
STAT221Week03

last edited on April 04, 2011 02:39 PM by raazesh.sainudiin

Save Save & quit Discard & quit

File... Action... Data... sage Typeset

Print Worksheet Edit Text Undo Share Publish

Conditional Probability, Random Variables, Loops and

Conditionals

Monte Carlo Methods

©2009 2010 2011 Jennifer Harlow, Dominic Lee and Raazesh Sainudiin.

Creative Commons Attribution-Noncommercial-Share Alike 3.0

Probability

Independence

Conditional Probability

Bayes Theorem

Random Variables

For loops

Conditional Statements

Probability (continued)

Recap on probability

An experiment is an activity or procedure that produces distinct or well-defined outcomes. The set of such outcomes is

called the sample space of the experiment. The sample space is usually denoted with the symbol .

An event is a subset of the sample space.

Probability is a function that assigns numbers in the range 0 to 1 to events

which satisfies the following axioms:

For any event , .1.

If is the sample space, .2.

If and are disjoint (i.e.,), then .3.

If is an infinite sequence of pair-wise disjoint events (i.e., when), then4.

Property 1

, where

Version 4.6.2

raazesh.sainudiin Toggle Home Published Log Settings Help Report a Problem

Sign out
The Sage Notebook

!

P 0;] : set of events ! [1

A 0 (A) ! P ! 1
! P (!) = 1
A B A ; \B = P (A) (A) (B) [B = P + P
A ; ; 1 A2 : : : A ; i \Aj = i = j

 | {z }

P

ï
[1

i=1

Ai

!

A1 [A2 [A3 : : :

=

=

| {z }

X1

i=1

P (A)i

P (A) (A) (A)1 + P 2 + P 3 + : : :

P (A) (A) = 1" P c A c = ! nA

jsMath

STAT221Week03 -- Sage

1 of 19

Property 2

For any two events , ,

The idea in Property 2 generalises to the "inclusion-exclusion" formula.

Let be any events. Then,

In words, we take all the possible intersections of one, two, three, , events and let the signs alternate.

Question

Does the inclusion-exclusion formula agree with the extended Axiom 3: If are pair-wise disjoint events

then

The domain of the probability function

What exactly is stipulated by the axioms about the domain of the probability function?

The domain should be a sigma field (-field) or sigma algebra (-algebra), denoted or such that:

1.

2.

3.

Thus the domain of the probability is not just any old set of events (recall events are subsets of), but rather a set of

events that form a -field that contains the sample space , is closed under complementation and countable union.

 is called a probability space or probability triple.

Example

Let . What -fields could we have?

 is the finest -field.

 is a trivial -field.

Example

Let .

, the set of all subsets of , also known as the power set of .

.

Independence

Two events and are independent if .

Intuitively, and are independent if the occurrence of has no influence on the probability of the occurrence of

(and vice versa).

Example

Flip a fair coin twice. Event is the event "The first flip is 'H'"; event is the event "The second flip is 'H'".

A B

P (A) (A) (B) (A) [B = P + P " P \B

A ; ; 1 A2 : : : ; An n

P ()
Sn

i=1Ai = (A) (A)
Pn

i=1 P i "
P

i<j P i \Aj

(A) "1) P (A)+
P

a<j<k P i \Aj \Ak + : : :+ (n+1
1 \A2 \ : : : \An

: : : n

A ; ; 1 A2 : : : ; An

P (A) ()
Sn

i=1Ai =
Pn

i=1 P i

! ! !(!) F

! 2 F
A F) 2 () Ac 2 F
A ; ; A 1 A2 : : : 2 F) [i 2 F

!

sigma !

(!; (!);) F P

! H; g = f T !

F fH; g; ; Hg; Tgg (!) = f T ; f f !

F fH; g; g 0 (!) = f T ; !

! ! ; g = f 1 : : : ; !n

F (!) = 2! ! !

j2 j ! = 2n

A B P (A) (A)P (B) \B = P

A B A B

A B

jsMath

STAT221Week03 -- Sage

2 of 19

P (A) , P (B)

Because the flips are independent (what happens on the first flip does not influence the second flip),

.

