
5/21/10 06:49STAT221Week09 -- Sage

Page 1 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

STAT221Week09

STAT 221 Week 9: Markov Chains

STAT 221 2010 S1: Monte Carlo Methods

©2009 2010 Jennifer Harlow, Dominic Lee and Raazesh Sainudiin.

Creative Commons Attribution-Noncommercial-Share Alike 3.0

Markov chain, named after Andrey Markov, is a mathematical model for a possibly

dependent sequence of random variables. Intuitively, a Markov Chain is a system which

"jumps" among several states, with the next state depending (probabilistically) only on the

current state. A useful heuristic is that of a frog jumping among several lily-pads, where the

frog's memory is short enough that it doesn't remember what lily-pad it was last on, and so

its next jump can only be influenced by where it is now.

Formally, the Markov property states that the conditional probability distribution for the

system at the next step (and in fact at all future steps) given its current state depends only

on the current state of the system, and not additionally on the state of the system at

previous steps:

P (X X) (X X)

Since the system changes randomly, it is generally impossible to predict the exact state of

the system in the future. However, the statistical and probailistic properties of the system's

future can be predicted. In many applications it is these statistical properties that are

important.

Formal definition and terms

A Markov chain is a sequence of random variables X with the Markov property,

namely that, given the present state, the future and past states are independent. Formally,

P (X X) (X X)

The possible values of X or the set of all states of the system form a countable set called

the state space of the chain.

The changes of state of the system are called transitions, and the probabilities associated

with various state-changes are called transition probabilities.

Markov chains are often depicted by a weighted directed graph, where the edges are labeled

by the probabilities of going from one state to the other states. This is called the flow

diagram or transition probability diagram. The transition probability matrix P
encodes the probabilities associated with state-changes or "jumps" from one state to

another in the state-space . If is labelled by then the i -th entry in the

matrix P corresponds to the probability of going from state i to state j in one time-step.

P

The state of the system at the n-th time step is described by a state probability vector

Thus, p is the probability you will find the Markov chain at state i at time-step n and

n+1 1 X2 Xn = P n+1 n

1 X2 X3

n+1 = x 1 = x1 X2 = x2 Xn = xn = P n+1 = x n = xn

i

0 1 2 j

=

p 0 0

p 1 0

p 2 0

p 0 1

p 1 1

p 2 1

p 0 2

p 1 2

p 2 2

p (n) = p
0

(n)
p

1

(n)
p

2

(n)

i

(n)

(0)

http://en.wikipedia.org/wiki/Andrey_Markov
http://www.math.canterbury.ac.nz/~r.sainudiin/courses/STAT221/index.shtml
http://creativecommons.org/licenses/by-nc-sa/3.0/nz/

5/21/10 06:49STAT221Week09 -- Sage

Page 2 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

p is called the initial probability vector at the convenient initial time 0.

The state space and transition probability matrix P completely characterizes a Markov

chain.

Example 1: Dry-Wet chain, a toy weather model - Sage break-down

of the Wiki Example

We can coarsely describe the weather of a given day by a toy model that states if it is "wet"

or "dry". Each day the weather in our toy model is an element of our state space

We can make a picture of our toy probability model with a flow diagram or transition

probability diagram as follows:

The probabilities of weather conditions, given the weather on the preceding day, can be

represented by a transition probability matrix:

The matrix P represents our toy weather model in which a dry day is 90% likely to be

followed by another dry day, and a wet or rainy day is 50% likely to be followed by another

wet day. The columns can be labelled "dry" and "wet" respectively, and the rows can be

labelled in the same manner. For convenience, we will use integer labels 0 and 1 for "dry"

and "wet", respectively.

(P) is the probability that, if a given day is of type i, it will be followed by a day of

type j.

Since the transition probability matrix P is a stochastic matrix:

The rows of P sum to 1.

The probabiltites in each row can be thought of as "current-state" specific

de Moivre(p s) disritbution

Basically, you toss a current-state-specific many-faced weigted die to determine the

next state

How can we think of our toy weather model in terms of two Bernouli trials;

Bernoulli(0 9) and Bernoulli(0 5)? -- recall a fair coin in the wet pocket and the biased

coin in the dry pocket analogy from lectures...

How do we represent a matrix P in Sage?

help(matrix)

 docs-0.html

P = matrix(RR,[[9/10,1/10],[1/2,1/2]]) # construct and assign

the matrix to P

i

i

(0)

"wet" = "dry"

P =
0 9

0 5

0 1

0 5

ij = pi j

i j

http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/cells/4/docs-0.html
http://en.wikipedia.org/wiki/Examples_of_Markov_chains#A_very_simple_weather_model

5/21/10 06:49STAT221Week09 -- Sage

Page 3 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

the matrix to P

could have used QQ instead of RR above if the probs are

rational and for exact rational arithmetic

P # display P

[0.900000000000000 0.100000000000000]
[0.500000000000000 0.500000000000000]

P[0,1] # accessing (i,j)-th

entry of matrix P

know the parent of your matrix type, especially if you are a

Math/Stat major

P.parent()

