problem of
H0 versus H1 as follows:

H0 : λ∗ ∈ ΛΛ0 = [1/10,∞) versus H1 : λ∗ ∈ ΛΛ1 = (0, 1/10)

Consider the test:
Reject H0 if T > c.

where the test statistic T = Xn and the rejection region is:

XR = {(x1, x2, . . . , xn) : T (x1, x2, . . . , xn) > c} .

Since the sum of n IID Exponential(λ) RVs is Gamma(λ, n) distributed, the power function is:

β(λ) = Pλ

(
Xn > c

)
= Pλ

(
n∑
i=1

Xi > nc

)
= 1−Pλ

(
n∑
i=1

Xi ≤ nc

)

= 1− F (nc;λ, n) = 1− 1
Γ(n)

∫ λnc

0
yn−1 exp(−y)dy

= 1− gammainc(λnc, n)

Clearly, β(λ) is a decreasing function of λ as shown in Figure 12.1. Hence the size of the test as a
function of the critical region specified by the critical value c is:

size = sup
λ∈ΛΛ0

β(λ) = sup
λ≥1/10

β(λ) = β(1/10) = 1− gammainc(132c/10, 132)
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For a size α = 0.05 test we numerically solve for the critical value c that satisfies:

0.05 = 1− gammainc(132c/10, 132)

by trial and error as follows:

>> lambda0=1/10

lambda0 = 0.1000

>> S=@(C)(1-gammainc(lambda0*n*C,n)); % size as a function of c

>> Cs=[10 11 11.474 12 13] % some critical values c

Cs = 10.0000 11.0000 11.4740 12.0000 13.0000

>> Size=arrayfun(S,Cs) % corresponding size

Size = 0.4884 0.1268 0.0499 0.0143 0.0007

Thus, we reject H0 when Xn > 11.4740 for a level α = 0.05 test. Since our observed test statistic
x132 = 9.0758 < 11.4740 we fail to reject the null hypothesis that the mean waiting time is less than
or equal to 10 minutes. Therefore, there is no evidence that the Orbiter bus company is violating
its promise of an average waiting time of no more than 10 minutes.

12.4 p-values

It is desirable to have a more informative decision than simply reporting ”reject H0” or “fail to
reject H0.” For instance, we could ask whether the test rejects H0 for each size = α. Typically, if
the test rejects at size α it will also reject at a larger size α′ > α. Therefore, there is a smallest size
α at which the test rejects H0 and we call this α the p-value of the test.

Figure 12.2: The smallest α at which a size α test rejects the null hypothesis H0 is the p-value.
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Definition 52 (p-value) Suppose that for every α ∈ (0, 1) we have a size α test with rejection
region XR,α and test statistic T . Then,

p-value := inf{α : T (X) ∈ XR,α} .

That is, the p-value is the smallest α at which a size α test rejects the null hypothesis.

If the evidence against H0 is strong then the p-value will be small. However, a large p-value is not
strong evidence in favour of H0. This is because a large p-value can occur for two reasons:
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Table 12.3: Evidence scale against the null hypothesis in terms of the range of p-value.

p-value range Evidence
(0, 0.01] very strong evidence against H0

(0.01, 0.05] strong evidence against H0

(0.05, 0.1] weak evidence against H0

(0.1, 1) little or no evidence against H0

1. H0 is true.

2. H0 is false but the test has low power.

Finally, it is important to realise that p-value is not the probability that the null hypothesis is true,
i.e. p-value 6= P(H0|x), where x is the data. The following tabulation of evidence scale is useful.
The next proposition gives a convenient expression for the p-value for certain tests.

Proposition 22 Suppose that the size α test based on the test statistic T and critical value cα is
of the form:

Reject H0 if and only if T := T ((X1, . . . , Xn)) > cα,

then
p-value = sup

θ∈ΘΘ0

Pθ(T ((X1, . . . , Xn)) ≥ t := T ((x1, . . . , xn))) ,

where, (x1, . . . , xn) is the observed data and t is the observed value of the test statistic T . In words,
the p-value is the supreme probability under H0 of observing a value of the test statistic the same
as or more extreme than what was actually observed.

Let us revisit the Orbiter waiting times example from the p-value perspective.

Example 39 (p-value for the parametric Orbiter experiment) Let the waiting times at our
bus-stop be X1, X2, . . . , X132

IID∼ Exponential(λ∗). Consider the following testing problem:

H0 : λ∗ = λ0 =
1
10

versus H1 : λ∗ 6= λ0 .

We already saw that the Wald test statistic is:

W := W (X1, . . . , Xn) =
Λ̂n − λ0

ŝen(Λ̂n)
=

1
Xn
− λ0

1√
nXn

.

The observed test statistic is:

w = W (x1, . . . , x132) =
1

X132
− λ0

1√
132X132

=
1

9.0758 −
1
10

1√
132×9.0758

= 1.0618 .

Since, W  Z ∼ Normal(0, 1), the p-value for this Wald test is:

p-value = sup
λ∈ΛΛ0

Pλ(|W | > |w|) = sup
λ∈{λ0}

Pλ(|W | > |w|) = Pλ0(|W | > |w|)

→ P(|Z| > |w|) = 2Φ(−|w|) = 2Φ(−|1.0618|) = 2× 0.1442 = 0.2884 .

Therefore, there is little or no evidence against H0 that the mean waiting time under an IID
Exponential model of inter-arrival times is exactly ten minutes.
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12.5 Permutation Test for the equality of any two DFs

Permutation test is a non-parametric exact method for testing whether two distributions are the
same. It is non-parametric because we do not impose any restrictions on the class of DFs that the
unknown DF should belong to. It is exact because we do not have any asymptotic approximations
involving sample size approaching infinity. So this test works for any sample size.

Formally, we suppose that:

X1, X2, . . . , Xm
IID∼ F ∗ and Xm+1, Xm+2, . . . , Xm+n

IID∼ G∗ ,

are two sets of independent samples. The possibly unknown DFs F ∗, G∗ ∈ {all DFs}. Now, consider
the following hypothesis test:

H0 : F ∗ = G∗ versus H1 : F ∗ 6= G∗ .

Let our test statistic T (X1, . . . , Xm, Xm+1, . . . , Xm+n) be some sensible one – T is large when F ∗

is too different from G∗, say:

T := T (X1, . . . , Xm, Xm+1, . . . , Xm+n) = abs

(
1
m

m∑
i=1

Xi −
1
n

n∑
i=m+1

Xi

)
.