Example

We can generalise this by saying that we will flip a coin with an unknown probability parameter . We flip this

coin twice and the coin is made so that for any flip, , .

Take the same events as before: event is the event "The first flip is 'H'"; event is the event "The second flip is 'H'".

Because the flips are independent,

.

If we take event as the event "The second flip is 'T'", then

.

Example

Roll a fair die twice. The face of the die is enumerated 1, 2, 3, 4, 5, 6.

 Event is the event "The first roll is 5"; event is the event "The second roll is 1".

P (A) , P (B)

If the two rolls are independent,

You try at home

Suppose you roll two fair dice independently. What is the probability of getting the sum of the outcomes to be seven?

Solution: Please do this at home or with earphones! Watch the Khan Academy movie about probability and two dice.

Conditional probability

Suppose that we are told that the event with occurs and we are interested in whether another event will

now occur. The sample space has shrunk from to . The probability that event will occur given that has

already occurred is defined by

= 2
1 = 2

1

P (A) \B = 2
1
2

1 = 4
1

" 0;] 2 [1
P ('H') = " P ('T') = 1" "

A B

P (A) \B = " # " = "
2

C

P (A) 1) \ C = " # (" "

A B

= 6
1 = 6

1

P (A) \B = 6
1
6

1 = 1
36

A P (A) > 0 B

! A B A

P (BjA) =
P (A)

P (B)\A

jsMath

STAT221Week03 -- Sage

3 of 19

We can understand this by noting that

Only the outcomes in that also belong to can possibly now occur, and

Since the new sample space is , we have to divide by to make

If the two events and are independent then

which makes sense - we said that if two events are independent, then the occurrence of has no influence on the

probability of the occurrence of .

Example

Roll two fair dice.

 Event is the event "The sum of the dice is 6"; event is the event "The first die is 2".

How many ways can we get a 6 out of two dice?

P (A)

B A

A P (A)

P (AjA) =
P (A)

P (A)\A
=

P (A)

P (A)
= 1

A B

P (BjA) (B) =
P (A)

P (B)\A
=

P (A)

P (B)P (A)
= P

A

B

A B

A (1;); 2;); 3;); 4;); 5;)g = f 5 (4 (3 (2 (1

= 1
36 + 1

36 + 1
36 + 1

36 + 1
36 = 5

36

jsMath

STAT221Week03 -- Sage

4 of 19

Look at this result in terms of what we said about the sample space shrinking to .

Bayes Theorem

We just saw that , the conditional probability that event will occur given that has already occurred is

B (2;); 2;); 2;); 2;); 2;); 2;)g = f 1 (2 (3 (4 (5 (6

B (2;)g \A = f 4

P (B) \A = 1
36

P (BjA) =
P (A)

P (B\A)
= 5

36

1

36 = 5
1

A

P (BjA) B A
jsMath

STAT221Week03 -- Sage

5 of 19

defined by . By using the fact that and reapplying the definition of conditional

probability to , we get the so-called Bayes theorem.

You try at home

Suppose we have a bag of ten coins. Nine of the ten coins are fair but one of the coins has heads on both sides. What is

the probability of getting five heads in a row if I picked a coin at random from the bag and flipped it five times? If I

obtained five heads in a row by choosing a coin out of the bag at random and flipping it five times, then what is the

probability that I have picked the two-headed coin?

Solution: Please do this at home or with earphones! Watch the Khan Academy movies about applications of conditional

probability and Bayes theorem to this bag of 10 coins.

You try

The next cell uses a function called randint which we will talk about more later in the course. For this week we'll just

use randint as a computerised way of rolling a die: every time we call randint(1,6) we will get some integer

number from 1 to 6, we won't be able to predict in advance what we will get, and the probability of each of the numbers

1, 2, 3, 4, 5, 6 is equal. Here we use randint to simulate the experiment of tossing two dice. The sample space is all

36 possible ordered pairs . We print out the results for each die. Try evaluating the cell several times

and notice how the numbers you get differ each time.

randint?

die1 = randint(1,6)

die2 = randint(1,6)

print "(die 1, die2) is (", die1, ", ", die2, ")"

P (B)=P (A) \A B \A = A \B
P (AjB) (A)=P (B) = P \B

P (BjA) =
P (A)

P (B)\A
=

P (A)

P (A)\B
=

P (A)

P (AjB)P (B)

!

