
STAT221Week10

STAT 221 Week 10: Limits, Convergence, and Estimation

STAT 221 2010 S1: Monte Carlo Methods

©2009 2010 Jennifer Harlow, Dominic Lee and Raazesh Sainudiin.

Creative Commons Attribution-Noncommercial-Share Alike 3.0

Inference and Estimation: The Big Picture

Limits

Limits of Sequences of Real Numbers

Limits of Functions

Limit of a Sequence of Random Variables

Convergence in Distribution

Convergence in Probability

Some Basic Limit Laws in Statistics

Weak Law of Large Numbers

Central Limit Theorem

Inference and Estimation: The Big Picture

The Markov Chains we discussed last week fit into our Big Picture, which is about inference and estimation and especially inference

and estimation problems where computational techniques are helpful.

 Point estimation Set estimation

Parametric

MLE of finitely many parameters

done

Confidence intervals,

via the central limit theorem

Non-parametric

(infinitely many parameters)
coming up ... coming up ...

One/Many-dimensional Integrals

(finite-dimensional)
coming up ... coming up ...

But before we move on we have to discuss what makes it all work: the idea of limits - where do you get to if you just keep going?

Limits

Last week we described a Markov Chain, informally, as a system which "jumps" among several states, with the next state depending

(probabilistically) only on the current state. Since the system changes randomly, it is generally impossible to predict the exact state of

the system in the future. However, the statistical and probailistic properties of the system's future can be predicted. In many

applications it is these statistical properties that are important. We saw how we could find a steady state vector:

s

(And we noted that p only converges to a strictly positive vector if P is a regular transition matrix.)

The week before, we talked about the likelihood function and maximum likelihood estimators for making point estimates of model

parameters. For example for the Bernoulli() RV (a Bernoulli RV with true but possibly unknown parameter , we found that the

likelihood function was L () (1) where . We also found the maxmimum likelihood estimator (MLE) for the

Bernoulli model, .

= lim
n

p(n)

(n)

n = tn !
(n!t)n t n =

n

i=1

xi

 n =
n
1

n

i=1

xi

We demonstrated these ideas using samples simulated from a Bernoulli process with a secret . We had an interactive plot of the

likelihood function where we could increase n, the number of simulated samples or the amount of data we had to base our estimate

on, and see the effect on the shape of the likelihood function. The animation belows shows the changing likelihood function for the

Bernoulli process with unknown as n (the amount of data) increases.

Likelihood function for Bernoulli process, as n goes from 1 to 1000 in a continuous loop

For large n, you can probably make your own guess about the true value of even without knowing t . As the animation

progresses, we can see the likelihood function 'homing in' on 3.

We can see this in another way, by just looking at the sample mean as n increases. An easy way to do this is with running means:

generate a very large sample and then calculate the mean first over just the first observation in the sample, then the first two, first

three, etc etc (running means were discussed in an earlier worksheet if you want to go back and review them in detail in your own

time). Here we just define a function so that we can easily generate sequences of running means for our Bernoulli process with the

unknown .

%auto

def bernoulliSecretThetaRunningMeans(n, mySeed = None):

 '''Function to give a list of n running means from Bernoulli with unknown theta.

 Param n is the number of running means to generate.

 Param mySeed is a value for the seed of the random number generator, defaulting

to None

 Note: the unknown theta parameter for the Bernoulli process is defined in

bernoulliSampleSecretTheta

 Return a list of n running means.'''

 sample = bernoulliSampleSecretTheta(n, simSeed = mySeed)

 from pylab import cumsum # we can import in the middle of code

 csSample = list(cumsum(sample))

 samplesizes = range(1, n+1,1)

 return [RR(csSample[i])/samplesizes[i] for i in range(n)]

Now we can use this function to look at say 5 different sequences of running means (they will be different, because for each iteration,

we will simulate a different sample of Bernoulli observations).

nToGenerate = 1500

iterations = 5

xvalues = range(1, nToGenerate+1,1)

for i in range(iterations):

 redshade = 0.5*(iterations - 1 - i)/iterations # to get different colours for

the lines

 bRunningMeans = bernoulliSecretThetaRunningMeans(nToGenerate)

 pts = zip(xvalues,bRunningMeans)

 if (i == 0):

 p = line(pts, rgbcolor = (redshade,0,1))

 else:

n

= 0

 p += line(pts, rgbcolor = (redshade,0,1))

show(p, figsize=[5,3], axes_labels=['n','sample mean'])

What we notice is how the different lines converge on a sample mean of close to 0.3.