Predicting the weather with our Dry-Wet chain

The weather on day 0 is known to be dry. This is represented by a probability vector in

which the "dry" entry is 100%, and the "wet" entry is 0%:

The weather on day 1 can be predicted by:

Thus, there is an 90% chance that day 1 will also be sunny.

p0 = vector((1,0)) # initial probability vector for a dry day

zero

p0

p1 = p0*P #

p1

The weather on day 2 can be predicted in the same way:

or, equivalently,

How do we do this in Sage?

p2 = p0*P^2 # left multiply the initial probability vector

by square of P

p2 # disclose the probability vector at time-step

2

or, equivalently,

p (0) = 1 0

p P (1) = p(0) = 1 0
0 9

0 5

0 1

0 5
= 0 9 0 1

p P P (2) = p(1) = p(0) 2
= 1 0

0 9

0 5

0 1

0 5

2

= 0 86 0 14

p P (2) = p(1) = 0 9 0 1
0 9

0 5

0 1

0 5
= 0 86 0 14

5/21/10 06:49STAT221Week09 -- Sage

Page 4 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

p2 = p1*P # left multiply the probability vector at

time-step 1 by P

disclose the probability vector at time-step 2 (compare output

of previous cell)

p2

General rules for day n follow from mathematical induction are:

p P

p P

How do we operate with a matrix in Sage to do this for any given n?

n = 3 # assign some specific time-step or

day

dry_p0 = vector((1,0)) # initial probability vector for a dry

day zero

pn = dry_p0 * P^n # probability vector for day n

pn # display it

n = 3 # assign some specific time-step or

day

wet_p0 = vector((0,1)) # initial probability vector for a wet

day zero

pn = wet_p0 * P^n # probability vector for day n

pn # display it

nmax = 3 # maximum number of days or time-steps of

interest

[(n, vector((0,1)) * P^n) for n in range(nmax+1)] # state

probability vector at time n=0,1,...,nmax

%hide

what's going on here... try to increase nmax and see where

the state prob vector is going

nmax=2 # maximum number of time-steps of interest

the next line is just html figure heading

html("<h3>n-step state probability vector

$\mathbf{p}^{(n)}=(\mathbf{p}^{(n)}_0,\mathbf{p}^{(n)}_1)$,

$n=0,1,\ldots,$ %s steps</h3>"%nmax)

now we will plot the prob vectors

the red points start on a dry day 0

pns_plot = point([vector((1,0)) * P^n for n in

range(nmax+1)],color='red')

pns_plot += line([vector((1,0)) * P^n for n in

range(nmax+1)],color='red')

the blue points start on a wet day 0

pns_plot += point([vector((0,1)) * P^n for n in

range(nmax+1)],color='blue')

pns_plot += line([vector((0,1)) * P^n for n in

range(nmax+1)],color='blue')

suppose we had initial state prob vector (0.833,0.167) then

where do we go

pns_plot += point([vector((0.833,0.167)) * P^n for n in

range(nmax+1)],color='black')

pns_plot += line([vector((0.833,0.167)) * P^n for n in

(n) = p(n!1)

(n) = p(0) n

5/21/10 06:49STAT221Week09 -- Sage

Page 5 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

pns_plot += line([vector((0.833,0.167)) * P^n for n in

range(nmax+1)],color='black')

pns_plot.show(figsize=[5,4],

axes_labels=['$\mathbf{p}^{(n)}_0$','$\mathbf{p}^{(n)}_1$'])

-step state probability vector , 2 steps

Steady state of the weather in our Dry-Wet chain

In this example, predictions for the weather on more distant days are increasingly inaccurate

and tend towards a steady state vector. This vector represents the probabilities of dry and

wet weather on all days, and is independent of the initial weather.

The steady state vector is defined as:

s

but only converges to a strictly positive vector if P is a regular transition matrix (that is,

there is at least one P with all non-zero entries making the Markov chain irreducible and

aperiodic).

Since the s is independent from initial conditions, it must be unchanged when transformed

by P. This makes it an eigenvector (with eigenvalue 1), and means it can be derived from

P. For our toy model of weather:

n p p) (n) = (
0

(n)
p

1

(n)
n = 0 1

= lim
n

p(n)

n

0 9 0 1

5/21/10 06:49STAT221Week09 -- Sage

Page 6 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

So !0 1s 5s and since they are a probability vector we know that s .

Solving this pair of simultaneous equations gives the steady state distribution:

In conclusion, in the long term, 83% of days are dry.

How do we operate the above to solve for s in Sage? There are two "methods". We can

either use

Method 1: solve a system of linear equations with solve to get or

Method 2: obtain s via eigen decomposition.

You are not expected to follow method 2 if you have not had been introduced to eigen

values and eigen vectors.

Method 1: Solving a system of equations to obtain .

#P = matrix(QQ,[[9/10,1/10],[1/2,1/2]]); P; P.parent()

P = matrix(RR,[[9/10,1/10],[1/2,1/2]]); P; P.parent()

I=matrix(2,2,1); I; I.parent() # the 2X2 identity matrix

P-I; (P-I).parent()

s0, s1 = var('s0, s1')

eqs = vector((s0,s1)) * (P-I); eqs[0]; eqs[1]

solve([eqs[0] == 0, eqs[1]==0, s0+s1==1], s0,s1)

solve([eqs[0] == 0, s0+s1==1], s0,s1) # just use

eqs[0]==0 since eqs[1]==0 is redundant

P

s P

s (P) ! I

=

=

=

=

=

=

0 9

0 5

0 1

0 5

s

s I

0

s
0 9

0 5

0 1

0 5
!