(1;); 6;) 1 : : : (6

jsMath

STAT221Week03 -- Sage

6 of 19

Random Variables

A random variable is a mapping from the sample space to the set of real numbers !. In other words, it is a numerical

value determined by the outcome of the experiment.

This is not as complicated as it sounds: let's look at a simple example:

Example

Roll two fair dice.

The sample space is the set of 36 ordered pairs

Let random variable be the sum of the two numbers that appear, .

For example,

And,

Formal definition of a random variable

!

! (1;); 1;); 2;); 2;); 1;); 6;)g = f 1 (2 : : : ; (1 (2 : : : ; (6 : : : ; (6

X X : !! !

X 2 (f(6;)g)6 = 1

P (X 2) = 1 = P (f(6;)g)6

X (f(3;)g)2 = 5

jsMath

STAT221Week03 -- Sage

7 of 19

Let be some probability triple. Then a random variable, say , is a function from the sample space to the

set of real numbers !

such that for every , the inverse image of the half-open interval is an element of the collection of events

, i.e.,

for every ,

Discrete random variable

A random variable is said to be discrete when it can take a countable sequence of values (a finite set is countable). The

three examples below are discrete random variables.

Probability of a random variable

Finally, we assign probability to a random variable as follows:

Distribution Function

The distribution function (DF) or cumulative distribution function (CDF) of any RV , denoted by is:

Example - Sum of Two Dice

In our example above (tossing two die and taking as the sum of the numbers shown) we said that , but

(3,2) is not the only outcome that maps to 5:

Example - Pick a Fruit at Random

Remember our "well-mixed" fruit bowl containing 3 apples, 2 oranges, 1 lemon? If our experiment is to take a piece of

fruit from the bowl and the outcome is the kind of fruit we take, then we saw that .

Define a random variable to give each kind of fruit a numerical value: , ,

.

Example - Flip Until Heads

Flip a fair coin until a 'H' appears. Let be the number of times we have to flip the coin until the first 'H'.

, , ,

You try at home

Consider the example above of 'Pick a Fruit at Random'. We defined a random variable there as ,

, . Using step by step arguments as done in the example of 'Sum of Two Dice' above, find

the following probabilities for our random variable :

(!; ;) F P X !

X : !! !

x 2 ! ("1;] x
F

x 2 !

X = ! (!) g [!1] (("1;])x : f : X ! x 2 F

X

P (X) (X = ! x = P [!1] (("1;])x : P (f! (!) g): X ! x

X F

F (x) = (X) x : P ! x = P (f! (!) g): X ! x , for any 2 !

X X ((3;))2 = 5

X X (1;); 2;); 3;); 4;)g [!1] (5) = f 4 (3 (2 (1

P (X)= 5 =

=

=

P (f! (!) g): X = 5

P X
!

[!1] (5)
"

P (f(1;); 2;); 3;); 4;)g)4 (3 (2 (1

! apple; ; g = f orange lemon

Y Y (apple) = 1 Y (orange) = 0
Y (lemon) = 0

X

! H; ; ; ; g = f TH TTH : : : ;TTTTTTTTTH : : :

X(H) = 0 X(TH) = 1 X(TTH) = 2 : : :

Y Y (apple) = 1
Y (orange) = 0 Y (lemon) = 0

Y jsMath

STAT221Week03 -- Sage

8 of 19

Please do this at home or with earphones! Watch the Khan Academy movie about random variables.

When we introduced the subject of probability, we said that many famous people had become interested in it from the

point of view of gambling. Games of dice are one of the earliest forms of gambling (probably deriving from an even

earlier game which involved throwing animal 'ankle' bones or astragali). Galileo was one of those who wrote about dice,

including an important piece which explained what many experienced gamblers had sensed but had not been able to

formalise - the difference between the probability of throwing a 9 and the probability of throwing a 10 with two dice. You

should be able to see why this is from our map above. If you are interested you can read a translation (Galileo wrote in

Latin) of Galileo's Sorpa le Scoperte Dei Dadi. This is also printed in a nice book, Games, Gods and Gambling by F.N.