Then the idea of a permutation test is as follows:

1. Let N := m+ n be the pooled sample size and consider all N ! permutations of the observed
data xobs := (x1, x2, . . . , xm, xm+1, xm+2, . . . , xm+n).

2. For each permutation of the data compute the statistic T (permuted data x) and denote these
N ! values of T by t1, t2, . . . , tN !.

3. Under H0 : X1, . . . , Xm, Xm+1, . . . , Xm+n
IID∼ F ∗ = G∗, each of the permutations of x =

(x1, x2, . . . , xm, xm+1, xm+2, . . . , xm+n) has the same joint probability
∏m+n
i=1 f(xi), where

f(xi) = dF (xi) = dG(xi). Therefore, the transformation of the data by our statistic T
also has the same probability over the values of T , namely {t1, t2, . . . , tN !}. Let P0 be this
permutation distribution that is dicrete and uniform over {t1, t2, . . . , tN !}.

4. Let tobs := T (xobs) be the observed value of the statistic.

5. Assuming we reject H0 when T is large, the p-value is:

p-value = P0 (T ≥ tobs) =
1
N !

 N !∑
j=1

11(tj ≥ tobs)

 , 11(tj ≥ tobs) =

{
1 if tj ≥ tobs

0 otherwise

Let us look at a small example involving the diameters of coarse venus shells (Dosinia anus) that
Guo Yaozong and Chen Shun found on the left and right sides of the New Brighton prier in Spring
2007. We are interested in testing the hypothesis that the distribution of shell diameters for this
bivalve species is the same on both sides of the pier.

Example 40 (Guo-Chen Experiment with Venus Shell Diameters) Let us look at the first
two samples x1 and x2 from the left of pier and the first sample from the right side of pier, namely
x3. Since the permutation test is exact, we can use this small data set with merely three samples
to conduct the following hypothesis test:

H0 : X1, X2, X3
IID∼ F ∗ = G∗, H1 : X1, X2

IID∼ F ∗, X3
IID∼ G∗, F ∗ 6= G∗ .
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Let us use the test statistic:

T (X1, X2, X3) = abs

(
1
2

2∑
i=1

Xi −
1
1

3∑
i=2+1

Xi

)
= abs

(
X1 + x2

2
− X3

1

)
.

The data giving the shell diameters in millimetres and tobs are:

(x1, x2, x3) = (52, 54, 58) and tobs = abs
(

52 + 54
2

− 58
1

)
= abs(53− 58) = abs(−5) = 5 .

Let us tabulate the (2 + 1)! = 3! = 3× 2× 1 = 6 permutations of the data (x1, x2, x3) = (52, 54, 58),
the corresponding values of T and their probabilities under the null hypothesis, i.e., the permutation
distribution P0(T ).

Permutation t P0(T = t)
(52, 54, 58) 5 1

6

(54, 52, 58) 5 1
6

(52, 58, 54) 1 1
6

(58, 52, 54) 1 1
6

(58, 54, 52) 4 1
6

(54, 58, 52) 4 1
6

From the table, we get:

p-value = P0 (T ≥ tobs) = P0 (T ≥ 5) =
1
6

+
1
6

=
2
6

=
1
3

u 0.333 .

Therefore, there is little to no evidence against H0.

When the pooled sample size N = m + n gets large, N ! would be too numerous to tabulate
exhaustively. In this situation, we can use a Monte Carlo approximation of the p-value by generating
a large number of random permutations of the data according to the following Steps:

Step 1: Compute the observed statistic tobs := T (xobs) of data xobs := (x1, . . . , xm, xm+1, . . . , xm+n).

Step 2: Randomly permute the data and compute the statistic again from the permuted data.

Step 3: Repeat Step 2 B times and let t1, . . . , tB denote the resulting values (B is large, say 1000).

Step 4: The (Monte Carlo) approximate p-value is:

1
B

B∑
j=1

11(tj ≥ tobs) .

Next we implement the above algorithm on the full data set of Guo and Chen obtained from coarse
venus shells sampled from the two sides of the New Brighton pier.

Labwork 46 Test the null hypothesis that the distribution of the diameters of coarse venus shells
are the same on both sides of the New Brighton pier.
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Shells.m
% this data was collected by Guo Yaozong and Chen Shun as part of their STAT 218 project 2007

% coarse venus shell diameters in mm from left side of New Brighton Pier

left=[52 54 60 60 54 47 57 58 61 57 50 60 60 60 62 44 55 58 55 60 59 65 59 63 51 61 62 61 60 61 65 ...

43 59 58 67 56 64 47 64 60 55 58 41 53 61 60 49 48 47 42 50 58 48 59 55 59 50 47 47 33 51 61 61 ...

52 62 64 64 47 58 58 61 50 55 47 39 59 64 63 63 62 64 61 50 62 61 65 62 66 60 59 58 58 60 59 61 ...

55 55 62 51 61 49 52 59 60 66 50 59 64 64 62 60 65 44 58 63];

% coarse venus shell diameters in mm from right side of New Brighton Pier

right=[58 54 60 55 56 44 60 52 57 58 61 66 56 59 49 48 69 66 49 72 49 50 59 59 59 66 62 ...

44 49 40 59 55 61 51 62 52 63 39 63 52 62 49 48 65 68 45 63 58 55 56 55 57 34 64 66 ...

54 65 61 56 57 59 58 62 58 40 43 62 59 64 64 65 65 59 64 63 65 62 61 47 59 63 44 43 ...

59 67 64 60 62 64 65 59 55 38 57 61 52 61 61 60 34 62 64 58 39 63 47 55 54 48 60 55 ...