1

0

0

1

s
!0 1

0 5

0 1

!0 5

(s is unchanged by P.)

 s 0 s 1
!0 1

0 5

0 1

!0 5
= 0 0

0 + 0 1 = 0 0 + s1 = 1

s 0 s1 = 5 6 61 = 0 833 1670

5/21/10 06:49STAT221Week09 -- Sage

Page 7 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

solve([eqs[1]==0, s0+s1==1], s0,s1) # just use

eqs[1]==0 since eqs[0]==0 is redundant

End of Method 1 to solve for the steady state vector s.

Method 2: Alternatively use eigen decomposition over rationals in Sage to solve for . You

may ignore this if you hove not seen eigen decomposition before. To follow Method 2 you

need to know a bit more about eigen values, eigen vectors and eigen spaces if you are

interested.

P = matrix(QQ,[[9/10,1/10],[1/2,1/2]]); P; P.parent()

P.eigenvalues()

D, V = P.eigenmatrix_left() # left eigen decomposition

D # diagonal matrix of eigen values

V # left eigen vectors

checking when we left-multiply by left-eigenvector

of eigenvalue 1 we get the output scaled by 1

V[0]; V[0]*P

checking when we left-multiply by left-eigenvector

of eigenvalue 2/5 we get the output scaled by 2/5

V[1]; V[1]*P

V.inverse()*D*V

checking that the eigen decomposition of P is indeed P

V*D*V.inverse()

EigVecForEigValue1 = V[0]; EigVecForEigValue1

EigVecForEigValue1.norm(1) # normalization factor

normalize to make it a probability vector

EigVecForEigValue1 / EigVecForEigValue1.norm(1)

End of Method 2.

Rainfall Data in Christchurch

Paul Brouwers has a basic CliFlo datafeed on

http://www.math.canterbury.ac.nz/php/lib/cliflo/?range=20100425:20100501

This returns the date and rainfall in mm as measured from the CHCH aeroclub station. It is

assumed that days without readings would not be listed. It expects a range parameter such

http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace

5/21/10 06:49STAT221Week09 -- Sage

Page 8 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

as: ?range=20100425:20100501 The first number is the starting search date (YYYYMMDD).

Colon as separator. The first number is the ending search date (YYYYMMDD). CliFlo limits us

to 2 million rows for the subscription and 40,000 rows per query (which is equivalent of over

100 years of data, so I we're safe - The data doesn't go back much before 1944).

%auto

import urllib2 as U

#wetdataURL = 'http://www.math.canterbury.ac.nz/php/lib/cliflo/?

range=20100101:20100510'

wetdataURL =

'http://www.math.canterbury.ac.nz/php/lib/cliflo/rainfall.php'

wetdata = U.urlopen(wetdataURL).readlines()

datalines=[]

for a_line in wetdata:

 #print a_line

 temp = a_line.replace('\n','').split(',')

 temp = [float(q) for q in temp if q != ',']

 datalines.append(temp)

datalines[0]

 [19430802.0, 0.0]

len(datalines)

 24212

(2010-1943)*365

 24455

@interact

def chch_precipitation(start_date = slider(0,len(datalines)-

1,1,len(datalines)-100), end_date = slider(0,len(datalines)-

1,1,len(datalines)-1)):

 htmls1 = '<h3>Daily Precipitation at Christchurch, fed from

NIWA data</h3>'

 html(htmls1+"<h4>from

%s</h4>"%int(datalines[start_date][0])+"<h4>until

%s</h4>"%int(datalines[end_date][0]))

 sel_data = datalines[start_date:end_date]

 c_max = max([q[1] for q in sel_data])

 c_min = min([q[1] for q in sel_data])

 sel_daysdata = [[i,sel_data[i][1]] for i in

range(len(sel_data))]

 show(list_plot(sel_daysdata, plotjoined=True,

rgbcolor=(0,0,1)) , ymin = c_min-2, axes = True, ymax = c_max+3,

frame = False, axes_labels=['days', 'mm'])

xx=datalines[200:210]; xx

[xx[i][1] for i in range(len(xx))]

[xx[i][1]>0 for i in range(len(xx))]

[int(xx[i][1]>0) for i in range(len(xx))]

5/21/10 06:49STAT221Week09 -- Sage

Page 9 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

Grab all the days data from start to end:

%auto

all_daysdata = [[i,int(datalines[i][1]>0)] for i in

range(len(datalines))] # all the data as 0s and 1s

Interactive cell to allow you to select some specific data and turn it into the list of 0 or 1 tuples (this list will

then be available in sel_daysdata in later cells in the worksheet).