David (originally published 1962, newer editions now available).

You try

Example 1: fruit bowl experiments

We are going to use Sage with the fruit bowl example, and the random variable to give each kind of fruit a numerical

value: , This is a discrete random variable because it can only take a

finite number of discrete values (in this case, either 1 or 0).

We have made our own random variable map object in Sage called RV. As with the Sage probability maps we looked

at last week, it is based on a map or dictionary. We specify the sample the samplespace and probabilities and the

random variable map, MapX, from the samplespace to the values taken by the random variable).

the sample space set as a list of outcomes

samplespace = ['apple', 'orange', 'lemon']

the corresponding list of outcome probabilities

probabilities = [3/6, 2/6, 1/6]

list of image values corresponding to the list of outcomes

taken by the random variable X (1 if we pick an apple and 0 otherwise)

mapX = [1, 0, 0]

print "defined samplespace, probabilities, and mapX"

To make an RV, we can specify the lists for the sample space, the probabilities, and the random variable values

associated with each outcome. Since there are three different lists here, we can make things clearer by actually saying

what each list is. The RV we create in the cell below is going to be called X.

P (Y)= 0 =

=

=

P (f! (!)): Y = g

P Y
!

[!1] ()
"

P (f); g

X

X(apple) = 1 X(orange) (lemon) = X = 0

X

jsMath

STAT221Week03 -- Sage

9 of 19

X = RV(sspace=samplespace, probs=probabilities, values=mapX) # this random

variable will be called X

X # disclose the representation of the random variable X

(You don't have to worry about how RV works: it is our 'home-made' class for you to try out.)

We can get probabilities using the syntax X.P(x) to find . 'Syntax' is a way of saying how you instruct the

computer to do what you want: the syntax you use for the computer maybe different to the way that you'd write the

expressions in your lecture notes.

X.P(1) # find the probability that X is 1

X.explainLastCalc() # print out the values used in the calculation of

the probability that X = 1

You have seen that different random variables can be defined on the same probability space, i.e., the sample space

and the associated probability map, depending on how the outcomes are mapped to real values taken by the random

variable. Usually there is some good experimental or mathematical reason for the particular random variable (i.e.,

event-to-value-mappings) that we use. In the experiment we just did we could have been an experimenter particularly

interested in citrus fruit but not concerned with what particular kind of citrus it is.

On the other hand, what if we want to differentiate between each fruit in the sample space? Then we could give each

fruit-outcome a different value.

the sample space set as a list of outcomes

samplespace = ['apple', 'orange', 'lemon']

the corresponding list of outcome probabilities

probabilities = [3/6, 2/6, 1/6]

list of image values corresponding to the list of outcomes

map for another random variable is 1, 2, 3 if the fruit we pick is apple,

orange or lemon, respectively.

mapZ = [1, 2, 3]

print "defined sample space, probabilities, and mapZ"

Z = RV(sspace=samplespace, probs=probabilities, values=mapZ) # this random

variable will be called Z

Z # disclose the representation of the random variable Z

Z.P(1), Z.P(2), Z.P(3) # find the probability that Z=1, Z=2, Z=3

Example 2: Coin toss experiments

An experiment that is used a lot in examples is the coin toss experiment. If we toss a fair coin once, the sample space

is either head (denoted here as H) or tail (T). The probability of a head is a half and the probability of tail is a half.

We can do the probability map for this as one of our ProbyMap objects.

P (X) = x

jsMath

STAT221Week03 -- Sage

10 of 19

samplespace = ['H', 'T'] # sample space is the result of one coin toss

probabilities = [1/2,1/2] # probabilities for a fair coin

probMapCoinToss = ProbyMap(sspace = samplespace, probs=probabilities)

disclose the representation of the probability map from a one-coin toss

sample space to the probabilities

probMapCoinToss

Let's have a random variable called oneHead that takes the value 1 if we get one head, 0 otherwise and simulate this

with an RV object.