60 65 41 61 59 65 50 54 60 48 51 68 52 51 61 57 49 51 62 63 59 62 54 59 46 64 49 61];

Tobs=abs(mean(left)-mean(right));% observed test statistic

nleft=length(left); % sample size of the left-side data

nright=length(right); % sample size of the right-side data

ntotal=nleft+nright; % sample size of the pooled data

total=[left right]; % observed data -- ordered: left-side data followed by right-side data

B=10000; % number of bootstrap replicates

TB=zeros(1,B); % initialise a vector of zeros for the bootstrapped test statistics

ApproxPValue=0; % initialise an accumulator for approximate p-value

for b=1:B % eneter the bootsrap replication loop

% use MATLAB’s randperm function to get a random permutation of indices{1,2,...,ntotal}

PermutedIndices=randperm(ntotal);

% use the first nleft of the PermutedIndices to get the bootstrapped left-side data

Bleft=total(PermutedIndices(1:nleft));

% use the last nright of the PermutedIndices to get the bootstrapped right-side data

Bright=total(PermutedIndices(nleft+1:ntotal));

TB(b) = abs(mean(Bleft)-mean(Bright)); % compute the test statistic for the bootstrapped data

if(TB(b)>Tobs) % increment the ApproxPValue accumulator by 1/B if bootstrapped value > Tobs

ApproxPValue=ApproxPValue+(1/B);

end

end

ApproxPValue % report the Approximate p-value

When we execute the script to perform a permutation test and approximate the p-value, we obtain:

>> Shells

ApproxPValue = 0.8576

Therefore, there is little or no evidence against the null hypothesis.

12.6 Pearson’s Chi-Square Test for Multinomial Trials

We derive the Chi-square distribution introduced by Karl Pearson in 1900 [Philosophical Magazine,
Series 5, 50, 157-175]. This historical work laid the foundations of modern statistics by showing
why an experimenter cannot simply plot experimental data and just assert the correctness of his
or her hypothesis. This derivation is adapted from Donald E. Knuth’s treatment [Art of Com-
puter Programming, Vol. II, Seminumerical Algorithms, 3rd Ed., 1997, pp. 55-56]. We show how
de Moivre, Multinomial, Poisson and the Normal random vectors conspire to creare the Chi-square
random variable.

Part 1: de Moivre trials
Consider n independent and identically distributed de Moivre(θ1, . . . , θk) random vectors (R~Vs):

X1, X2, . . . , Xn
IID∼ de Moivre(θ1, . . . , θk) .
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Recall from Model 15 that X1 ∼ de Moivre(θ1, . . . , θk) means P(X1 = ei) = θi for i ∈ {1, . . . , k},
where e1, . . . , ek are ortho-normal basis vectors in Rk. Thus, for each i ∈ {1, 2, . . . , n}, the corre-
sponding Xi has k components, i.e. Xi := (Xi,1, Xi,2, . . . , Xi,k).

Part 2: Multinomial trial
Suppose we are only interested in the experiment induced by their sum:

Y := (Y1, . . . , Yk) :=
n∑
i=1

Xi :=
n∑
i=1

(Xi,1, Xi,2, . . . , Xi,k) =

(
n∑
i=1

Xi,1,

n∑
i=1

Xi,2, . . . ,

n∑
i=1

Xi,k

)
.

The R~V Y , being the sum of n IID de Moivre(θ1, . . . , θk) R~Vs, is the Multinomial(n, θ1, . . . , θk)
R~V of Model 16 and the probability that Y := (Y1, . . . , Yk) = y := (y1, . . . , yk) is:

n!
y1!y2! · · · yk!

k∏
i=1

θyii .

The support of the R~V Y , i.e. the set of possible realisations of y := (y1, . . . , yk) is:

Y := {(y1, . . . , yk) ∈ Zk+ :
k∑
i=1

yi = n} .

Part 3: Conditional sum of Poisson trials
Here we consider an alternative formulation of the Multinomial(n, θ1, . . . , θk) R~V Y . Suppose,

Y1 ∼ Poisson(nθ1), Y2 ∼ Poisson(nθ2), . . . , Yk ∼ Poisson(nθk) ,

and that Y1, . . . , Yk are independent. Recall from Model 12 that Yi ∼ Poisson(nθi) means P(Yi =
yi) = e−nθi(nθi)yi/yi! for yi ∈ {0, 1, . . .}. Then, the joint probability probability of the R~V (Y1, . . . , Yk)
is the product of the independent Poisson probabilities:

P ((Y1, . . . , Yk) = (y1, . . . , yk)) := P (Y1 = y1, . . . , Yk = yk) =
k∏
i=1

P(Yi = yi) =
k∏
i=1

e−nθi(nθi)yi

yi!

=
∏k
i=1 e

−nθinyiθyii∏k
i=1 yi!

=

(
e−n

Pk
i=1 θin

Pk
i=1 yi

k∏
i=1

θyii

)
1∏k

i=1 yi!

=
e−nnn

∏k
i=1 θ

yi
i∏k

i=1 yi!
.

Now, the probability that sum Y1+· · ·+Yk will equal n is obtained by summing over the probabilities
of all (y1, . . . , yk) ∈ Y:

P

(
k∑
i=1

Yi = n

)
=

∑
(y1,...,yk)
∈Y

P ((Y1, . . . , Yk) = (y1, . . . , yk)) =
∑

(y1,...,yk)
∈Y

e−nnn
∏k
i=1 θ

yi
i∏k

i=1 yi!

= e−nnn
1
n!

 ∑
(y1,...,yk)
∈Y

n!∏k
i=1 yi!

k∏
i=1

θyii


︸ ︷︷ ︸

=P(Y)=1

=
e−nnn

n!
.
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Finally, the conditional probability that (Y1, . . . , Yk) = (y1, . . . , yk) given
∑k

i=1 Yi = n is:

P

(
(Y1, . . . , Yk) = (y1, . . . , yk)|

k∑
i=1

Yi = n

)
=

P
(

(Y1, . . . , Yk) = (y1, . . . , yk),
∑k

i=1 Yi = n
)

P
(∑k

i=1 Yi = n
)

=
P ((Y1, . . . , Yk) = (y1, . . . , yk))

P
(∑k

i=1 Yi = n
) =

e−nnn
∏k
i=1 θ

yi
i∏k

i=1 yi!

n!
e−nnn

=
n!

y1!y2! · · · yk!

k∏
i=1

θyii .

Therefore, we may also think of the random vector Y := (Y1, . . . , Yk) ∼ Multinomial(n, θ1, . . . , θk)
as k independent Poisson random variables, Y1 ∼ Poisson(nθ1), . . . , Yk ∼ Poisson(nθk), that have
been conditioned on their sum

∑n
i=1 Yi being n.

Part 4: The Normal approximation of the centred and scaled Poisson
Recall from Model 12 that the expectation and variance of a RV Yi ∼ Poisson(nθi) are E(Yi) =
V(Yi) = nθi. Let Zi be E(Yi)-centred and

√
V(Yi)-scaled Yi and

Zi :=
Yi −E(Yi)√

V(Yi)
=
Yi − nθi√

nθi
.