@interact

def chch_wetdry(output = checkbox(False, "Print out selected

Data?"),start_date = slider(0,len(datalines)-1,1,len(datalines)-

100), end_date = slider(0,len(datalines)-1,1,len(datalines)-1)):

 htmls1 = '<h3>Daily Precipitation at Christchurch, fed from

NIWA data</h3>'

 html(htmls1+"<h4>from

%s</h4>"%int(datalines[start_date][0])+"<h4>until

%s</h4>"%int(datalines[end_date][0]))

 global sel_daysdata # made it a global so it is easy to

choose data

 sel_data = datalines[start_date:end_date]

 sel_daysdata = [[i,int(sel_data[i][1]>0)] for i in

range(len(sel_data))]

 show(list_plot(sel_daysdata, plotjoined=True,

rgbcolor=(0,0,1)) , ymin = 0, axes = True, ymax = +1, frame =

False, axes_labels=['days', 'wet/dry'])

 if(output):

 print sel_daysdata

sel_daysdata

x0ton = [sel_daysdata[i][1] for i in range(len(sel_daysdata))]

x0ton

len(x0ton)

Maximum likelihood estimation of the unknown transition

probabilities for the Dry-Wet Markov chain model of Christchurch

weather

In the example we have been working with earlier, the transition probabilities were given by

the matrix

and we simply used the given P to understand the properties and utilities of the probability

model for a possibly dependent sequence of -valued random variables encoding the

 days, respectively.

P =
0 9

0 5

0 1

0 5

0 1 Dry Wet

5/21/10 06:49STAT221Week09 -- Sage

Page 10 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

What we want to do now is use the data from Christchurch's Aeroclub obtained from NIWA

to estimate Christchurch's unknown transition probability matrix

Let us use the principle of maximum likelihood and derive the maximum likelihood estimator

Recall that the likelihood function

L(unknown parameters ; Data)

is essentially the joint density of the data X as a function of the parameters.

The data gives n consecutive days of Dry or Wet recordings as 0 or 1 at the

Christchurch's Aeroclub. What are the unknown parameters here? Well, they are the four

entries (p) of the unknown P. But, due to the fact that P is not any old matrix

of real numbers, but rather a stochastic matrix, it is constrained so that the entries are non-

negative and the entries of each row sums to 1. For instance we can write the off-diagonal

entries in terms of the diagonal entries p and p and merely treat two

parameters (p) as the truly unknowns that can take any value in the unit square

[0] 0] parameter space.

In the above equation, we are given that the transition probabilities are p . Now, by

definition of conditional probability and the markov property,

where, n is the number of transitions from state i to state j in the observed data sequence

x . Therefore the log likelihood function is

Finally, we can find the maximum likelihood estimates (MLEs) p and p for the unknown

transition probabilities p and p by differentiating the loglikelihood function with respect to

P =
p 0 0

p 1 0

p 0 1

p 1 1

P =
p 0 0

p 1 0

p 0 1

p 1 1

0 X1 X2 Xn

+ 1

0 0 p0 1 p1 0 p1 1

0 1 = 1 ! p0 0 1 0 = 1 ! p1 1

0 0 p1 1

1 [1

L(p) 0 0 p1 1 =

=

L(p ;) 0 0 p1 1 x0 x1 xn

P X0 = x0 X1 = x1 Xn!1 = xn!1 Xn = xn

0 0 p1 1

L(p) 0 0 p1 1 =

=

=

=

=

=

=

P P X Xn = xn n!1 = xn!1 X2 = x2 X1 = x1 X0 = x0 Xn!1 = xn!1 X2 = x2 X1 = x1 X0 = x0

P P X Xn = xn n!1 = xn!1 Xn!1 = xn!1 X2 = x2 X1 = x1 X0 = x0

P P X Xn = xn n!1 = xn!1 X Xn!1 = xn!1 n!2 = xn!2 Xn!3 = xn!3 X2 = x2 X1 = x1 X0 = x0

 P Xn!2 = xn!2 Xn!3 = xn!3 X2 = x2 X1 = x1 X0 = x0

P P P X Xn = xn n!1 = xn!1 X Xn!1 = xn!1 n!2 = xn!2 Xn!2 = xn!2 Xn!3 = xn!3 X2 = x2 X1 = x1 X0 = x0

P P P P (X) X Xn = xn n!1 = xn!1 X Xn!1 = xn!1 n!2 = xn!2 X X2 = x2 1 = x1 X X1 = x1 0 = x0 P 0 = x0

P (X) 0 = x0

n

i=1

P X Xi = xi i!1 = xi!1

p 0 0

n0 0

 1 ! p0 0

n0 1

 p1 1

n1 1

 1 ! p1 1

n1 0

i j

0 x1 xn

l(p) 0 0 p1 1 =

=

=

log L(p)0 0 p1 1

log p0 0

n0 0

 1 ! p0 0

n0 1

 p1 1

n1 1

 1 ! p1 1

n1 0

n 0 0 log p0 0 + n0 1 log 1 ! p0 0 + n1 1 log p1 1 + n1 0 log 1 ! p1 1

0 0 1 1

0 0 1 1

5/21/10 06:49STAT221Week09 -- Sage

Page 11 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

p and p , respectively, and solving the resulting equations in terms of the variable of

differentiation. This will yield the following which me can also obtain symbolically in sage.