.

mapOneHead = [1, 0] # map for a random variable is 1 if the result is a

head, 0 if it is a tail

oneHead = RV(sspace=samplespace, probs=probabilities, values=mapOneHead) #

this random variable will be called OneHead

oneHead # disclose the representation of the random variable OneHead

oneHead.P(1) # find the probability that the random variable oneHead = 1

One toss is not very interesting. What if we we have a sample space that is the possible outcomes of two independent

tosses of the same coin?

we can 'square' our probability map from for one coin toss to get the map

for two tosses of the coin

probMapTwoCoinTosses = probMapCoinToss^2

probMapTwoCoinTosses # disclose the map from the events for two coin

tosses to the probabilities (the probability map)

Tossing the coin twice and looking at the results of each toss in order is a different experiment to tossing the coin once.

We have a different set of possible outcomes, {HH, HT, TH, TT}. Note that the order matters: getting a head in the first

toss and a tail in the second (HT) is a different event to getting a tail in the first toss and a head in the second (TH).

We can define a different random variable on this set of outcomes. Let's take an experimenter who is particularly

interested in the number of heads we get in two tosses.

mapHeadsInTwoTosses = [2, 1, 0 ,1] # map for a random variable is the number

of heads in two tosses

headsInTwoTosses=RV(probmap=probMapTwoCoinTosses,

values=mapHeadsInTwoTosses) # this random variable will be called

HeadsInTwoTosses

headsInTwoTosses # disclose the representation of the random variable

As you can see, two different events in the sample space, a head and then a tail (HT) and a tail and then a head (TH)

both give this random variable a value of 1. The event HH gives it a value 2 (2 heads) and the event TT gives it a value

0 (no heads).

Now we can try the probabilities.

headsInTwoTosses.P(0) # probability that headsInTwoTosses = 0

jsMath

STAT221Week03 -- Sage

11 of 19

headsInTwoTosses.P(1) # probability that headsInTwoTosses = 1

headsInTwoTosses.P(2) # probability that headsInTwoTosses = 2

The indicator function

The indicator function of an event , denoted , is defined as follows:

The indicator function is really an RV.

Example

"Will it rain tomorrow in the Southern Alps?" can be formulated as the RV given by the indicator function of the event

"rain drops fall on the Southern Alps tomorrow". Can you imagine what the 's in the sample space can be?

Probability Mass Function

Recall that a discrete RV takes on at most countably many values in !.

The probability mass function (PMF) of a discrete RV is :

Bernoulli random variable

The Bernoulli RV is a -parameterised family of .

Take an event . The parameter (pronounced 'theta) denotes the probability that " occurs", i.e., .

The indicator function of " occurs" is the RV.

Model []

Given a parameter , the probability mass function (PMF) for the RV is:

and its DF is:

We emphasise the dependence of the probabilities on the parameter by specifying it following the semicolon in the

argument for and and by subscripting the probabilities, i.e. and .

For loops

A 2 F 1 A

1 (!) = A :

#
1

0

if ! 2 A

2if ! = A

1 A

! !

X

f X

f(x) = (X) : P = x = P (f! (!) g): X = x

" 1 A

A " A P (A) = "

1 A A Bernoulli(")

Bernoulli(")

" 0;] 2 [1 Bernoulli(") X

f(x;) (1) 1 (x) " = "
x

" "
1!x

f0;1g =

8

:

<>

>

"

1" "

0

if x=1,

if x=0,

otherwise

F (x;) " =

8

:

<>

>

1

1" "

0

if 1 ,! x

if 0 ,! x < 1

otherwise

"

f F P (X) ! = 1 = " P (X) ! = 0 = 1" "

jsMath

STAT221Week03 -- Sage

12 of 19

'For loops' are a very useful way that most computer programming languages provide to allow us to repeat the same

action. In Sage, you can use a for loop on a list to just go through the elements in the list, doing something with each

element in turn.

The SAGE syntax for a 'for loop' is:

Start with the keyword for1.

Then we use a kind of temporary variable which is going to take each value in the list, one by one, in order. In the

example below we use the name x for this variable and write for x in myList.

