
STAT221Week07
last edited on May 03, 2010 07:40 AM by jenny.harlow

Save Save & quit Discard & quit

File... Action... Data... sage Typeset

Print Worksheet Edit Text Undo Share Publish

Pseudo-Random Numbers, Simulating from
Some Discrete and Continuous Random
Variables

Monte Carlo Methods

©2009 2010 2011 Jennifer Harlow, Dominic Lee and Raazesh Sainudiin.
Creative Commons Attribution-Noncommercial-Share Alike 3.0

The Uniform(0,) RV
The Bernoulli(θ) RV

Simulating from the Bernoulli(θ) RV
The Equi-Probable de oivre(k) RV

Simulating from the Equi-Probable de oivre(k) RV
The Uniform(θ ,) RV

Simulating from the Uniform(θ ,) RV

The Exponential(λ) RV
Simulating from the Exponential(λ) RV

The standard Cauchy RV
Simulating from the standard Cauchy RV

Investigating running means
Replicable samples
A simple simulation

In the last worksheet, we started to look at how we can produce realisations from the most elementary Uniform(0,)
random variable.

i.e., how can we produce samples (x , ,) from X , , Uniform(0,)?

What is Sage doing when we ask for random()?

random()

We looked at how Modular arithmetic and number theory gives us pseudo-random number generators.

Version 4.6.2

raazesh.sainudiin Toggle Home Published Log Settings Help Report a Problem

Sign out
The Sage Notebook

1

M
M

1 θ2

1 θ2

1

1 x2 . . . ,xn 1 X2 . . . ,Xn ∼IID 1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

1 of 37 05/12/2011 08:31 AM

We used linear congruential generators (LCG) as simple pseudo-random number generators.

Remember that "pseudo-random" means that the numbers are not really random. We saw that some linear congruential
generators (LCG) have much shorter, more predictable, patterns than others and we learned what makes a good LCG.

We introduced the pseudo-random number generator (PRNG) called the Mersenne Twister that we will use for simulation
purposes in this course. It is based on more sophisticated theory than that of LCG but the basic principles of recurrence
relations are the same.

The Random Variable

Recall that the Uniform(0,) random variable is the fundamental model as we can transform it to any other random
variable, random vector or random structure. The PDF f and DF F of X niform(0,) are:

F (x)

We use the Mersenne twister pseudo-random number generator to mimic independent and identically distributed draws
from the uniform(0,) RV.

In Sage, we use the python random module to generate pseudo-random numbers for us. (We have already used it:
remember randint?)

random() will give us one simulation from the Uniform(0,) RV:

random()

If we want a whole simulated sample we can use a list comprehension. We will be using this technique frequently so
make sure you understand what is going on. "for i in range(3)" is acting like a counter to give us 3 simulated
values in the list we are making

[random() for i in range(3)]

listOfUniformSamples = [random() for i in range(3)]
listOfUniformSamples

If we do this again, we will get a different sample:

listOfUniformSamples2 = [random() for i in range(3)]
listOfUniformSamples2

Often is it useful to be able to replicate the same random sample. For example, if we were writing some code to do
some simulations using samples from a PRNG, and we "improved" the way that we were doing it, how would we want

Uniform(0,) 1

1
~ U 1

f(x) ={0

1

if x ∈ 0,]/ [1

if x 0,]∈ [1

=










0

1

x

if x < 0

if x > 1

if x 0,]∈ [1

1

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

2 of 37 05/12/2011 08:31 AM

to test our improvement? If we could replicate the same samples then we could show that our new code was equivalent
to our old code, just more efficient.

Remember when we were using the LCGs, and we could set the seed x ? More sophisticated PRNGs like the

Mersenne Twister also have a seed. By setting this seed to a specified value we can make sure that we can replicate
samples.

help(set_random_seed)

 docs-0.html

set_random_seed(256526)

listOfUniformSamples = [random() for i in range(3)]
listOfUniformSamples

initial_seed()

Now we can replicate the same sample again by setting the seed to the same value:

set_random_seed(256526)
listOfUniformSamples2 = [random() for i in range(3)]
listOfUniformSamples2

initial_seed()

set_random_seed(2676676766)
listOfUniformSamples2 = [random() for i in range(3)]
listOfUniformSamples2

initial_seed()

We can compare some samples visually by plotting them:

0

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

3 of 37 05/12/2011 08:31 AM

set_random_seed(256526)
listOfUniformSamples = [(i,random()) for i in range(100)]
plotsSeed1 = points(listOfUniformSamples)
t1 = text('Seed 1 = 256626', (60,1.2), rgbcolor='blue',fontsize=10)
set_random_seed(2676676766)
plotsSeed2 = points([(i,random()) for i in range(100)],rgbcolor="red")
t2 = text('Seed 2 = 2676676766', (60,1.2), rgbcolor='red',fontsize=10)
bothSeeds = plotsSeed1 + plotsSeed2
t31 = text('Seed 1 and', (30,1.2), rgbcolor='blue',fontsize=10)
t32 = text('Seed 2', (65,1.2), rgbcolor='red',fontsize=10)
show(graphics_array((plotsSeed1+t1,plotsSeed2+t2,
bothSeeds+t31+t32)),figsize=[9,3])

You try

Optionally, try looking at the more advanced documentation.

help(sage.misc.randstate)

 docs-0.html

(end of You Try)

Question:

What can we do with samples from a Uniform(0,) RV? Why bother?

Answer:

We can use them to sample or simulate from other, more complex, random variables.

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

4 of 37 05/12/2011 08:31 AM

The Random Variable

The Bernoulli(θ) RV X with PMF f(x;) and DF F (x;) parameterised by some real θ 0,] is a discrete
random variable with only two possible outcomes.

f(x;) (1) 1 (x)

F (x;)

Here are some functions for the PMF and DF for a Bernoulli:

%auto
def bernoulliPMF(x, theta):
 '''Probability mass function for Bernoulli(theta).

 Param x is the value to find the Bernoulli probability mass of.
 Param theta is the theta parameterising this Bernoulli RV.'''

 retValue = 0
 if x == 1:
 retValue = theta
 elif x == 0:
 retValue = 1 - theta
 return retValue

def bernoulliCDF(x, theta):
 '''DF for Bernoulli(theta).