The condition that Y1 + · · ·+Yk = n is equivalent to requiring that
√
θ1Z1 + · · ·+

√
θkZk = 0, since:

k∑
i=1

Yi = n ⇐⇒
k∑
i=1

Yi − n = 0 ⇐⇒
k∑
i=1

Yi − n
k∑
i=1

θi = 0 ⇐⇒
k∑
i=1

Yi − nθi = 0

⇐⇒
k∑
i=1

Yi − nθi√
n

= 0 ⇐⇒
k∑
i=1

√
θi
Yi − nθi√

nθi
= 0 ⇐⇒

k∑
i=1

√
θiZi = 0 .

Now consider the support of the R~V Z := (Z1, . . . , Zk) conditioned on
∑k

i=1

√
θiZi = 0, i.e. the

hyper-plane of (k − 1)-dimensional vectors:

H := {(z1, . . . , zk) :
√
θ1z1 + · · ·+

√
θkzk = 0}

Each Zi  Normal(0, 1) by the central limit theorem. Therefore, for large values of n, each Zi
is approximately distributed as the Normal(0, 1) RV with PDF f(zi; 0, 1) = (2π)−1/2 exp(−z2

i /2).
Since the Zis are independent except for the condition that they lie in H, the point in a differential
volume dz2 . . . dzk of H occur with probability approximately proportional to:

exp(−z2
1/2)× · · · × exp(−z2

k/2) = exp(−(z2
1 + · · ·+ z2

k)/2)

Part 5: Chi-square distribution as the sum of squared Normals
We are interested in the sum of the area of squares with side-lengths Z1, . . . , Zk. Let V be the
desired sum of squares:

V :=
k∑
i=1

Z2
i =

k∑
i=1

(Yi − nθi)2

nθi
, such that Zi  Normal(0, 1),

k∑
i=1

√
θiZi = 0 .

The probability that V ≤ v as n→∞ is:∫
(z1,...,zk)∈H and

Pk
i=1 z

2
i≤v

exp(−(z2
1 + · · ·+ z2

k)/2) dz2 . . . dzk∫
(z1,...,zk)∈H exp(−(z2

1 + · · ·+ z2
k)/2) dz2 . . . dzk
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Since the (k − 1)-dimensional hyper-plane H passes through the origin of Rk, the domain of inte-
gration in the numerator above is the interior of a (k − 1)-dimensional hyper-sphere of radius

√
v

that is centred at the origin. Using a transformation of the above ratio of integrals into generalised
polar co-ordinates with radius χ and angles α1, . . . , αk−2, we get:∫

χ2≤v exp(−χ2/2)χk−2g(α1, . . . , αk−2)dχdα1 · · · dαk−2∫
exp(−χ2/2)χk−2g(α1, . . . , αk−2)dχdα1 · · · dαk−2

,

for some function g of the angles [See Problem 15 in Art of Computer Programming, Vol. II,
Seminumerical Algorithms, 3rd Ed., 1997, pp. 59]. The integration over the (k−2) angles results in
the same factor that cancels between the numerator and the denominator. This yields the formula
for the probability that V ≤ v as n→∞:

lim
n→∞

P(V ≤ v) =

∫ √v
0 exp(−χ2/2)χk−2dχ∫∞
0 exp(−χ2/2)χk−2 dχ

.

By substituting t = χ2/2, we can express the integrals in terms of the incomplete Gamma function
defined as γ(a, x) :=

∫ a
0 exp(−t)ta−1 dt as follows:

P(V ≤ v) = γ

(
k − 1

2
,
v

2

)
/Γ
(
k − 1

2

)
.

This is the DF of the Chi-square distribution with k − 1 degrees of freedom.

Model 19 (Chi-square(k) RV) Given a parameter k ∈ N called degrees of freedom, we say that V
is a Chi-square(k) RV if its PDF is:

f(v; k) :=
v(k/2)−1e−v/2

2k/2Γ(k/2)
11{v∈R:v>0}(v)

Also, E(V ) = k and V(V ) = 2k.

We can use the test statistic:

T := T (Y1, . . . , Yk) =
(Y1 − nθ∗1)2

nθ∗1
+ · · ·+

(Yk − nθ∗k)
2

nθ∗k

to test the null hypothesis H0 that may be formalised in three equivalent ways:

H0 : X1, X2, . . . , Xn
IID∼ de Moivre(θ∗1, . . . , θ

∗
k) R~V

⇐⇒ H0 : Y := (Y1, . . . , Yk) =
n∑
i=1

Xi ∼ Multinomial(n, θ∗1, . . . , θ
∗
k) R~V

⇐⇒ H0 : Y1
IND∼ Poisson(nθ1) RV, . . . , Yk

IND∼ Poisson(nθk) RV given that
k∑
i=1

Yi = n

We have seen that under H0, the test statistic T  V ∼ Chi-square(k−1). Let tobs be the observed
value of the test statistic and let the upper alpha quantile be χ2

k−1,α := F [−1](1 − α), where F is
the CDF of V ∼ Chi-square(k − 1). Hence the test:

Reject H0 if T > χ2
k−1,α is an asymptotically size α test and the p-value = P(V > tobs).
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Appendix

13.1 Code

Labwork 47 Here are the functions to evaluate the PDF and DF of a Normal(µ, σ2) RV X at a
given x.