2.

After we have specified what we are looping through, we end the line with a colon : before continuing to the next

line.

3.

Now, we are ready to write the body of the for loop. In the body, we put whatever we want to actually do with each

value as we loop through. Remember when we defined a function, and the function body was indented? It's the

same here: the body is a block of code which is indented (the Sage standard indentation for block is 4 spaces).

4.

Indicate to Sage when your for loop has ended by moving the beginning of the line following the for loop back so

that is it aligned with the for which started the whole loop.

5.

The cell below gives a very simple example using a list.

a simple routine to print every number in a list

myList = [1, 3, 6, 4, 2]

for x in myList: # this statement will just go through the list

in order.

 # Note the :

 # each element in turn is assigned to the

variable x

 print x # body of the for loop (just one line in this

case)

If we wanted to do this for any list, we could write a simple function that takes any list we give it and puts it through a for

loop, like the function below.

def myPrintListFunc(ll): # start defining the

function

 '''A simple function to print a given list.''' # the docstring for

the function

 for x in ll: # body of the

function starts

 print x # body of loop is

indented again

Notice that we start indenting with 4 spaces when we write the function body. Then, when we have the for loop inside

the function body, we just indent the body of the for loop again.

Sage needs the indentation to help it to know what is in a function, or a for loop, and what is outside, but indentation also

helps us as programmers to be able to look at a piece of code and easily see what is going on.

Let's try our function on another list.

anotherList = [20, 24, 46]

myPrintListFunc(anotherList)

jsMath

STAT221Week03 -- Sage

13 of 19

We have just programmed a basic for loop with a list. We can do much more than this with for loops, but this covers the

essentials that we need to know. The important thing to remember is that whenever you have a list, you can easily write

a for loop to go through each element in turn and do something with it.

You try

Example 3: For loops

Try first assigning the value 0 to a variable named mySum and then making yourself a list (you pick what it is called and

what values it contains) and then looping through the list, adding each element in the list to mySum. When the loop has

finished, the value of mySum will be the accumulated value of all the elements in the list.

What about defining a function to accumulate the values in a list? Remember to give your function a good name, and

include the docstring to tell everyone what it does.

Try out your function!

A for loop can be used on more than just a list. For example, try a loop with the set S we make below - you can try

making a loop to print the elements in the set one by one, as we did above, or to accumulate them, or do anything else

you think is sensible

S=set([5,10,15, 70]) # make the set S

S # display the set S

Loop over the set and do something.

You can even use a for loop on a string like "thisisastring", but this is not as useful for us as being able to use a for loop

on a list or set.

We can use the range function we met last week to make a for loop that will do something a specified number of times.

Remind yourself about the range function:

counter = range(10) # reminder about range

counter

jsMath

STAT221Week03 -- Sage

14 of 19

Now let's use the counter idea do a specified number of rolls of the die that we can simulate with randint(1,6).

Notice that here the actual value of the elements in the list is not being used directly: the list is being used like a counter

to make sure that we do something a specified number of times.

for c in range(10):

 dieResult = randint(1,6)

 print "Number on die is ", dieResult

Conditional statements

A conditional statement is also known as an if statement or if-else statement. And it's basically as simple as that: if

[some condition] is true then do [something]. To make it more powerful, we can also say else (ie, if not), then do [a

different something].

The if statement syntax is a way of putting into a programming language a way of thinking that we use every day: E.g.

"if it is raining, I'll take the bus to uni; else I'll walk".

You'll notice that when we have an if statement, what we do depends on whether the condition we specify is true or false

(i.e. is conditional on this expression). This is why if statements are called conditional statements.

When we say "depends on whether the condition we specify is true or false", in SAGE terms we are talking about

whether the expression we specify as our condition evaluates to the Boolean true or the Boolean false. Remember

those Boolean values, true and false, that we talked about in Lab 1?

The SAGE syntax for a conditional statement including if and else clauses is explained below:

Start with the keyword if1.

Immediately after keyword if we specify the condition that determines what happens next. The condition

therefore has to be the kind of truth statement we talked about in Lab 1, an expression which SAGE can evaluate

as either Boolean true or Boolean false. The examples below will make this a bit clearer.