 Param x is the value to find the Bernoulli cumulative density function
of.
 Param theta is the theta parameterising this Bernoulli RV.'''

 retValue = 0
 if x >= 1:
 retValue = 1
 elif x >= 0:
 retValue = 1 - theta
 # in the case where x < 0, retValue is the default of 0
 return retValue

We can see the effect of varying θ interactively:

Bernoulli(θ)

θ θ ∈ [1

θ = θx − θ 1−x
{0,1} =










θ

1 − θ

0

if x ,= 1

if x ,= 0

otherwise

θ =










1

1 − θ

0

if 1 ,≤ x

if 0 ,≤ x < 1

otherwise

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

5 of 37 05/12/2011 08:31 AM

@interact
def _(theta=(0.5)):
 '''Interactive function to plot the bernoulli pmf and cdf.'''
 if theta <=1 and theta >= 0:
 outcomes = (0, 1) # define the bernoulli outcomes
 print "Bernoulli (", theta.n(digits=2), ") pmf and cdf"
 # pmf plot
 pmf_values = [bernoulliPMF(x, theta) for x in outcomes]
 pmf = pmfPlot(outcomes, pmf_values) # this is one of our own,
hidden, functions
 # cdf plot
 cdf_values = [bernoulliCDF(x, theta) for x in outcomes]
 cdf = cdfPlot(outcomes, cdf_values) # this is one of our own,
hidden, functions
 show(graphics_array([pmf, cdf]),figsize=[8,3])
 else:
 print "0 <= theta <= 1"

Don't worry about how these plots are done: you are not expected to be able to do this. Just use them to see the
effect of varying θ.

Simulating a sample from the

We can simulate a sample from a Bernoulli distribution by transforming input from a Uniform(0,) distribution
using the floor() function in Sage. In maths, , the 'floor of x' is the largest integer that is smaller than or equal

to x. For example, .

z=3.8
floor(z)

Using floor, we can do inversion sampling from the Bernoulli(θ) RV using the the Uniform(0,) random
variable that we said is the fundamental model.

We will introduce inversion sampling more formally later. In general, inversion sampling means using the inverse of the

CDF F , F , to transform input from a Uniform(0,) distribution.

To simulate from the Bernoulli(θ), we can use the following algorithm:

Input:

u niform(0,) from a PRNG
θ, the parameter

Output:

Bernoulli

1
x

3.8 = 3

1

[−1] 1

∼ U 1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

6 of 37 05/12/2011 08:31 AM

x ernoulli(θ)

Steps:

u Uniform(0,)1.
2.

Return x3.

 We can illustrate this with Sage:

theta = 0.5 # theta must be such that 0 <= theta <= 1
u = random()
x = floor(u + theta)
x

To make a number of simulations, we can use list comprehensions again:

theta = 0.5
n = 20
randomUs = [random() for i in range(n)]
simulatedBs = [floor(u + theta) for u in randomUs]
simulatedBs

To make modular reusable code we can package up what we have done as functions.

The function bernoulliFInverse(u, theta) codes the inverse of the CDF of a bernoulli distribution parameterised
by theta. The function bernoulliSample(n, theta) uses bernoulliFInverse(...) in a list comprehension to
simulate n samples from a bernoulli distribution parameterised by theta.

%auto
def bernoulliFInverse(u, theta):
 '''A function to evaluate the inverse CDF of a bernoulli.

 Param u is the value to evaluate the inverse CDF at.
 Param theta is the distribution parameters.
 Returns inverse CDF under theta evaluated at u'''

 return floor(u + theta)

def bernoulliSample(n, theta):
 '''A function to simulate samples from a bernoulli distribution.

 Param n is the number of samples to simulate.
 Param theta is the bernoulli distribution parameter.
 Returns a simulated Bernoulli sample as a list'''

 us = [random() for i in range(n)]

 return [bernoulliFInverse(u, theta) for u in us] # use bernoulliFInverse
in a list comprehension

∼ B

← 1
x u  ← + θ

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

7 of 37 05/12/2011 08:31 AM

Note that we are using a list comprehension and the built-in SAGE random() function to make a list of pseudo-random

simulations from the Uniform(0,). The length of the list is determined by the value of n. Inside the body of the
function we assign this list to a variable named us (i.e., u plural). We then use another list comprehension to make our
simulated sample. This list comprehension works by calling our function bernoulliFInverse(...) and passing in
values for theta together with each u in us in turn.

Let's try a small number of samples:

theta = 0.2
n = 10
samples = bernoulliSample(n, theta)
samples

Now lets explore the effect of interactively varying n and θ:

@interact
def _(theta=(0.5), n=(10,(0..1000))):
 '''Interactive function to plot samples from bernoulli distribution.'''
 if theta >= 0 and theta <= 1:
 print "epmf and ecdf for ", n, " samples from Bernoulli (", theta,
")"
 samples = bernoulliSample(n, theta)
 # epmf plot
 epmf = epmfPlot(samples) # this is one of our hidden functions
 # ecdf plot
 ecdf = ecdfPlot(samples) # this is one of our hidden functions
 show(graphics_array([epmf, ecdf]),figsize=[8,3])
 else:
 print "0 <= theta <=1, n>0"

You can vary θ and n on the interactive plot. You should be able to see that as n increases, the empirical plots should
get closer to the theoretical f and F .

You try

Check that you understand what floor is doing. We have put some extra print statements into our demonstration of
floor so that you can see what is going on in each step. Try evaluating this cell several times so that you see what
happens with different values of u.

theta = 0.5 # theta must be such that 0 <= theta <= 1
u = random()
print "u is", u
print "u + theta is", (u + theta)
print "floor(u + theta) is", floor(u + theta)

In the cell below we use floor to get 1's and 0's from the pseudo-random u's given by random(). It is effectively doing

exactly the same thing as the functions above that we use to simulate a specified number of Bernoulli(θ) RVs, but the

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

8 of 37 05/12/2011 08:31 AM

why that it is written may be easier to understand. If floor is doing what we want it to, then when n is sufficiently
large, we'd expect our proportion of 1s to be close to theta. Try changing the value assigned to the variable theta and
re-evaluting the cell to check this.

theta = 0.7 # theta must be such that 0 <= theta <= 1
listFloorResults = [] # an empty list to store results in
n = 100000 # how many iterations to do
for i in range(n): # a for loop to do something n times
 u = random() # generate u
 x = floor(u + theta) # use floor
 listFloorResults.append(x) # add x to the list of results
listFloorResults.count(1)*1.0/len(listFloorResults) # proportion of 1s in
the results

The Random Variable

The de Moivre(θ , ,) RV is the natural generalisation of the Bernoulli(θ) RV to more than two

outcomes. Take a die (i.e. one of a pair of dice): there are 6 possible outcomes from tossing a die if the die is a normal
six-sided one (the outcome is which face is the on the top). To start with we can allow the possibility that the different
faces could be loaded so that they have different probabilities of being the face on the top if we throw the die. In this
case, k=6 and the parameters θ , θ , ...θ specify how the die is loaded, and the number on the upper-most face if the

die is tossed is a de oivre random variable parameterised by θ , , .

If θ then we have a fair die.

Here are some functions for the equi-probable de oivre PMF and CDF where we code the possible outcomes as the
numbers on the faces of a k-sided die, i.e, 1,2,...k.

equi robable − p de Moivre(θ)

1 θ2 . . . , θk

1 2 6
M 1 θ2 . . . , θ6

1 = θ2 = . . . = θ6 =
6
1

M

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

9 of 37 05/12/2011 08:31 AM

%auto
def deMoivrePMF(x, k):
 '''Probability mass function for equi-probable de Moivre(k).