NormalPdf.m
function fx = NormalPdf(x,Mu,SigmaSq)

% Returns the Pdf of Normal(Mu, SigmaSq), at x,

% where Mu=mean and SigmaSq = Variance

%

% Usage: fx = NormalPdf(x,Mu,SigmaSq)

if SigmaSq <= 0

error(’Variance must be > 0’)

return

end

Den = ((x-Mu).^2)/(2*SigmaSq);

Fac = sqrt(2*pi)*sqrt(SigmaSq);

fx = (1/Fac)*exp(-Den);

NormalCdf.m
function Fx = NormalCdf(x,Mu,SigmaSq)

% Returns the Cdf of Normal(Mu, SigmaSq), at x,

% where Mu=mean and SigmaSq = Variance using

% MATLAB’s error function erf

%

% Usage: Fx = NormalCdf(x,Mu,SigmaSq)

if SigmaSq <= 0

error(’Variance must be > 0’)

return

end

Arg2Erf = (x-Mu)/sqrt(SigmaSq*2);

Fx = 0.5*erf(Arg2Erf)+0.5;

Plots of the PDF and DF of several Normally distributed RVs depicted in Figure 6.5 were generated
using the following script file:

PlotPdfCdfNormal.m
% PlotPdfCdfNormal.m script file

% Plot of some pdf’s and cdf’s of the Normal(mu,SigmaSq) RV X

175
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%

x=[-6:0.0001:6]; % points from the subset [-5,5] of the support of X

subplot(1,2,1) % first plot of a 1 by 2 array of plots

plot(x,NormalPdf(x,0,1),’r’) % pdf of RV Z ~ Normal(0,1)

hold % to superimpose plots

plot(x,NormalPdf(x,0,1/10),’b’) % pdf of RV X ~ Normal(0,1/10)

plot(x,NormalPdf(x,0,1/100),’m’) % pdf of RV X ~ Normal(0,1/100)

plot(x,NormalPdf(x,-3,1),’r--’) % pdf of RV Z ~ Normal(-3,1)

plot(x,NormalPdf(x,-3,1/10),’b--’) % pdf of RV X ~ Normal(-3,1/10)

plot(x,NormalPdf(x,-3,1/100),’m--’) % pdf of RV X ~ Normal(-3,1/100)

xlabel(’x’)

ylabel(’f(x; \mu, \sigma^2)’)

legend(’f(x;0,1)’,’f(x;0,10^{-1})’,’f(x;0,10^{-2})’,’f(x;-3,1)’,’f(x;-3,10^{-1})’,’f(x;-3,10^{-2})’)

subplot(1,2,2) % second plot of a 1 by 2 array of plots

plot(x,NormalCdf(x,0,1),’r’) % DF of RV Z ~ Normal(0,1)

hold % to superimpose plots

plot(x,NormalCdf(x,0,1/10),’b’) % DF of RV X ~ Normal(0,1/10)

plot(x,NormalCdf(x,0,1/100),’m’) % DF of RV X ~ Normal(0,1/100)

plot(x,NormalCdf(x,-3,1),’r--’) % DF of RV Z ~ Normal(-3,1)

plot(x,NormalCdf(x,-3,1/10),’b--’) % DF of RV X ~ Normal(-3,1/10)

plot(x,NormalCdf(x,-3,1/100),’m--’) % DF of RV X ~ Normal(-3,1/100)

xlabel(’x’)

ylabel(’F(x; \mu, \sigma^2)’)

legend(’F(x;0,1)’,’F(x;0,10^{-1})’,’F(x;0,10^{-2})’,’F(x;-3,1)’,’F(x;-3,10^{-1})’,’F(x;-3,10^{-2})’)

Labwork 48 Here are the functions to evaluate the PDF and DF of an Exponential(λ) RV X ata
given x (point or a vector).

ExponentialPdf.m
function fx = ExponentialPdf(x,Lambda)

% Returns the Pdf of Exponential(Lambda) RV at x,

% where Lambda = rate parameter

%

% Usage: fx = ExponentialPdf(x,Lambda)

if Lambda <= 0

error(’Rate parameter Lambda must be > 0’)

return

end

fx = Lambda * exp(-Lambda * x);

ExponentialCdf.m
function Fx = ExponentialCdf(x,Lambda)

% Returns the Cdf of Exponential(Lambda) RV at x,

% where Lambda = rate parameter

%

% Usage: Fx = ExponentialCdf(x,Lambda)

if Lambda <= 0

error(’Rate parameter Lambda must be > 0’)

return

end

Fx = 1.0 - exp(-Lambda * x);

Plots of the PDF and DF of several Exponentially distributed RVs at four axes scales that are
depicted in Figure 6.2 were generated using the following script file:

PlotPdfCdfExponential.m
% PlotPdfCdfExponential.m script file

% Plot of some pdf’s and cdf’s of the Exponential(Lambda) RV X

%
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x=[0:0.0001:100]; % points from the subset [0,100] of the support of X

subplot(2,4,1) % first plot of a 1 by 2 array of plots

plot(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

plot(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

plot(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

xlabel(’x’)

ylabel(’f(x; \lambda)’)

legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,2,0,10])

title(’Standard Cartesian Scale’)

hold off

subplot(2,4,2)

semilogx(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogx(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

semilogx(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’f(x; \lambda)’)

%legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,100,0,10])

title(’semilog(x) Scale’)

hold off

subplot(2,4,3)

semilogy(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogy(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

semilogy(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

%xlabel(’x’);

%ylabel(’f(x; \lambda)’);

%legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,100,0,1000000])

title(’semilog(y) Scale’)

hold off

x=[ [0:0.001:1] [1.001:1:100000]]; % points from the subset [0,100] of the support of X

subplot(2,4,4)

loglog(x,ExponentialPdf(x,1),’r:’,’LineWidth’,2) % pdf of RV X ~ Exponential(1)

hold on % to superimpose plots

loglog(x,ExponentialPdf(x,10),’b--’,’LineWidth’,2) % pdf of RV X ~ Exponential(10)

loglog(x,ExponentialPdf(x,1/10),’m’,’LineWidth’,2) % pdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’f(x; \lambda)’)

%legend(’f(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,100000,0,1000000])

title(’loglog Scale’)

hold off

x=[0:0.0001:100]; % points from the subset [0,100] of the support of X

subplot(2,4,5) % second plot of a 1 by 2 array of plots

plot(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

plot(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

plot(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

xlabel(’x’)

ylabel(’F(x; \lambda)’)

legend(’F(x;1)’,’f(x;10)’,’f(x;10^{-1})’)

axis square

axis([0,10,0,1])
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hold off

subplot(2,4,6) % second plot of a 1 by 2 array of plots

semilogx(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogx(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

semilogx(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’F(x; \lambda)’)

%legend(’F(x;1)’,’F(x;10)’,’F(x;10^{-1})’)

axis square

axis([0,100,0,1])

%title(’semilog(x) Scale’)

hold off

subplot(2,4,7)

semilogy(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

semilogy(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

semilogy(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

%xlabel(’x’);

%ylabel(’F(x; \lambda)’);

%legend(’F(x;1)’,’F(x;10)’,’F(x;10^{-1})’)

axis square

axis([0,10,0,1])