Similarly,

Finally, solving the above equations in terms of p and p gives the MLEs that

p

as follows:

and

%auto

var('p00, p11, n00, n01, n10, n11') # declare variables

assign the symbolic expression for the log likelihood function

to L

L=n00*log(p00) + n01*log(1-p00) + n11*log(p11) + n10*log(1-p11)

L.diff(p00) # differentiate log likelihood symbolically with

respect to p00

 n01/(p00 - 1) + n00/p00

L.diff(p11) # differentiate log likelihood symbolically with

respect to p11

 n10/(p11 - 1) + n11/p11

0 0 1 1

0 0 1 1

d

dp0 0

l(p)0 0 p1 1 =

=

=

d

dp0 0

n0 0 log p0 0 + n0 1 log 1 ! p0 0 + n1 1 log p1 1 + n1 0 log 1 ! p1 1

p0 0

n0 0
!

n0 1

1 ! p0 0

d

dp1 1

l(p)0 0 p1 1 =

=

=

d

dp1 1

n0 0 log p0 0 + n0 1 log 1 ! p0 0 + n1 1 log p1 1 + n1 0 log 1 ! p1 1

p1 1

n1 1
!

n1 0

1 ! p1 1

0 0 1 1

0 0 =
n0 0

n0 0 + n0 1

and p1 1 =
n1 1

n1 0 + n1 1

d

dp0 0

l(p)0 0 p1 1 =

0

p0 0

n0 0
!

n0 1

1 ! p0 0

= 0

p 0 0 =
n0 0

n0 0 + n0 1

d

dp1 1

l(p)0 0 p1 1 =

0

p1 1

n1 1
!

n1 0

1 ! p1 1

= 0

p 1 1 =
n1 1

n1 0 + n1 1

5/21/10 06:49STAT221Week09 -- Sage

Page 12 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

solve(L.diff(p00)==0, p00) # solve the equation in terms of p00

to get MLE

 [p00 == n00/(n00 + n01)]

solve(L.diff(p11)==0, p11) # solve the equation in terms of p11

to get MLE

 [p11 == n11/(n10 + n11)]

x0ton = [sel_daysdata[i][1] for i in range(len(sel_daysdata))]

transitions_data =[(x0ton[i],x0ton[i+1]) for i in

range(0,len(x0ton)-1,1)]

#transitions_data

transition_counts = makeFreqDict(transitions_data)

transition_counts

n_00 = transition_counts[(0,0)]

n_01 = transition_counts[(0,1)]

n_10 = transition_counts[(1,0)]

n_11 = transition_counts[(1,1)]

n_00, n_01, n_10, n_11

Make a function to make a transition counts matrix from any list of 0/1 tuples passed in.

%auto

def makeTransitionCounts(theData):

 '''Return a transition counts matrix from a list of tuples

representing transitions between 2 states 0 and 1.

 Param theData is a list of tuples where the tuples can be

(0,0) or (0,1) or (1,0) or (1,1).

 Return a 2x2 matrix [[count of (0,0), count of (0,1)],[count

of (1,0), count of (1,1)]].'''

 retMatrix = matrix([[0,0],[0,0]]) # default counts

 x0ton = [theData[i][1] for i in range(len(theData))]

 transitions_data =[(x0ton[i],x0ton[i+1]) for i in

range(0,len(x0ton)-1,1)]

 transition_counts = makeFreqDict(transitions_data)

 #keysToFind = [(0,0),(0,1),(1,0),(1,1)]

 # we will get an error if we try to access a value for a key

that is not in the dictionary

 # so we need to check if each of the keys we might find is

in the dictionary

 # and only try to access the count if the key is there

 for i in [0,1]:

 for j in [0,1]:

 if (i,j) in transition_counts:

 retMatrix[i,j] = transition_counts[(i,j)]

 # else the value in the matrix [i,j] stays as 0

 return retMatrix

Get the transition counts matrix for all the data (we will get the same as we had before, but as a matrix

which echoes the layout of our transition probabilities matrix, and we would also be able to use our

5/21/10 06:49STAT221Week09 -- Sage

Page 13 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

function for other lists of tuples):

allTransitionCounts = makeTransitionCounts(all_daysdata)

allTransitionCounts

Make a function to turn transitions counts into a matrix of values for

%auto

def makeMLEMatrix(tcMatrix):

 '''Return an MLE Matrix from given 2-state transition count

data.

 Param tcMatrix is a 2x2 matrix of transition counts.

 Returns MLE matrix as

 [[n_00/(n_00+n_01), n_01/(n_00+n_01)], [n_10/(n_10+n_11),

n_11/(n_10+n_11)]].