 Param x is the value to evaluate the deMoirve pmf at.
 Param k is the k parameter for an equi-probable deMoivre.
 Returns the evaluation of the deMoivre(k) pmf at x.'''

 if (int(x)==x) & (x > 0) & (x <= k):
 return 1.0/k
 else:
 return 0

def deMoivreCDF(x, k):
 '''DF for equi-probable de Moivre(k).

 Param x is the value to evaluate the deMoirve cdf at.
 Param k is the k parameter for an equi-probable deMoivre.
 Returns the evaluation of the deMoivre(k) cdf at x.'''

 return 1.0*x/k

Now we can use the interactive plots to look at the PMF and CDF for different values of k.

@interact
def _(k=(6)):
 '''Interactive function to plot the de Moivre pmf and cdf.'''
 if (int(k) == k) and (k >= 1):
 outcomes = range(1,k+1,1) # define the outcomes
 pmf_values = [deMoivrePMF(x, k) for x in outcomes]
 print "equi-probable de Moivre (", k, ") pmf and cdf"
 # pmf plot
 pmf = pmfPlot(outcomes, pmf_values) # this is one of our hidden
functions

 # cdf plot
 cdf_values = [deMoivreCDF(x, k) for x in outcomes]
 cdf = cdfPlot(outcomes, cdf_values) # this is one of our hidden
functions

 show(graphics_array([pmf, cdf]),figsize=[8,3])
 else:
 print "k must be an integer, k>0"

Try changing the value of k.

Simulating a sample from the equi-probable random variable

We use floor () again for simulating from the equi-probable de oivre(k) RV, but because we are defining our

de oivre(k) M

  M
jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

10 of 37 05/12/2011 08:31 AM

outcomes as 1, 2, ... k, we just add 1 to the result.

k = 6
u = random()
x = floor(u*k)+1
x

To simulate from the equi-probable de oivre(k), we can use the following algorithm:

Input:

u niform(0,) from a PRNG
k, the parameter

Output:

x de oivre(k)

Steps:

u Uniform(0,)1.
2.

return x3.

 We can illustrate this with Sage:

%auto
def deMoivreFInverse(u, k):
 '''A function to evaluate the inverse CDF of an equi-probable de Moivre.

 Param u is the value to evaluate the inverse CDF at.
 Param k is the distribution parameter.
 Returns the inverse CDF for a de Moivre(k) distribution evaluated at
u.'''

 return floor(k*u) + 1

def deMoivreSample(n, k):
 '''A function to simulate samples from an equi-probable de Moivre.

 Param n is the number of samples to simulate.
 Param k is the bernoulli distribution parameter.
 Returns a simulated sample of size n from an equi-probable de Moivre(k)
distribution as a list.'''

 us = [random() for i in range(n)]

A small sample:

deMoivreSample(10,6)

M

∼ U 1

∼ equi-probable M

← 1
x uk ←  + 1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

11 of 37 05/12/2011 08:31 AM

You should understand the deMoivreFInverse and deMoivreSample functions and be able to write something like
them if you were asked to.

You are not expected to be to make the interactive plots below.

Now let's do some interactive sampling where you can vary k and the sample size n:

@interact
def _(k=(6), n=(10,(0..500))):
 '''Interactive function to plot samples from equi-probable de Moivre
distribution.'''
 if n > 0 and k >= 0 and int(k) == k:
 print "epmf and ecdf for ", n, " samples from equi-probable de
Moivre (", k, ")"
 outcomes = range(1,k+1,1) # define the outcomes
 samples = deMoivreSample(n, k) # get the samples
 epmf = epmfPlot(samples) # this is one of our hidden functions

 ecdf = ecdfPlot(samples) # this is one of our hidden functions

 show(graphics_array([epmf, ecdf]),figsize=[10,3])
 else:
 print "k>0 must be an integer, n>0"

Try changing n and/or k. With k 0 for example, you could be simulating the number on the first ball for n Lotto
draws.

You try

A useful counterpart to the floor of a number is the ceiling, denoted . In maths, , the 'ceiling of x' is the smallest

integer that is larger than or equal to x. For example, . We can use the ceil function to do this in Sage:

ceil(3.8)

Try using ceil to check that you understand what it is doing. What would ceil(0) be?

Inversion Sampler for Continuous Random Variables

When we simulated from the discrete RVs above, the Bernoulli(θ) and the equi-probable de oivre(k), we

= 4

  x
3.8 = 4

M
jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

12 of 37 05/12/2011 08:31 AM

transformed some u niform(0,) into some value for the RV.

Now we will look at the formal idea of an inversion sampler for continuous random variables. Inversion sampling for
continuous random variables is a way to simulate values for a continuous random variable X using
u niform(0,).

The idea of the inversion sampler is to treat u niform(0,) as some value taken by the CDF F and find the
value x at which F (X) .

To find x where F (X) we need to use the inverse of F , F . This is why it is called an inversion sampler.

Formalising this,

Proposition

Let be a continuous DF with density f , and let its inverse F be:

F (u) = {x (x) } 0,]

Then, F (U) has the distribution function F , provided U niform(0,) (U is a Uniform(0,) RV).

Note:

The infimum of a set A of real numbers, denoted by inf(A), is the greatest lower bound of every element of A.

Proof

The ``one-line proof'' of the proposition is due to the following equalities:

P (F (U)) (inf{y (y))}) (U (x)) (x), or all x .

Algorithm for Inversion Sampler

Input:

A PRNG for Uniform(0,) samples

A procedure to give us F (u), inverse of the DF of the target RV X evaluated at u

Output:

A sample x from X distributed according to F

Algorithm steps:

Draw u niform(0,)1.

Calculate x (u)2.

The RV

We have already met theUniform(θ ,) RV.

Given two real parameters θ , , such that θ , the PDF of the Uniform(θ ,) RV X is:

f(x; ,)

∼ U 1

∼ U 1

∼ U 1
≤ x = u

≤ x = u [−1]

F (x) = (y) y 0,] : ∫x−∞ f d : ℝ → [1 [−1]

[−1] : inf : F = u : [1 → ℝ

[−1] ∼ U 1 1

[−1] ≤ x = P : F = U ≤ x = P ≤ F = F f ∈ ℝ

1
[−1]

~ U 1
= F [−1]

Uniform(θ ,) 1 θ2

1 θ2

1 θ2 ∈ ℝ 1 < θ2 1 θ2

θ1 θ2 =










1
θ −θ2 1

0

if θ ,1 ≤ x ≤ θ2

otherwise
jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

13 of 37 05/12/2011 08:31 AM

and its DF given by is:

F (x; ,)

For example, here are the PDF, CDF and inverse CDF for the Uniform(−1,):

As usual, we can make some Sage functions for the PDF and CDF:

F (x; ,) (y; ,) y θ1 θ2 =∫x−∞ f θ1 θ2 d

θ1 θ2 =













0
x−θ1

θ −θ2 1

1

if x < θ1

if θ ,1 ≤ x ≤ θ2

ifx > θ2

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

14 of 37 05/12/2011 08:31 AM

%auto

uniform pdf
def uniformPDF(x, theta1, theta2):
 '''Uniform(theta1, theta2) pdf function f(x; theta1, theta2).

 x is the value to evaluate the pdf at.
 theta1, theta2 are the distribution parameters.'''

 retvalue = 0 # default return value
 if x >= theta1 and x <= theta2:
 retvalue = 1.0/(theta2-theta1)
 return retvalue

uniform cdf
def uniformCDF(x, theta1, theta2):
 '''Uniform(theta1, theta2) CDF or DF function F(x; theta1, theta2).

 x is the value to evaluate the cdf at.
 theta1, theta2 are the distribution parameters.'''

 retvalue = 0 # default return value
 if (x > theta2):
 retvalue = 1
 elif (x > theta1): # else-if
 retvalue = (x - theta1) / (theta2-theta1)
 # if (x < theta1), retvalue will be 0

Using these functions in an interactive plot, we can see the effect of changing the distribution parameters θ and θ .

@interact
def InteractiveUniformPDFCDFPlots(theta1=0,theta2=1):
 if theta2 > theta1:
 print "Uniform(", + theta1.n(digits=2), ",", theta2.n(digits=2), ")
pdf and cdf"
 p1 = line([(theta1-1,0), (theta1,0)], rgbcolor='blue')
 p1 += line([(theta1,1/(theta2-theta1)), (theta2,1/(theta2-theta1))],
rgbcolor='blue')
 p1 += line([(theta2,0), (theta2+1,0)], rgbcolor='blue')

 p2 = line([(theta1-1,0), (theta1,0)], rgbcolor='red')
 p2 += line([(theta1,0), (theta2,1)], rgbcolor='red')
 p2 += line([(theta2,1), (theta2+1,1)], rgbcolor='red')
 show(graphics_array([p1, p2]),figsize=[8,3])
 else:
 print "theta2 must be greater than theta1"

You should be able to write simple functions like uniformPDF and uniformCDF yourself, but you are not expected to be
able to make the interactive plots.

1 2

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

15 of 37 05/12/2011 08:31 AM

Simulating from the RV

We can simulate from the Uniform(θ ,) using the inversion sampler, provided that we can get an

expression for F that can be implemented as a procedure.

We can get this by solving for x in terms of u (x; ,):

u ⇒ θ)u ⇒ F (u; ,) θ)u

Algorithm for Inversion Sampler for the Uniform(θ ,) RV

Input:

u niform(0,)
F (u)
θ , θ

Output:

A sample x niform(θ ,)

Algorithm steps:

Draw u niform(0,)1.

Calculate x (u) θ (θ))2.

Return x3.

We can illustrate this with Sage by writing a function to calculate the inverse of the CDF of a uniform distribution
parameterised by theta1 and theta2. Given a value between 0 and 1 for the parameter u, it returns the height of the
inverse CDF at this point, i.e. the value in the range theta1 to theta2 where the CDF evaluates to u.

Uniform(θ ,) 1 θ2

1 θ2
[−1]

= F θ1 θ2

=
x− θ1

θ2 − θ1

⇐ x = (2 − θ1 + θ1 ⇐ [−1] θ1 θ2 = θ1 + (2 − θ1

1 θ2

∼ U 1
[−1]

1 2

∼ U 1 θ2

~ U 1
= F [−1] = (1 + u 2 − θ1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

16 of 37 05/12/2011 08:31 AM

%auto
def uniformFInverse(u, theta1, theta2):
 '''A function to evaluate the inverse CDF of a uniform(theta1, theta2)
distribution.

 u, u should be 0 <= u <= 1, is the value to evaluate the inverse CDF at.
 theta1, theta2, theta2 > theta1, are the uniform distribution
parameters.'''

 return theta1 + (theta2 - theta1)*u

This function transforms a single u into a single simulated value from the Uniform(θ ,), for example:

u = random()
theta1, theta2 = 3, 6
uniformFInverse(u, theta1, theta2)

Then we can use this function inside another function to generate a number of samples:

%auto
def uniformSample(n, theta1, theta2):
 '''A function to simulate samples from a uniform distribution.

 n > 0 is the number of samples to simulate.
 theta1, theta2 (theta2 > theta1) are the uniform distribution
parameters.'''

 us = [random() for i in range(n)]

 return [uniformFInverse(u, theta1, theta2) for u in us]

The basic strategy is the same as for simulating Bernoulli and de oirve samples: we are using a list
comprehension and the built-in SAGE random() function to make a list of pseudo-random simulations from the

Uniform(0,). The length of the list is determined by the value of n. Inside the body of the function we assign this
list to a variable named us (i.e., u plural). We then use another list comprehension to make our simulated sample. This
list comprehension works by calling our function uniformFInverse(...) and passing in values for theta1 and
theta2 together with each u in us in turn.

You should be able to write simple functions like uniformFinverse and uniformSample yourself.

Try this for a small sample:

param1 = -5
param2 = 5
nToGenerate = 30
myUniformSample = uniformSample(nToGenerate, param1, param2)
myUniformSample

1 θ2

M

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

17 of 37 05/12/2011 08:31 AM

Much more fun, we can make an interactive plot which uses the uniformSample(...) function to generate and plot
while you choose the parameters and number to generate (you are not expected to be able to make interactive plots like
this):

@interact
def _(theta1=0, theta2=1, n=(1..5000)):
 '''Interactive function to plot samples from uniform distribution.'''
 if theta2 > theta1:
 if n == 1:
 print n, "uniform(", + theta1.n(digits=2), ",",
theta2.n(digits=2), ") sample"
 else:
 print n, "uniform(", + theta1.n(digits=2), ",",
theta2.n(digits=2), ") samples"
 sample = uniformSample(n, theta1, theta2)
 pts = zip(range(1,n+1,1),sample) # plot so that first sample is at
x=1
 p=points(pts)
 p+= text(str(theta1), (0, theta1), fontsize=10, color='black') # add
labels manually
 p+= text(str(theta2), (0, theta2), fontsize=10, color='black')
 p.show(xmin=0, xmax = n+1, ymin=theta1, ymax = theta2, axes=false,
gridlines=[[0,n+1],[theta1,theta2]], figsize=[7,3])

 else:
 print "Theta1 must be less than theta2"

We can get a better idea of the distribution of our sample using a histogram (the minimum sample size has been set to
50 here because the automatic histogram generation does not do a very good job with small samples).