%title(’semilog(y) Scale’)

hold off

x=[ [0:0.001:1] [1.001:1:100000]]; % points from the subset of the support of X

subplot(2,4,8)

loglog(x,ExponentialCdf(x,1),’r:’,’LineWidth’,2) % cdf of RV X ~ Exponential(1)

hold on % to superimpose plots

loglog(x,ExponentialCdf(x,10),’b--’,’LineWidth’,2) % cdf of RV X ~ Exponential(10)

loglog(x,ExponentialCdf(x,1/10),’m’,’LineWidth’,2) % cdf of RV X ~ Exponential(1/10)

%xlabel(’x’)

%ylabel(’F(x; \lambda)’)

%legend(’F(x;1)’,’F(x;10)’,’F(x;10^{-1})’)

axis square

axis([0,100000,0,1])

%title(’loglog Scale’)

hold off

Labwork 49 A Matlab function to plot the empirical DF (10.1) of n user-specified samples
efficiently for massive number of samples. Read the following M-file for the algorithm:

ECDF.m
function [x1 y1] = ECDF(x, PlotFlag, LoxD, HixD)

% return the x1 and y1 values of empirical CDF

% based on samples in array x of RV X

% plot empirical CDF if PlotFlag is >= 1

%

% Call Syntax: [x1 y1] = ECDF(x, PlotFlag, LoxD,HixD);

% Input : x = samples from a RV X (a vector),

% PlotFlag is a number controlling plot (Y/N, marker-size)

% LoxD is a number by which the x-axis plot range is extended to the left

% HixD is a number by which the x-aixs plot range is extended to the right

% Output : [x1 y1] & empirical CDF Plot IF PlotFlag >= 1

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

R=length(x); % assume x is a vector and R = Number of samples in x

x1=zeros(1,R+2);

y1=zeros(1,R+2); % initialize y to null vectors

for i=1:1:R % loop to append to x and y axis values of plot
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y1(i+1)=i/R; % append equi-increments of 1/R to y

end % end of for loop

x1(2:R+1)=sort(x); % sorting the sample values

x1(1)=x1(2)-LoxD; x1(R+2)=x1(R+1)+HixD; % padding x for emp CDF to start at min(x) and end at max(x)

y1(1)=0; y1(R+2)=1; % padding y so emp CDF start at y=0 and end at y=1

% to make a ECDF plot for large number of points set the PlotFlag<1 and use

% MATLAB’s plot function on the x and y values returned by ECDF -- stairs(x,y)

if PlotFlag >= 1 % Plot customized empirical CDF if PlotFlag >= 1

%newplot;

MSz=10/PlotFlag; % set Markersize MSz for dots and circles in ECDF plot

% When PlotFlag is large MSz is small and the

% Markers effectively disappear in the ecdf plot

R=length(x1); % update R = Number of samples in x

hold on % hold plot for superimposing plots

for i=1:1:R-1

if(i>1 && i ~= R-1)

plot([x1(i),x1(i+1)],[y1(i),y1(i)],’k o -’,’MarkerSize’,MSz)

end

if (i< R-1)

plot(x1(i+1),y1(i+1),’k .’,’MarkerSize’,2.5*MSz)

end

plot([x1(i),x1(i+1)],[y1(i),y1(i)],’k -’)

plot([x1(i+1),x1(i+1)], [y1(i),y1(i+1)],’k -’)

end

hold off;

end

Ideally, this function needs to be rewritten using primitives such as Matlab’s line commands.

Labwork 50 Let us implement Algorithm 2 as the following Matlab function:

qthSampleQuantile.m
function qthSQ = qthSampleQuantile(q, SortedXs)

%

% return the q-th Sample Quantile from Sorted array of Xs

%

% Call Syntax: qthSQ = qthSampleQuantile(q, SortedXs);

%

% Input : q = quantile of interest, NOTE: 0 <= q <= 1

% SortedXs = sorted real data points in ascending order

% Output : q-th Sample Quantile, ie, inverse ECDF evaluated at q

% store the length of the the sorted data array SortedXs in n

N = length(SortedXs);

Nminus1TimesQ = (N-1)*q; % store (N-1)*q in a variable

Index = floor(Nminus1TimesQ); % store its floor in a C-style Index variable

Delta = Nminus1TimesQ - Index;

if Index == N-1

qthSQ = SortedXs(Index+1);

else

qthSQ = (1.0-Delta)*SortedXs(Index+1) + Delta*SortedXs(Index+2);

end

Labwork 51 Figure ?? was made with the following script file.

LevyDensityPlot.m
x=linspace(-9,9,1500);y=x;

[X, Y]=meshgrid(x,y);
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Z1 = (cos((0*X)+1) + 2*cos((1*X)+2) + 3*cos((2*X)+3) + 4*cos((3*X)+4) + 5*cos((4*X)+5));

Z2 = (cos((2*Y)+1) + 2*cos((3*Y)+2) + 3*cos((4*Y)+3) + 4*cos((5*Y)+4) + 5*cos((6*Y)+5));

Temp=50;

Z = exp(-(Z1 .* Z2 + (X + 1.42513) .^2 + (Y + 0.80032) .^ 2)/Temp);

mesh(X,Y,Z)

caxis([0, 10]);

rotate3d on

Labwork 52 The negative of the Levy density (??) is encoded in the following M-file as a function
to be passed to Matlab’s fminsearch.

NegLevyDensity.m
function NegLevyFunVal = NegLevyDensity(parameters);

X=parameters(1); Y=parameters(2); Temp=50.0;

Z1 = (cos((0*X)+1) + 2*cos((1*X)+2) + 3*cos((2*X)+3) + 4*cos((3*X)+4) + 5*cos((4*X)+5));

Z2 = (cos((2*Y)+1) + 2*cos((3*Y)+2) + 3*cos((4*Y)+3) + 4*cos((5*Y)+4) + 5*cos((6*Y)+5));

NegLevyFunVal = -exp(-(Z1 .* Z2 + (X + 1.42513) .^2 + (Y + 0.80032) .^ 2)/Temp);

Labwork 53 Figure ?? was made with the following script file.