2.

After we have specified the condition, we end the line with a colon : before continuing to the next line.3.

Now, immediately below the line that starts if, we give the code that says what happens if the condition we

specified is true. This block of code is indented so that SAGE can recognise that it should do everything in that

block if the condition is true. If the condition is false, SAGE will not go into this indented block to execute any of

this code but instead look for the next line which is aligned with the original if, i.e. the next line which is not part of

the if-block.

4.

In some situations we only want do something if the condition is true, and there is nothing else we want to do if the

condition is false. In this situaion all we need is the if-block of code described above, the part that is executed

only if the condition is true. Then we can carry on with the rest of the program. An everyday example would be

"if it is cold I will wear gloves".

5.

In some other situations, however, we also want to specify something to happen when the condition is false -

else-block. We specify this by following the if-block with the keyword else, aligned with the if so that SAGE

knows this is where it jumps to when the if condition is false. The keyword else is also followed by a colon :

6.

Immediately below the line that starts else, we say what happens if the condition we specified is false. Again,

this block of code (the else-block) is indented so that SAGE can recognise that it should do everything in that block

if the condition is false.

7.

Note that SAGE will either execute the code in the if-block or will execute the code in the else-block. What happens, i.e.

which block gets executed, depends on whether the condition evaluates to true or false.

Let's set up a nice simple conditional statement and see what happens. We want take two variables, named x and y, andjsMath

STAT221Week03 -- Sage

15 of 19

print something out only if x is greater than y. The condition is 'x > y', and you can see that this evaluates to either true

or false, depending on the values of x and y.

x = 50 # assign the value 50 to the variable

called x

y = 40 # assign the value 40 to the variable

called y

if x > y: # does the expression 'x > y' evaluate to

true or false

 print "x is greater than y" # this indented code is only executed if

the condition is true

print "This is the end of my first conditional statement" # this code is

not indented

We can nest conditional statements so that one whole conditional statement is in the if-block (or else-block) of another

one.

x = 50 # assign a value to a variable called x

y = 40 # assign a value to a variable called y

z = 60 # assign a value to a variable called z

if x > y: # does the expression 'x > y' evaluate to

true or false

 print "x is greater than y" # this indented code is only executed if

the condition is true

 if z > x: # nested if does the expression 'z > x'

evaluate to true or false

 print "and z is greater than z" # only executed if both

conditions are true

print "This is the end of my nested conditional statement" # this code is

not indented

You try

Example 4: Conditional statements

The cell above only did something if the condition was true. Now let's try if and else. This is a more complicated

example and you might want to come back to it to make sure you understand what is going on. Try assigning different

values to the variable myAge and see what happens when you evaluate the cell.

myAge = 22; # assign the value 50 to the variable called x

myResult = '' # myResult is an empty string waiting to be filled in

if myAge > 40:

 print "------- code in the if block is being executed"

 myResult = "You are old enough to know better . . ."

else:

 print "------- code in the else block is being executed"

 myResult = "You are young enough to dream . . ."

print "------- we are now back in the main flow of the program"

print myResult # the value of myResult will depend on what happened

above

jsMath

STAT221Week03 -- Sage

16 of 19

We could also define a function which uses if and else. Let us define a function called myMaxFunc which takes two

variables x and y as parameters. Note how we indent once for the body of the function, and again when we want to

indicate what is in the if-block and else-block.

def myMaxFunc(x, y):

 '''A function to return the maximum of x and y.''' # a one-line

docstring

 if x > y: # use an if-else statement to test if x

greater than y

 retvalue = x # if-block code is indented again

 else:

 retvalue = y # else-block code is indented again

SAGE language note: There is of course a perfectly good max() function in SAGE which does the same thing - this is just

a convenient example of the use of if and else.