import pylab
@interact
def _(theta1=0, theta2=1, n=(50..5000), Bins=5):
 '''Interactive function to plot samples from uniform distribution as a
histogram.'''
 if theta2 > theta1:
 sample = uniformSample(n, theta1, theta2)
 pylab.clf() # clear current figure
 n, bins, patches = pylab.hist(sample, Bins, normed=true)
 pylab.ylabel('normalised count')
 pylab.title('Normalised histogram')
 pylab.savefig('myHist') # to actually display the figure
 pylab.show()
 else:
 print "Theta1 must be less than theta2"

The Random VariableExponential(λ)
jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

18 of 37 05/12/2011 08:31 AM

For a given λ > 0, an Exponential(λ) Random Variable has the following PDF f and DF F :

An exponential distribution is useful because is can often be used to model inter-arrival times or making
inter-event measurements (if you are familiar with the Poisson distribution, a discrete distribution, you
may have also met the Exponential distribution as the time between Poisson events). Here are some
examples of random variables which are sometimes modelled with an exponential distribution:

time between the arrival of buses at a bus-stop
distance between roadkills on a stretch of highway

In Sage, the we can use exp(x) to calculate e , for example:

x = 3.0
exp(x)

We can code some functions for the PDF and DF of an Exponential parameterised by lam like this. [Note that we
cannot use the name 'lambda' for the parameter because in SAGE (and Python), the term 'lambda' has a special
meaning.]

%auto
def exponentialPDF(x, lam):
 '''Exponential pdf function.

 x is the value we want to evaluate the pdf at.
 lam is the exponential distribution parameter.'''

 return lam*exp(-lam*x)

def exponentialCDF(x, lam):
 '''Exponential cdf or df function.

 x is the value we want to evaluate the cdf at.
 lam is the exponential distribution parameter.'''

 return 1 - exp(-lam*x)

You should be able to write simple functions like exponentialPDF and exponentialCDF yourself, but you are not
expected to be able to make the interactive plots.

You can see the shapes of the PDF and CDF for different values of λ using the interactive plot below.

f(x;) λ ={λe−λx

0

if x ,≥ 0

otherwise

F (x;) λ ={1 − e−λx

0

if x ,≥ 0

otherwise

x

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

19 of 37 05/12/2011 08:31 AM

@interact
def _(lam=('lambda',0.5),Xmax=(5..100)):
 '''Interactive function to plot the exponential pdf and cdf.'''
 if lam > 0:
 print "Exponential(", lam.n(digits=2), ") pdf and cdf"
 from pylab import arange
 xvalues = list(arange(0.1, Xmax, 0.1))
 p1 = line(zip(xvalues, [exponentialPDF(y, lam) for y in xvalues]),
rgbcolor='blue')
 p2 = line(zip(xvalues, [exponentialCDF(y, lam) for y in xvalues]),
rgbcolor='red')
 show(graphics_array([p1, p2]),figsize=[8,3])

 else:
 print "Lambda must be greater than 0"

We are going to write some functions to help us to do inversion sampling from the Exponential(λ) RV.

As before, we need an expression for F that can be implemented as a procedure.

We can get this by solving for x in terms of u (x;)

You try in class

Show that

F (u;) (1)

ln is the natural logarthim.

(end of You try)

Simulating from the RV

Algorithm for Inversion Sampler for the Exponential(λ) RV

Input:

u niform(0,)
F (u)
λ

Output:

A sample x xponential(λ)

[−1]

= F λ

[−1] λ =
λ

−1
ln − u

= loge

Exponential(λ)

∼ U 1
[−1]

∼ E

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

20 of 37 05/12/2011 08:31 AM

Algorithm steps:

Draw u niform(0,)1.

Calculate x (u) (1)2.

Return x3.

The function exponentialFInverse(u, lam) codes the inverse of the CDF of an exponential distribution
parameterised by lam. Given a value between 0 and 1 for the parameter u, it returns the height of the inverse CDF of
the exponential distribution at this point, i.e. the value where the CDF evaluates to u. The function
exponentialSample(n, lam) uses exponentialFInverse(...) to simulate n samples from an exponential
distribution parameterised by lam.

%auto
def exponentialFInverse(u, lam):
 '''A function to evaluate the inverse CDF of a exponential distribution.

 u is the value to evaluate the inverse CDF at.
 lam is the exponential distribution parameter.'''

 # log without a base is the natural logarithm
 return (-1.0/lam)*log(1 - u)

def exponentialSample(n, lam):
 '''A function to simulate samples from an exponential distribution.

 n is the number of samples to simulate.
 lam is the exponential distribution parameter.'''

 us = [random() for i in range(n)]

 return [exponentialFInverse(u, lam) for u in us]

We can have a look at a small sample:

lam = 0.5
nToGenerate = 30
sample = exponentialSample(nToGenerate, lam)
sorted(sample) # recall that sorted makes a new sorted list

You should be able to write simple functions like exponentialFinverse and exponentialSample yourself.

The best way to visualise the results is to use a histogram. With this interactive plot you can explore the effect of varying
lambda and n:

~ U 1
= F [−1] =

λ
−1 ln − u

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

21 of 37 05/12/2011 08:31 AM

import pylab
@interact
def _(lam=('lambda',0.5), n=(50,(10..5000)), Bins=5):
 '''Interactive function to plot samples from exponential distribution.'''
 if lam > 0:
 pylab.clf() # clear current figure
 n, bins, patches = pylab.hist(exponentialSample(n, lam), Bins,
normed=true)
 pylab.ylabel('normalised count')
 pylab.title('Normalised histogram')
 pylab.savefig('myHist') # to actually display the figure
 pylab.show()

 else:

The Standard Random Variable

A standard Cauchy Random Variable has the following PDF f and DF F :

f(x) ,

F (x) tan (x) .5

The Cauchy distribution is an interesting distribution because the expectation does not exist:

In Sage, we can use the arctan function for tan , and pi for π and code some functions for the PDF and DF of the
standard Cauchy like this.

Cauchy

=
1

π(1)+ x2
− ∞ < x < ∞

=
π
1 −1 + 0

F (x) x (x) x . ∫ x| | d =
π
2∫

0

∞ x

1 + x2
d = x (x)(tan

−1]
0

∞
−∫

0

∞

tan
−1

d = ∞

−1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

22 of 37 05/12/2011 08:31 AM

%auto
def cauchyPDF(x):
 '''Standard Cauchy pdf function.

 x is the value to evaluate the pdf at.'''

 return 1.0/(pi.n()*(1+x^2))

def cauchyCDF(x):
 '''Standard Cauchy cdf function.

 x is the value to evaluate the cdf at.'''

 return (1.0/pi.n())*arctan(x) + 0.5

You can see the shapes of the PDF and CDF using the plot below. Note from the PDF f above is defined for
−∞ . This means we should set some arbitrary limits on the minimum and maximum values to use for the
x-axis on the plots. You can change these limits interactively.