 Returns None if there is not at least one count in each row

of tcMatrix.'''

 retValue = None

 if (tcMatrix[0] > 0) and (tcMatrix[1] > 0):

 retValue =

matrix(RR,[[tcMatrix[0,0]/(tcMatrix[0,0]+tcMatrix[0,1]),

tcMatrix[0,1]/(tcMatrix[0,0]+tcMatrix[0,1])],[tcMatrix[1,0] /

(tcMatrix[1,0]+tcMatrix[1,1]),

tcMatrix[1,1]/(tcMatrix[1,0]+tcMatrix[1,1])]])

 return retValue

Look at this for all the data:

allDataMLEMatrix = makeMLEMatrix(allTransitionCounts)

allDataMLEMatrix

P # compare to made up probs in toy model

As we said before, we can concentrate just on two unknowns (p), so we can make a function just

to return this tuple:

%auto

def makeMLE00And11(tcMatrix):

 '''Return an MLE tuple (p00, p11) from given 2-state

transition count data.

 Param tcMatrix is a 2x2 matrix of transition counts.

 Returns (n_00/(n_00+n_01, n_11/(n_10+n_11) from tcMatrix.

 Returns null if there is not at least one count in each row

of tcMatrix. '''

 retValue = None

 if (tcMatrix[0] > 0) and (tcMatrix[1] > 0):

 retValue =

(RR(tcMatrix[0,0]/(tcMatrix[0,0]+tcMatrix[0,1])),

RR(tcMatrix[1,1]/(tcMatrix[1,0]+tcMatrix[1,1])))

 return retValue

P =
p 0 0

p 1 0

p 0 1

p 1 1

0 0 p1 1

5/21/10 06:49STAT221Week09 -- Sage

Page 14 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

 return retValue

What is (p) using all our data?

allDataMLE00And11 = makeMLE00And11(allTransitionCounts)

allDataMLE00And11

We can use our log-likelihood function in the form of a Sage symbolic function with symbolic variables

n00, n01, n10, n11, p00, p01, and substitute in the values we have just found, using all our

data, for all of these variables, to find the maximum of the log-likelihood function (i.e. the value of the

function evaluated at the MLE).

Here is a plot of (p), moving as the amount of data increases. It loops continually so if it looks like it

is not moving, it is towards the end when the MLE has settled down - just wait a short while and the loop

will start again:

Animation of the MLE as the amount of data increases

Here is an animated contour plot of our log-likelihood function, moving as the amount of data increases,

with the MLE indicated as the black dot •. Again, it loops continually:

0 0 p1 1

00 p11

5/21/10 06:49STAT221Week09 -- Sage

Page 15 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

Animated contour plot of the log-likelihood function for P as data increases

#just the final likelihood contour plot

use maximum of log lik to calculate come contour values for a

contour plot

do this by evaluating L with all our data

maxLogL= L.subs(n00=allTransitionCounts[0,0],

n01=allTransitionCounts[0,1], n10=allTransitionCounts[1,0],

n11=allTransitionCounts[1,1], p00=allDataMLE00And11[0],

p11=allDataMLE00And11[1])

make a list of contours

ourContours = tuple([maxLogL-2*i for i in range(0,20,1)])

make a contour plot

cp=contour_plot(L.subs(n00=allTransitionCounts[0,0],

n01=allTransitionCounts[0,1], n10=allTransitionCounts[1,0],

n11=allTransitionCounts[1,1]), (p00, 0.0001, .9999), (p11,

.0001, .9999),fill=False, aspect_ratio=1, contours=10)

cp+=contour_plot(L.subs(n00=allTransitionCounts[0,0],

n01=allTransitionCounts[0,1], n10=allTransitionCounts[1,0],

n11=allTransitionCounts[1,1]), (p00, 0.0001, .9999), (p11,

.0001, .9999),fill=False, aspect_ratio=1,contours=ourContours,

cmap='hsv')

cp+=point(allDataMLE00And11,pointsize=50,rgbcolor='black')

cp.show()

5/21/10 06:49STAT221Week09 -- Sage

Page 16 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

You Think: What is the MLE of in an product Bernoulli() experiment for the problem, i.e.,

we now model

X ernoulli()

what is the MLE thetahat of the wet or dry (1 or 0) days under

IID Bernoulli(theta) RV

makeFreqDict(x0ton)

Here is a nice trick to make a flow diagram fast and dirty in Sage. For our Christchurch Dry-

Wet chain with MLE P we can do the following flow diagram.

P = matrix([[3/4,1/4],[1/2,1/2]]) # construct and assign the

matrix to P

p = DiGraph(P,format="weighted_adjacency_matrix")

pos_dict={}

pos_dict[0] = [1,1]

pos_dict[1] = [3,1]

p.plot(edge_labels=True,pos=pos_dict,vertex_size=300).show()

You Try: Consider the Markov chain describing the mode of transport used by a lazy

professor. He has only two modes of transport, namely Walk or Drive. Label Walk by 0 and

Drive by 1. If he walks today then he will definitely drive tomorrow. But, if he drives today

then he flips a fair coin to decide whether he will Walk or Drive tomorrow. His decision to

get to work is the same on each day. In the cells below try to:

Find the flow diagram

Find and assign the transition probability matrix for this Markov chain

Find the probability that he will drive on the n-th day given he will walk today (day 0)

What is the steady state probability vector for this chain.