Now we try our function out with some variables. Try using different values for firstNumber and secondNumber to test it.

firstNumber = 20

secondNumber = 40

myMaxFunc(firstNumber, secondNumber)

Finally, lets look at something to bring together for loops and conditional statements. We have seen how we can use a

for loop to simulate throwing a die a specified number of times. We could add a conditional statement to count how

many times we get a certain number on the die. Try altering the values of resultOfInterest and numberOfThrows

and see what happens. Note that being able to find and alter values in your code easily is part of the benefits of using

variable names.

resultOfInterest = 5 # specify what number we will count occurrences of

countNumber = 0 # to accumulate the count of the occurrences

numberOfThrows = 100 # how many throws to simulate

for c in range(numberOfThrows): # loop numberOfThrows times

 dieNumber = randint(1,6)

 if dieNumber == resultOfInterest:

 countNumber = countNumber + 1 # increment for each occurrence

print "You got the number", resultOfInterest, countNumber, "times"

To get even fancier, we could set up a map and count the occurences of every number 1, 2, ... 6. Make sure that you

understand what we are doing here. We are using a dictionary with (key, value) pairs to associate a count with each

number that could come up on the die (number on die, count of number on die). Notice that we do not have to use the

conditional statement (if ...) because we can access the value by using the key that is a particular result of a roll of the

die.

Try altering the numberOfThrows and see what happens.

jsMath

STAT221Week03 -- Sage

17 of 19

countMap = {1:0, 2:0, 3:0, 4:0, 5:0, 6:0} # start with a dictionary

with all count values 0

numberOfThrows = 100 # number of throws to make

for c in range(numberOfThrows): # loop numberOfThrows times

 dieNumber = randint(1,6)

 countMap[dieNumber] = countMap[dieNumber]+1

countMap # disclose the final countMap

Earlier, we looked at the probability of the event when we toss two dice and is the event that the sum of the two

numbers on the dice is 6 and is the event that the first die is a 2. We worked out that . See if you can do

another version of the code we have above to simulate throwing two dice a specified number of times, and use two

nested conditional statements to accumulate a count of how many times the sum of the two numbers is 6 and how many

out of those times the first die is a 2. When the loop has finished, you could print out or disclose the proportion

Example 5: More coin toss experiments

If you have time, try the three-coin-toss and four-coin-toss examples below. These continue from Example 2 above.

Another new experiment: the outcomes of three tosses of the coin.

samplespace = ['H', 'T'] # sample space is the result of one coin toss

probabilities = [1/2,1/2] # probabilities for a fair coin

probMapCoinToss = ProbyMap(sspace = samplespace, probs=probabilities)

disclose the representation of the probability map from a one-coin toss

sample space to the probabilities

probMapCoinToss

probMapThreeCoinTosses = probMapCoinToss^3 # 'cubing' the probability

map from for one coin toss to get the map for three tosses of the coin

probMapThreeCoinTosses

The random variable we define is the number of heads we get in three tosses.

mapHeadsInThreeTosses = [2, 1, 3, 1, 1, 0, 2, 2] # map for a random variable

is the number of heads in three tosses

X=RV(probmap=probMapThreeCoinTosses, values=mapHeadsInThreeTosses) # this

random variable will be called X (easier than headsInThreeTosses!)

X # disclose the representation of the random variable X

X.P(3) # find the probability that X = 3 (X is the number of heads in

three tosses of the coin)

If you are not bored yet, try a four-tosses experiment where we define a random variable which takes value 1 when the

outcome includes exactly two heads, and 0 otherwise.

probMapFourCoinTosses = probMapCoinToss^4 # the probability map for 4

independent tosses of the coin

probMapFourCoinTosses

BjA A

B P (BjA) = 5
1

number of times sum is 6
number of times sum is 6 and first die is 2

jsMath

STAT221Week03 -- Sage

18 of 19

mapExactlyTwoHeadsInFourTosses = [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,

1, 0] # map for a r.v. which takes value 1 if two heads, 0 otherwise

Y=RV(probmap=probMapFourCoinTosses, values=mapExactlyTwoHeadsInFourTosses) #

this random variable will be called Y

Y # disclose the representation of the random variable Y

Y.P(0) # find the probability that we don't get exactly 2 heads in four

Y.explainLastCalc() # see the calculation

%hide

%hide

jsMath

STAT221Week03 -- Sage

19 of 19