@interact
def _(lower=(-4), upper=(4)):
 '''Interactive function to plot the Cauchy pdf and cdf.'''
 if lower < upper:
 print "Standard Cauchy pdf and cdf"
 p1 = plot(cauchyPDF, lower,upper, rgbcolor='blue')
 p2 = plot(cauchyCDF, lower,upper, rgbcolor='red')
 show(graphics_array([p1, p2]),figsize=[8,3])
 else:
 print "Upper must be greater than lower"

You are expected to be able to write simple functions like cauchyPDF and cauchyCDF yourself, but you are not
expected to be able to make the interactive plots.

You could try imagining a standard Cauchy RVs like this: Place a double light sabre (i.e., one that can its lazer beam
from both ends) on a cartesian axis so that it is centred on (0, 1). Randomly spin it (so that its spin angle to the x-axis is
θ niform(0, π)). The y-coordinate of the point of intersection with the y-axis is a standard Cauchy RV. You can
see that we are equally likely to get positive and negative values (the density function of the standard Cauchy RV is

symmetrical about 0) and whenever the spin angle is close to (90) or (270), the intersections will be a long way

out up or down the y-axis, i.e. very negative or very positive values. If the light sabre is exactly parallel to the y-axis there
will be no intersection: a Cauchy RV X can take values −∞

< x < ∞

∼ U 2

4
π °

2
3π °

< x < ∞

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

23 of 37 05/12/2011 08:31 AM

Simulating from the standard

We can perform inversion sampling on the Cauchy RV by transforming a Uniform(0,) random variable into a
Cauchy random variable using the inverse CDF.

We can get this by replacing F (x) by u in the expression for F (x):

tan (x) .5

and solving for x:

Algorithm for Inversion Sampler for the standard Cauchy RV

Input:

u niform(0,)
F (u)

Output:

A sample x Cauchy

Cauchy

1

π
1 −1 + 0 = u

tan (x) .5π
1 −1 + 0 = u ⇒⇐

⇒⇐

⇒⇐

⇒⇐

tan (x)π
1 −1 = u−

2
1

tan (x) u)π−1 = (−
2
1

tan(tan (x)) an((u)π)−1 = t −
2
1

x an((u)π)= t −
2
1

∼ U 1
[−1]

∼ standard
jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

24 of 37 05/12/2011 08:31 AM

Algorithm steps:

Draw u niform(0,)1.

Calculate x (u) an((u)π)2.

Return x3.

The function cauchyFInverse(u) codes the inverse of the CDF of the standard Cauchy distribution. Given a value

between 0 and 1 for the parameter u, it returns the height of the inverse CDF of the standard Cauchy at this point, i.e.
the value where the CDF evaluates to u. The function cauchySample(n) uses cauchyFInverse(...) to simulate n
samples from a standard Cauchy distribution.

%auto
def cauchyFInverse(u):
 '''A function to evaluate the inverse CDF of a standard Cauchy
distribution.

 u is the value to evaluate the inverse CDF at.'''

 return RR(tan(pi*(u-0.5)))

def cauchySample(n):
 '''A function to simulate samples from a standard Cauchy distribution.

 n is the number of samples to simulate.'''

 us = [random() for i in range(n)]
 return [cauchyFInverse(u) for u in us]

And we can visualise these simulated samples with an interactive plot:

@interact
def _(n=(50,(0..5000))):
 '''Interactive function to plot samples from standard Cauchy
distribution.'''
 if n == 1:
 print n, "Standard Cauchy sample"
 else:
 print n, "Standard Cauchy samples"
 sample = cauchySample(n)
 pts = zip(range(1,n+1,1),sample)
 p=points(pts)
 p+= text(str(floor(min(sample))), (0, floor(min(sample))), fontsize=10,
color='black') # add labels manually
 p+= text(str(ceil(max(sample))), (0, ceil(max(sample))), fontsize=10,
color='black')
 p.show(xmin=0, xmax = n+1, ymin=floor(min(sample)), ymax =
ceil(max(sample)), axes=false, gridlines=[[0,n+1],
[floor(min(sample)),ceil(max(sample))]], figsize=[7,3])

Notice how we can get some very extreme values This is because of the 'thick tails' of the density function of the
Cauchy RV. Think about this in relation to the double light sabre visualisation. We can see effect of the extreme
values with a histogram visualisation as well. The interactive plot below will only use values between lower and upper

~ U 1
= F [−1] = t −

2
1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

25 of 37 05/12/2011 08:31 AM

in the histogram. Try increasing the sample size to something like 1000 and then gradually widening the limits:

import pylab
@interact
def _(n=(50,(0..5000)), lower=(-4), upper=(4), Bins=5):
 '''Interactive function to plot samples from standard Cauchy
distribution.'''
 if lower < upper:
 if n == 1:
 print n, "Standard Cauchy sample"
 else:
 print n, "Standard Cauchy samples"
 sample = cauchySample(n) # the whole sample
 sampleToShow = [c for c in sample if (c >= lower and c <= upper)]
 pylab.clf() # clear current figure
 n, bins, patches = pylab.hist(sampleToShow, Bins, normed=true)
 pylab.ylabel('normalised count')
 pylab.title('Normalised histogram, values between ' +
str(floor(lower)) + ' and ' + str(ceil(upper)))
 pylab.savefig('myHist') # to actually display the figure
 pylab.show()
 else:
 print "lower must be less than upper"

You try

Running means

When we introduced the Cauchy distribution, we noted that the expectation of the Cauchy RV does not exist. This
means that attempts to estimate the mean of a Cauchy RV by looking at a sample mean will not be successful: as you
take larger and larger samples, the effect of the extreme values will still cause the sample mean to swing around wildly
(we will cover estimation properly soon). You are going to investigate the sample mean of simulated Cauchy samples
of steadily increasing size and show how unstable this is. A convenient way of doing this is to look at a running mean.
We will start by working through the process of calculating some running means for the Uniform(0, 0), which do
stabilise. You will then do the same thing for the Cauchy and be able to see the instability.

We will be using the pylab.cumsum function, so we make sure that we have it available. We then generate a sample

from the Uniform(0, 0)

from pylab import cumsum
nToGenerate = 10 # sample size to generate
theta1, theta2 = 0, 10 # uniform parameters
uSample = uniformSample(nToGenerate, theta1, theta2)
uSample

We are going to treat this sample as though it is actually 10 samples of increasing size:

sample 1 is the first element in uSample
sample 2 contains the first 2 elements in uSample
sample 3 contains the first 3 elements in uSample
...

1

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

26 of 37 05/12/2011 08:31 AM

sample10 contains the first 10 elements in uSample

We know that a sample mean is the sum of the elements in the sample divided by the number of elements in the sample
n:

x

We can get the sum of the elements in each of our 10 samples with the cumulative sum of uSample.