0 X1 Xn
IID
B

5/21/10 06:49STAT221Week09 -- Sage

Page 17 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

making the animation for the moving MLE - start by making

tuples to plot

too much data to take every day - start with every 10 days

ns = []

MLE00And11s = []

most_is = range(1,min(20,len(all_daysdata)))

if len(all_daysdata) > 20: most_is = most_is + range(20,

len(all_daysdata),10)

most_is.append(len(all_daysdata))

for i in most_is:

 tcCounts_i = makeTransitionCounts(all_daysdata[0:i])

 # only do plot if there is at least one count in both rows

of the trans count matrix

 if (tcCounts_i[0] > 0) and (tcCounts_i[1] > 0):

 MLE00And11_i = makeMLE00And11(tcCounts_i) # get the MLE

 ns.append(i)

 MLE00And11s.append(MLE00And11_i)

p00Against_n = zip(ns, [p[0] for p in MLE00And11s])

p11Against_n = zip(ns, [p[1] for p in MLE00And11s])

making the animation for the moving MLE - uncomment final two

lines to make animation

animDelay = 20 # delay between frames for animation

vMLE=[]

ptsize = 20

oldPtColours = (.3,.3,.5)

start = 0

endp= len(MLE00And11s)

#endp= 100

i = start

while i < endp:

 if i > start: pMLE_i = points(MLE00And11s[start:i],

pointsize = ptsize, rgbcolor=oldPtColours)

 else : pMLE_i = points((0,0), pointsize = 0)

 pMLE_i += points(MLE00And11s[i], pointsize = ptsize,

rgbcolor='red')

 vMLE.append(pMLE_i) # add a plot to the list of plots

 if i < 20: i = i + 1

5/21/10 06:49STAT221Week09 -- Sage

Page 18 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

 if i < 20: i = i + 1

 elif i < 100: i = i + 5

 elif i < 1000: i = i + 10

 elif i < 2000: i = i + 20

 else: i = i + 40

pMLE_final = points(MLE00And11s[start:endp-1], pointsize =

ptsize, rgbcolor=oldPtColours)

pMLE_final += points(MLE00And11s[endp-1], pointsize = ptsize,

rgbcolor='red')

vMLE.append(pMLE_final) # add a plot to the list of plots

#animMLEP = animate(vMLE,ymin=0,

ymax=1,xmin=0,xmax=1,aspect_ratio=1,axes_labels=('p00','p11')) #

animate

#animMLEP.gif(delay = animDelay)

how to make the likelihood contour plot animation - uncomment

final 2 lines to do it

too much data to do a frame for every day so try to take first

days and then up to every 10th then 100th then 500th days

v = [] # an empty list to store our animation in

animDelay = 50 # delay between frames for animation

#for i in range(1, len(all_daysdata)+1):

most_is = range(1,min(200,len(all_daysdata)),10)

if len(all_daysdata) > 200: most_is = most_is + range(200,

min(5000,len(all_daysdata)),100)

if len(all_daysdata) > 5000: most_is = most_is + range(5000,

len(all_daysdata),500)

most_is.append(len(all_daysdata))

for i in most_is:

 javascript:evaluate_cell(206,%200);

 tcCounts_i = makeTransitionCounts(all_daysdata[0:i])

 # only do plot if there is at least one count in both rows

of the trans count matrix

 if (tcCounts_i[0] > 0) and (tcCounts_i[1] > 0):

 MLE00And11_i = makeMLE00And11(tcCounts_i) # get the MLE

 maxLogL_i= L.subs(n00=tcCounts_i[0,0],

n01=tcCounts_i[0,1], n10=tcCounts_i[1,0], n11=tcCounts_i[1,1],

p00=MLE00And11_i[0], p11=MLE00And11_i[1])

 contours_i = tuple([maxLogL_i-2*i for i in

range(0,20,1)])

 cp_i=contour_plot(L.subs(n00=tcCounts_i[0,0],

n01=tcCounts_i[0,1], n10=tcCounts_i[1,0], n11=tcCounts_i[1,1]),

(p00, 0.0001, .9999), (p11, .0001, .9999),fill=False,

aspect_ratio=1, contours=10)

 cp_i+=contour_plot(L.subs(n00=tcCounts_i[0,0],

n01=tcCounts_i[0,1], n10=tcCounts_i[1,0], n11=tcCounts_i[1,1]),

(p00, 0.0001, .9999), (p11, .0001, .9999),fill=False,

aspect_ratio=1,contours=contours_i, cmap='hsv')

 cp_i+=point(MLE00And11_i, pointsize=50,

rgbcolor='black')

 v.append(cp_i) # add a plot to the list of plots

5/21/10 06:49STAT221Week09 -- Sage

Page 19 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

 v.append(cp_i) # add a plot to the list of plots

#animLikP = animate(v,aspect_ratio=1) # animate

#animLikP.gif(delay = animDelay)

Random Walks and Random Graphs in
Sage

We get introduced to simple random walks in SAGE.