LogNormalLogLklPlot.m
% Plots the log likelihood of LogNormal(lambd, zeta),

% for observed data vector x IIDLogNormal(lambd,zeta),

rand(’twister’,001);

x=exp(arrayfun(@(u)(Sample1NormalByNewRap(u,10.36,0.26^2)),rand(1,100)));

% log likelihood function

lambda=linspace(5,15.0,200);

zeta=linspace(0.1, 2,200);

[LAMBDA, ZETA]=meshgrid(lambda,zeta);

LAMBDA3=repmat(LAMBDA,[1 1 length(x)]);

ZETA3=repmat(ZETA,[1 1 length(x)]);

xx=zeros([1 1 length(x)]);xx(:)=x;

x3=repmat(xx,[length(lambda) length(zeta) 1]);

%l = -sum(log((1 ./ (sqrt(2*pi)*zeta) .* x) .* exp((-1/(2*zeta^2))*(log(x)-lambda).^2)));

LOGLKL = sum(log((1 ./ (sqrt(2*pi)*ZETA3) .* x3) .* exp((-1/(2*ZETA3.^2)).*(log(x3)-LAMBDA3).^2)),3);

LOGLKL(LOGLKL<0)=NaN;

caxis([0 0.1]*10^3);colorbar

axis([0 15 0 2 0 0.1*10^3])

clf; meshc(LAMBDA, ZETA, LOGLKL);

rotate3d on;

Labwork 54 Figure 8.3 was made with the following script file.

BernoulliMLEConsistency.m
clf;%clear any figures

rand(’twister’,736343); % initialize the Uniform(0,1) Sampler

N = 3; % 10^N is the maximum number of samples from RV

J = 100; % number of Replications for each n

u = rand(J,10^N); % generate 10X10^N samples from Uniform(0,1) RV U

p=0.5; % set p for the Bernoulli(p) trials

PS=[0:0.001:1]; % sample some values for p on [0,1] to plot likelihood

for i=1:N

if(i==1) Pmin=0.; Pmax=1.0; Ymin=-70; Ymax=-10; Y=linspace(Ymin,Ymax,J); end

if(i==2) Pmin=0.; Pmax=1.0; Ymin=-550; Ymax=-75; Y=linspace(Ymin,Ymax,J); end

if(i==3) Pmin=0.3; Pmax=0.8; Ymin=-900; Ymax=-700; Y=linspace(Ymin,Ymax,J); end

n=10^i;% n= sample size, ie, number of Bernoulli trials

subplot(1,N,i)

if(i==1) axis([Pmin Pmax Ymin -2]); end
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if(i==2) axis([Pmin Pmax Ymin -60]); end

if(i==3) axis([Pmin Pmax Ymin -685]); end

EmpCovSEhat=0; % track empirical coverage for SEhat

EmpCovSE=0; % track empirical coverage for exact SE

for j=1:J

% transform the Uniform(0,1) samples to n Bernoulli(p) samples

x=floor(u(j,1:n)+p);

s = sum(x); % statistic s is the sum of x_i’s

% display the outcomes and their sum

%display(x)

%display(s)

MLE=s/n; % Analyticaly MLE is s/n

se = sqrt((1-p)*p/n); % standard error from known p

sehat = sqrt((1-MLE)*MLE/n); % estimated standard error from MLE p

Zalphaby2 = 1.96; % for 95% CI

if(abs(MLE-p)<=2*sehat) EmpCovSEhat=EmpCovSEhat+1; end

line([MLE-2*sehat MLE+2*sehat],[Y(j) Y(j)],’Marker’,’+’,’LineStyle’,’:’,’LineWidth’,1,’Color’,[1 .0 .0])

if(abs(MLE-p)<=2*se) EmpCovSE=EmpCovSE+1; end

line([MLE-2*se MLE+2*se],[Y(j) Y(j)],’Marker’,’+’,’LineStyle’,’-’)

% l is the Log Likelihood of data x as a function of parameter p

l=@(p)sum(log(p ^ s * (1-p)^(n-s)));

hold on;

% plot the Log Likelihood function and MLE

semilogx(PS,arrayfun(l,PS),’m’,’LineWidth’,1);

hold on; plot([MLE],[Y(j)],’.’,’Color’,’c’); % plot MLE

end

hold on;

line([p p], [Ymin, l(p)],’LineStyle’,’:’,’Marker’,’none’,’Color’,’k’,’LineWidth’,2)

%axis([-0.1 1.1]);

%axis square;

LabelString=[’n=’ num2str(n) ’ ’ ’Cvrg.=’ num2str(EmpCovSE) ’/’ num2str(J) ...

’ ~=’ num2str(EmpCovSEhat) ’/’ num2str(J)];

%text(0.75,0.05,LabelString)

title(LabelString)

hold off;

end

Labwork 55 The following script was used to generate the Figure 10.1.

GilvenkoCantelliUnif01.m
% from Uniform(0,1) RV

rand(’twister’,76534); % initialize the Uniform(0,1) Sampler

N = 3; % 10^N is the maximum number of samples from Uniform(0,1) RV

u = rand(10,10^N); % generate 10 X 10^N samples from Uniform(0,1) RV U

x=[0:0.001:1];

% plot the ECDF from the first 10 samples using the function ECDF

for i=1:N

SampleSize=10^i;

subplot(1,N,i)

plot(x,x,’r’,’LineWidth’,2); % plot the DF of Uniform(0,1) RV in red

% Get the x and y coordinates of SampleSize-based ECDF in x1 and y1 and

% plot the ECDF using the function ECDF

for j=1:10

hold on;

if (i==1) [x1 y1] = ECDF(u(j,1:SampleSize),2.5,0.2,0.2);

else

[x1 y1] = ECDF(u(j,1:SampleSize),0,0.1,0.1);

stairs(x1,y1,’k’);

end

end

% % Note PlotFlag is 1 and the plot range of x-axis is

% % incremented by 0.1 or 0.2 on either side due to last 2 parameters to ECDF

% % being 0.1 or 0.2
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% Alpha=0.05; % set alpha to 5% for instance

% Epsn = sqrt((1/(2*SampleSize))*log(2/Alpha)); % epsilon_n for the confidence band

hold on;

% stairs(x1,max(y1-Epsn,zeros(1,length(y1))),’g’); % lower band plot

% stairs(x1,min(y1+Epsn,ones(1,length(y1))),’g’); % upper band plot

axis([-0.1 1.1 -0.1 1.1]);

%axis square;

LabelString=[’n=’ num2str(SampleSize)];

text(0.75,0.05,LabelString)

hold off;

end

13.2 Data

Here we describe some of the data sets we analyze.