We use cumsum to get the cumulative sum. This will be a pylab.array type, so we use the list function to turn it
back into a list:

csUSample = list(cumsum(uSample))
csUSample

What we have now is effectively a list , , ,

So all we have to do is divide each element in csUSample by the number of elements that were summed to make it, and

we have a list of running means , , ,

We can get the running sample sizes using the range function:

samplesizes = range(1, len(uSample)+1,1)
samplesizes

And we can do the division with list comprehension:

uniformRunningMeans = [csUSample[i]/samplesizes[i] for i in
range(nToGenerate)]
uniformRunningMeans

We could pull all of this together into a function which produced a list of running means for sample sizes 1 to n

ˉ =
n
1 ∑

n

i=1

xi






∑
1

i=1

xi ∑
2

i=1

xi ∑
3

i=1

xi . . . ,∑
10

i=1

xi











1
1 ∑

1

i=1

xi 2

1 ∑
2

i=1

xi 3

1 ∑
3

i=1

xi . . . ,
1

10
∑
10

i=1

xi






jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

27 of 37 05/12/2011 08:31 AM

%auto
def uniformRunningMeans(n, theta1, theta2):
 '''Function to give a list of n running means from uniform(theta1,
theta2).

 n is the number of running means to generate.
 theta1, theta2 are the uniform distribution parameters.
 return a list of n running means.'''

 sample = uniformSample(n, theta1, theta2)
 from pylab import cumsum # we can import in the middle of code
 csSample = list(cumsum(sample))
 samplesizes = range(1, n+1,1)
 return [csSample[i]/samplesizes[i] for i in range(n)]

Have a look at the running means of 10 incrementally-sized samples:

nToGenerate = 10
theta1, theta2 = 0, 10
uRunningMeans = uniformRunningMeans(nToGenerate, theta1, theta2)
pts = zip(range(1, len(uRunningMeans)+1,1),uRunningMeans)
p = points(pts)
show(p, figsize=[5,3])

Recall that the expectation E (X) of a X niform(θ ,)

In our simulations we are using θ , θ 0, so if X niform(0, 0), E(X)

To show that the running means of different simulations from a Uniform distribution settle down to be close to the
expectation, we can plot say 5 different groups of running means for sample sizes 1, 000. We will use a line plot
rather than plotting individual points.

(θ ,θ)1 2
∼ U 1 θ2 =

2

(θ +θ)1 2

1 = 0 2 = 1 ∼ U 1 = 5

. . . , 1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

28 of 37 05/12/2011 08:31 AM

nToGenerate = 1000
theta1, theta2 = 0, 10
iterations = 5
xvalues = range(1, nToGenerate+1,1)
for i in range(iterations):
 redshade = 0.5*(iterations - 1 - i)/iterations # to get different
colours for the lines
 uRunningMeans = uniformRunningMeans(nToGenerate, theta1, theta2)
 pts = zip(xvalues,uRunningMeans)
 if (i == 0):
 p = line(pts, rgbcolor = (redshade,0,1))
 else:
 p += line(pts, rgbcolor = (redshade,0,1))
show(p, figsize=[5,3])

Your task is to now do the same thing for some standard Cauchy running means.

To start with, do not put everything into a function, just put statements into the cell(s) below to:

Make variable for the number of running means to generate; assign it a small value like 10 at this stage1.
Use the cauchySample function to generate the sample from the standard Cauchy; have a look at your sample2.
Make a named list of cumulative sums of your Cauchy sample using list and cumsum, as we did above; have
a look at your cumulative sums

3.

Make a named list of sample sizes, as we did above4.
Use a list comprehension to turn the cumulative sums and sample sizes into a list of running means, as we did
above

5.

Have a look at your running means; do they make sense to you given the individual sample values?6.

Add more cells as you need them.

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

29 of 37 05/12/2011 08:31 AM

When you are happy that you are doing the right things, write a function, parameterised by the number of running
means to do, that returns a list of running means. Try to make your own function rather than copying and changing the
one we used for the Uniform: you will learn more by trying to do it yourself. Please call your function
cauchyRunningMeans, so that (if you have done everything else right), you'll be able to use some code we will supply
you with to plot the results.

Try checking your function by using it to create a small list of running means. Check that the function does not report an
error and gives you the kind of list you expect.

When you think that your function is working correctly, try evaluating the cell below: this will put the plot of 5 groups of
Uniform(0, 0) running means beside a plot of 5 groups of standard Cauchy running means produced by your
function (as usual, you are not expected to be able to produce plots like this one).

1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

30 of 37 05/12/2011 08:31 AM

nToGenerate = 10000
theta1, theta2 = 0, 10
iterations = 5
xvalues = range(1, nToGenerate+1,1)
for i in range(iterations):
 shade = 0.5*(iterations - 1 - i)/iterations # to get different colours
for the lines
 uRunningMeans = uniformRunningMeans(nToGenerate, theta1, theta2)
 problemStr="" # an empty string
 # use try to catch problems with cauchyRunningMeans functions
 try:
 cRunningMeans = cauchyRunningMeans(nToGenerate)
 cPts = zip(xvalues, cRunningMeans)
 except NameError, e:
 # cauchyRunningMeans is not defined
 cRunningMeans = [1 for c in range(nToGenerate)] # default value
 problemStr = "No "
 except Exception, e:
 # some other problem with cauchyRunningMeans
 cRunningMeans = [1 for c in range(nToGenerate)]
 problemStr = "Problem with "
 uPts = zip(xvalues, uRunningMeans)
 cPts = zip(xvalues, cRunningMeans)
 if (i < 1):
 p1 = line(uPts, rgbcolor = (shade, 0, 1))
 p2 = line(cPts, rgbcolor = (1-shade, 0, shade))
 cauchyTitleMax = max(cRunningMeans) # for placement of cauchy title
 else:
 p1 += line(uPts, rgbcolor = (shade, 0, 1))
 p2 += line(cPts, rgbcolor = (1-shade, 0, shade))
 if max(cRunningMeans) > cauchyTitleMax:
 cauchyTitleMax = max(cRunningMeans)
titleText1 = "Uniform(" + str(theta1) + "," + str(theta2) + ") running
means" # make title text
t1 = text(titleText1, (nToGenerate/2,theta2), rgbcolor='blue',fontsize=10)
titleText2 = problemStr + "standard Cauchy running means" # make title text
t2 = text(titleText2, (nToGenerate/2,ceil(cauchyTitleMax)+1),
rgbcolor='red',fontsize=10)
show(graphics_array((p1+t1,p2+t2)),figsize=[10,5])

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

31 of 37 05/12/2011 08:31 AM

Replicable samples

Remember that we know how to set the seed of the PRNG used by random() with set_random_seed? If we wanted
our sampling functions to give repeatable samples, we could also pass the functions the seed to use. Try making a new
version of uniformSample which has a parameter for a value to use as the random number generator seed. Call your
new version uniformSampleSeeded to distinguish it from the original one.

Try out your new uniformSampleSeeded function: if you generate two samples using the same seed they should be
exactly the same. You could try using a large sample and checking on sample statistics such as the mean, min, max,
variance etc, rather than comparing small samples by eye.