Problem:

1. Try to make simple Markov chain models as random walks on a lattice or a

graph by modifying the following scripts.

set_random_seed(0)

v = [randint(0,1) for _ in range(10)]

v

sum(v)/float(len(v))

html('<h1>A Random Walk by William Stein</h1>')

vv = []; nn = 0

@interact

def foo(pts = checkbox(True, "Show points"),

 refresh = checkbox(False, "New random walk every time"),

 steps = (50,(10..500))):

 # We cache the walk in the global variable vv, so that

 # checking or unchecking the points checkbox doesn't change

 # the random walk.

 html("<h2>%s steps</h2>"%steps)

 global vv

 if refresh or len(vv) == 0:

 s = 0; v = [(0,0)]

 for i in range(steps):

 s += random() - 0.5

 v.append((i, s))

 vv = v

 elif len(vv) != steps:

 # Add or subtract some points

 s = vv[-1][1]; j = len(vv)

 for i in range(steps - len(vv)):

 s += random() - 0.5

 vv.append((i+j,s))

 v = vv[:steps]

 else:

 v = vv

 L = line(v, rgbcolor='#4a8de2')

 if pts: L += points(v, pointsize=10, rgbcolor='red')

 show(L, xmin=0, figsize=[8,3])

html('<h1>A 3D Random Walk</h1>') # this was done originally by

William Stein

@interact

def rwalk3d(n=(50,1000), frame=True):

 pnt = [0.,0.,0.]

 v = [copy(pnt)]

5/21/10 06:49STAT221Week09 -- Sage

Page 20 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

 v = [copy(pnt)]

 for i in range(n):

 pnt[0] += random()-0.5

 pnt[1] += random()-0.5

 pnt[2] += random()-0.5

 v.append(copy(pnt))

show(line3d(v,color='black'),aspect_ratio=[1,1,1],frame=frame,figsize=[4,4])

Graph Browser, by Marshall Hampton

grs = ['BalancedTree', 'BullGraph', 'ChvatalGraph',

'CirculantGraph', 'CircularLadderGraph', 'ClawGraph',

'CompleteBipartiteGraph', 'CompleteGraph', 'CubeGraph',

'CycleGraph', 'DegreeSequence',

'DegreeSequenceConfigurationModel', 'DegreeSequenceExpected',

'DegreeSequenceTree', 'DesarguesGraph', 'DiamondGraph',

'DodecahedralGraph', 'DorogovtsevGoltsevMendesGraph',

'EmptyGraph', 'FlowerSnark', 'FruchtGraph', 'Grid2dGraph',

'GridGraph', 'HeawoodGraph', 'HexahedralGraph',

'HoffmanSingletonGraph', 'HouseGraph', 'HouseXGraph',

'IcosahedralGraph', 'KrackhardtKiteGraph', 'LCFGraph',

'LadderGraph', 'LollipopGraph', 'MoebiusKantorGraph',

'OctahedralGraph', 'PappusGraph', 'PathGraph', 'PetersenGraph',

'RandomBarabasiAlbert', 'RandomGNM', 'RandomGNP',

'RandomHolmeKim', 'RandomLobster', 'RandomNewmanWattsStrogatz',

'RandomRegular', 'RandomTreePowerlaw', 'StarGraph',

'TetrahedralGraph', 'ThomsenGraph', 'WheelGraph']

examples = {}

for g in grs:

 docs = eval('graphs.' + g + '.__doc__')

 for docline in docs.split('\n'):

 ex_loc = docline.find('graphs.' + g)

 if ex_loc != -1:

 end_paren_loc = docline[ex_loc:].find(')')

 ex_str = docline[ex_loc:end_paren_loc+ex_loc+1]

 ex_str = ex_str.replace('i+','2+')

 ex_str = ex_str.replace('(i','(4')

 break

 try:

 gt2 = eval(ex_str)

 examples[g] = ex_str

 except:

 grs.remove(g)

@interact

def graph_browser(graph_name = selector(grs, label = "Graph

type:"), newargs = input_box('',type=str,label='tuple of args'),

output_type = selector(['2D','3D'], default='2D')):

 base_g_str = 'graphs.' + graph_name

 docs = eval(base_g_str + '.__doc__')

 doc_ex_loc = docs.find('EXAMPLE')

 if docs.find('PLOTTING') != -1:

 doc_ex_loc = min(doc_ex_loc, docs.find('PLOTTING'))

 print docs[0:doc_ex_loc].replace('\n ','\n')

 if newargs != '':

5/21/10 06:49STAT221Week09 -- Sage

Page 21 of 21http://sage.math.canterbury.ac.nz/home/raazesh.sainudiin/74/print

 if newargs != '':

 try:

 t_graph = eval(base_g_str + newargs)

 except:

 print "Invalid arguments, using default"

 t_graph = eval(examples[graph_name])

 else:

 t_graph = eval(examples[graph_name])

 if output_type == '2D': show(t_graph)

 if output_type == '3D': t_graph.show3d()

%hide

%auto

def makeFreqDict(myDataList):

 '''Make a frequency mapping out of a list of data.

 Param myDataList, a list of data.

 Return a dictionary mapping each unique data value to its

frequency count.'''

 freqDict = {} # start with an empty dictionary

 for res in myDataList:

 if res in freqDict: # the data value already exists as a

key

 freqDict[res] = freqDict[res] + 1 # add 1 to the

count

 else: # the data value does not exist as a key value

 freqDict[res] = 1 # add a new key-value pair for

this new data value, frequency 1

 return freqDict # return the dictionary created

end of makeFreqDict(...)