Data 1 (Our Maths & Stats Dept. Web Logs) We assume access to a Unix terminal (Linux,
Mas OS X, Sun Solaris, etc). We show how to get your hands dirty with web logs that track among
others, every IP address and its time of login to our department web server over the world-wide-web.
The raw text files of web logs may be manipulated but they are typically huge files and need some
Unix command-line utilities.

rsa64@mathopt03:~> cd October010203WebLogs/

rsa64@mathopt03:~/October010203WebLogs> ls -al

-rw-r--r--+ 1 rsa64 math 7527169 2007-10-04 09:38 access-07_log.2

-rw-r--r--+ 1 rsa64 math 7727745 2007-10-04 09:38 access-07_log.3

The files are quite large over 7.5 MB each. So we need to compress it. We use the gzip and gunzip

utility in any Unix environment to compress and decompress these large text files of web logs. After
compression the file sizes are more reasonable.

rsa64@mathopt03:~/October010203WebLogs> gzip access-07_log.3

rsa64@mathopt03:~/October010203WebLogs> gzip access-07_log.2

rsa64@mathopt03:~/October010203WebLogs> zcat access-07_log.2.gz | grep ’ 200 ’

| awk ’{ print \$4}’| sed -e ’s/\[\([0-9]\{2\}\)\/\([a-Z]\{3\}\)\/\([0-9]\{4\}\)

:\([0-9]\{2\}\):\([0-9]\{2\}\):\([0-9]\{2\}\)/\3 10 \1 \4 \5 \6/’

2007 10 02 03 57 48

2007 10 02 03 58 31

.

.

.

2007 10 03 03 56 21

2007 10 03 03 56 52

Finally, there are 56485 and 53966 logins for the two 24-hour cycles, starting 01/Oct and 01/Oct,
respectively. We can easily get these counts by further piping the previous output into the line
counting utility wc with the -l option. All the Unix command-line tools mentioned earlier can
be learned by typing man followed by the tool-name, for eg. type man sed to learn about the us-
age of sed ata Unix command shell. We further pipe the output of login times for the two 24-
hour cycles starting 01/Oct and 02/Oct in format YYYY MM DD HH MM SS to | sed -e ’s/2007

10 //’ > WebLogTimes20071001035730.dat and ... > WebLogTimes20071002035730.dat, re-
spectively to strip away the redundant information on YYYY MM , namely 2007 10 , and only save
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the relevant information of DD HH MM SS in files named WebLogTimes20071001035730.dat and
WebLogTimes20071002035730.dat, respectively. These two files have the data of interest to us.
Note that the size of these two uncompressed final data files in plain text are smaller than the
compressed raw web log files we started out from.

rsa64@mathopt03:~/October010203WebLogs> ls -al

-rw-r--r--+ 1 rsa64 math 677820 2007-10-05 15:36 WebLogTimes20071001035730.dat

-rw-r--r--+ 1 rsa64 math 647592 2007-10-05 15:36 WebLogTimes20071002035730.dat

-rw-r--r--+ 1 rsa64 math 657913 2007-10-04 09:38 access-07_log.2.gz

-rw-r--r--+ 1 rsa64 math 700320 2007-10-04 09:38 access-07_log.3.gz

Now that we have been familiarized with the data of login times to our web-server over 2 24-hour
cycles, let us do some statistics. The log files and basic scripts are courtesy of the Department’s
computer systems administrators Paul Brouwers and Steve Gourdie. This data processing activity
was shared in such detail to show you that statistics is only meaningful when the data and the
process that generated it are clear to the experimenter. Let us process the data and visualize the
empirical distribution functions using the following script:

WebLogDataProc.m
load WebLogTimes20071001035730.dat % read data from first file

% multiply day (October 1) by 24*60*60 seconds, hour by 60*60 seconds,

% minute by 60 seconds and seconds by 1, to rescale time in units of seconds

SecondsScale1 = [24*60*60; 60*60; 60; 1;];

StartTime1 = [1 3 57 30] * SecondsScale1; % find start time in seconds scale

%now convert time in Day/Hours/Minutes/Seconds format to seconds scale from

%the start time

WebLogSeconds20071001035730 = WebLogTimes20071001035730 * SecondsScale1 - StartTime1;

% repeat the data entry process above on the second file

load WebLogTimes20071002035730.dat %

SecondsScale1 = [24*60*60; 60*60; 60; 1;];

StartTime2 = [2 3 57 30] * SecondsScale1;

WebLogSeconds20071002035730 = WebLogTimes20071002035730 * SecondsScale1 - StartTime2;

% calling a more efficient ECDF function for empirical DF’s

[x1 y1]=ECDF(WebLogSeconds20071001035730,0,0,0);

[x2 y2]=ECDF(WebLogSeconds20071002035730,0,0,0);

stairs(x1,y1,’r’,’linewidth’,1) % draw the empirical DF for first dataset

hold on;

stairs(x2,y2,’b’) % draw empirical cdf for second dataset

% set plot labels and legends and title

xlabel(’time t in seconds’)

ylabel(’ECDF F^\^(t)’)

grid on

legend(’Starting 10\01\0357\30’, ’Starting 10\02\0357\30’)

title(’24-Hour Web Log Times of Maths & Stats Dept. Server at Univ. of Canterbury, NZ’)

%To draw the confidence bands

Alpha=0.05; % set alpha

% compute epsilon_n for first dataset of size 56485

Epsn1 = sqrt((1/(2*56485))*log(2/Alpha));

stairs(x1,max(y1-Epsn1,zeros(1,length(y1))),’g’) % lower 1-alpha confidence band

stairs(x1,min(y1+Epsn1,ones(1,length(y1))),’g’) % upper 1-alpha confidence band

% compute epsilon_n for second dataset of size 53966

Epsn2 = sqrt((1/(2*53966))*log(2/Alpha));

stairs(x2,max(y2-Epsn2,zeros(1,length(y2))),’g’) % lower 1-alpha confidence band

stairs(x2,min(y2+Epsn2,ones(1,length(y2))),’g’) % upper 1-alpha confidence band



2007 Student Project Appendix

Please visit http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT218/projects/
Stat218StudentProjects2007.pdf to see the term projects completed by students of STAT 218
from 2007. Some of the simulation devices and non-perishable data from these projects are archived
on the sixth floor of the Erskine Building.
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