You can also give parameters default values in Sage. Using a default value means that if no value is passed to the
function for that parameter, the default value is used. Here is an example with a very simple function:

def simpleDefaultExample(x, y=0):
 '''A simple function to demonstrate default parameter values.

 x is the first parameter, with no default value.
 y is the second parameter, defaulting to 0.'''

 return x + y

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

32 of 37 05/12/2011 08:31 AM

Please note that default parameter values for functions may come up in assessments. This is your chance to become
familiar with them.

Note that parameters with default values need to come after parameters without default values when we define the
function.

Now you can try the function - evaluate the following cells to see what you get:

simpleDefaultExample (1,3) # specifying two arguments for the function

simpleDefaultExample (1) # specifying one argument for the function

simpleDefaultExample (x=6) # another way to specify one argument for the
function

simpleDefaultExample () # this will give an error because x has no default
value

simpleDefaultExample (y=9) # this will also give an error because x has no
default value

Try making yet another version of the uniform sampler which takes a value to be used as a random number generator
seed, but defaults to None if no value is supplied for that parameter. None is a special Python type.

x = None
type(x)

Using set_random_seed(None) will mean that the random seed is actually reset to a new ('random') value. You can
see this by testing what happens when you do this twice in succession and then check what seed is being used with
initial_seed:

set_random_seed(None)
initial_seed()

set_random_seed(None)
initial_seed()

Do another version of the uniformSampleSeeded function with a default value for the seed of None.
jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

33 of 37 05/12/2011 08:31 AM

Check your function again by testing with both when you supply a value for the seed and when you don't.

Optional You try

A Simple Simulation

Only look at this if you have enough time and are interested in doing a little bit more. It is not vital to do this in order to
pass the course.

We could use the samplers we have made to do a very simple simulation. Suppose the inter-arrival times, in minutes, of
Orbiter buses at an Orbiter stop follows an Exponential(λ .1) distribution. Also suppose that this is quite a
popular bus stop, and the arrival of people is very predictable: one new person will arrive in each whole minute. This
means that the longer another bus takes in coming, the more people arrive to join the queue. Also suppose that the
number of free seats available on any bus follows a de oivre(k 0) distribution, i.e, there are equally like to to be
1, or 2, or 3 ... or 40 spare seats. If there are more spare seats than people in the queue, everyone can get onto the bus
and nobody is left waiting, but if there are not enough spare seats some people will be left waiting for the next bus. As
they wait, more people arrive to join the queue....

This is not very realistic - we would want a better model for how many people arrive at the stop at least, and for the
number of spare seats there will be on the bus. However, we are just using this as a simple example that you can do
using the RVs you know how to simulate samples from.

Try to code this example yourself, using our suggested steps. We have put our version the code into a cell below, but
you will get more out of this example by trying to do it yourself first.

Suggested steps:

Get a list of 100 Exponential(λ .1) samples using the exponentialSamples function. Assign the list to
a variable named something like busTimes. These are your 100 simulated bus inter-arrival times.

1.

Choose a value for the number of people who will be waiting at the busstop when you start the simulation. Call this
something like waiting.

2.

Make a list called something like leftWaiting, which to begin with contains just the value assigned to waiting.3.
Make an empty list called something like boardBus. 4.
Start a for loop which takes each element in busTimes in turn, i.e. each bus inter-arrival time, and within the for
loop:

5.

= 0

M = 4

= 0

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

34 of 37 05/12/2011 08:31 AM

Calculate the number of people arriving at the stop as the floor of the time taken for that bus to arrive (i.e.,
one person for each whole minute until the bus arrives)

1.

Add this to the number of people waiting (e.g., if the number of arrivals is assigned to a variable arrivals,
then waiting = waiting + arrivals will increment the value assigned to the waiting variable by the
value of arrivals).

2.

Simulate a value for the number of seats available on the bus as one simulation from a
de oirve(k 0) RV (it may be easier to use deMoirveFInverse rather than deMoivrveSample

because you only need one value - remember that you will have to pass a simulated u niform(0,)
to deMoivreFInverse as well as the value of the parameter k).

3.

The number of people who can get on the bus is the minimum of the number of people waiting in the queue
and the number of seats on the bus. Calculate this value and assign it to a variable called something like
getOnBus.

4.

Append getOnBus to the list boardBus.5.
Subtract getOnBus from the number of people waiting, waiting (e.g., waiting = waiting -
getOnBus will decrement waiting by the number of people who get on the bus).

6.

Append the new value of waiting to the list leftWaiting.7.
That is the end of the for loop: you now have two lists, one for the number of people waiting at the stop and one for
the number of people who can board each bus as it arrives.

6.

Here is our code to do this simulation. Yours may be different - maybe it will be better!

buses = 100
lam = 0.1
busTimes = exponentialSample(buses,lam)
waiting = 0 # how many people are waiting at the start of the simulation
boardBus = [] # empty list
leftWaiting = [waiting] # list with just waiting in it
for time in busTimes: # for each bus inter-arrival time
 arrivals = floor(time) # people who arrive at the stop before the bus
gets there
 waiting = waiting + arrivals # add them to the queue
 busSeats = deMoivreFInverse(random(), 40) # how many seats available on
the bus
 getOnBus = min(waiting, busSeats) # how many people can get on the bus
 boardBus.append(getOnBus) # add to the list
 waiting = waiting - getOnBus # take the people who board the bus out of
the queue
 leftWaiting.append(waiting) # add to the list

leftWaiting # look at the leftWaiting list

We could do a visualisation of this, showing the number of people able to board the bus and the number of people left by
the height of lines on the plot

M = 4
∼ U 1

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

35 of 37 05/12/2011 08:31 AM

p1 = line([(0.5,0),(0.5,leftWaiting[0])])
from pylab import cumsum
csBusTimes=list(cumsum(busTimes))
for i in range(1, len(leftWaiting), 1):

 p1+= line([(csBusTimes[i-1],0),(csBusTimes[i-1],boardBus[i-1])],
rgbcolor='green')
 p1+= line([(csBusTimes[i-1]+.01,0),(csBusTimes[i-
1]+.01,leftWaiting[i])], rgbcolor='red')

t1 = text("Boarding the bus",
(csBusTimes[len(busTimes)-1]/3,max(max(boardBus),max(leftWaiting))+1),
rgbcolor='green',fontsize=10)
t2 = text("Waiting", (csBusTimes[len(busTimes)-1]*
(2/3),max(max(boardBus),max(leftWaiting))+1),
rgbcolor='red',fontsize=10)
xaxislabel = text("Time",
(csBusTimes[len(busTimes)-1],-10),fontsize=10,color='black')
yaxislabel = text("People",

You could try the effect on your simulation of changing the Exponential parameter λ, or some of the other factors
involved.

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

36 of 37 05/12/2011 08:31 AM

%hide

%hide

%hide

jsMath

STAT221Week07 -- Sage http://sage.math.canterbury.ac.nz/home/raaz...

37 of 37 05/12/2011 08:31 AM