Is life always this easy? Unfortunately no. In the plot below we show the well-behaved running means for the Bernoulli and beside

them the running means for simulated standard Cauchy random variables. They are all over the place, and each time you

re-evaluate the cell you'll get different all-over-the-place behaviour.

nToGenerate = 15000

iterations = 5

g = twoRunningMeansPlot(nToGenerate, iterations) # use hidden function to make plot

show(g,figsize=[10,5])

We talked about the Cauchy in more detail in an earlier worksheet. If you cannot recall the detail and are interested, go back to that

in your own time. The message here is that although with the Bernoulli process, the sample means converge as the number of

observations increases, with the Cauchy they do not.

We talked about p , for p our Markov Chain transition matrix, converging. We talked about sample means converging (or not).

What do we actually mean by 'converge'? These ideas of convergence and limits are fundamental to using Monte Carlo

techniques: we need to be able to justify that the way we are attacking a problem will give us the 'right' answer. (At its very simplest,

how do we justify that, by generating lots of simulations, we can get to some good approximation for a probability or an integral or a

sum?) The advantages of an MLE as a point estimate in parametric estimation all come back to limits and convergence (remember

how the likelihood function 'homed in'). And, as we will see when we do non-parametric estimation, limits and convergence are also

fundamental there.

(n)

Limits of a Sequence of Real Numbers

A sequence of real numbers x (which we can also write as x) is said to converge to a limit a ,

if for every natural number m , a natural number N exists such that for every j , x

What is this saying? x is measuring the closeness of the jth value in the sequence to a. If we pick bigger and bigger m, will

get smaller and smaller. The definition of the limit is saying that if a is the limit of the sequence then we can get the sequence to

become as close as we want ('arbitrarily close') to a, and to stay that close, by going far enough into the sequence ('for every j ,

x ')

(, the natural numbers, are just the 'counting numbers' .)

Take a trivial example, the sequence x 7 7 7

Clearly, 7, but let's do this formally:

For every m , take N , then

 j , as required.

(is mathspeak for 'for all' or 'for every')

What about x , i.e., x ?

For every m , take N , then j , x

You try

Think about x with p . The limit , provided p .

You can draw the plot of this very easily using the Sage symbolic expressions we have already met ('f.subs(...)' allows us to

substitute a particular value for one of the symbolic variables in the symbolic function f, in this case a value to use for p).

var('i, p')

f = 1/(i^p)

plot(f.subs(p=1), (x, 0, 100), axes_labels=('i',f)).show(figsize=[6,3]) # make and

show plot, note we can use f in the label

What about x . The limit .

1 x2 x3 i i=1

lim
i

xi = a

m Nm

j ! a

 1

m

j ! a

 1

m

Nm

j ! a

 1

m

1 2 3

i i=1
= 1 1 1

lim
i

xi = 1

m = 1

Nm = 1 x 7

j ! 1

 = 17 7! 1 = 0 1

m

i i=1
=

1

1

2

1

3

1
i =

i
1

lim
i

xi = lim
i

i
1 = 0

m = m m

j ! 0

 1
m
! 0

 = 1

m

i i=1
= 1

1p
1

2p
1

3p
0 lim

i

1

ip
= 0 0

i i=1
= 1 1

1

2 2

1

3 3

1

lim
i

i i
1

= 1

This one is not as easy to see intuitively, but again we can plot it with Sage.

var('i')

f = i^(1/i)

n=500

p=plot(f.subs(p=1), (x, 0, n), axes_labels=('i',f)) # main plot

p+=line([(0,1),(n,1)],linestyle=':') # add a dotted line at height 1

p.show(figsize=[6,3]) # show the plot

Finally, x , with p . The limit provided p .

You can cut and paste (with suitable adaptations) to try to plot this one as well ...

(end of You Try)

back to the real stuff ...

Limits of Functions

We say that a function f (x) has a limit L as x approaches a:

(x)

provided f (x) is arbitrarily close to L for all () values of x that are sufficiently close to but not equal to a.

For example

Consider the function f (x) 1)

(x) (1) 71828

even though f (0) 1) is undefined!

x is defined as a symbolic variable by default by Sage so we do not need var('x')

f = (1+x)^(1/x)

f.subs(x=0) # this will give you an error message

Traceback (click to the left of this block for traceback)
...
RuntimeError: power::eval(): division by zero

You can get some idea of what is going on with two plots on different scales

f = (1+x)^(1/x)

n1=5

p1=plot(f.subs(p=1), (x, 0.001, n1), axes_labels=('x',f)) # main plot

t1 = text("Large scale plot", (n1/2,e), rgbcolor='blue',fontsize=10)

i i=1
= p 1

1

p 2
1

p 3
1

0 lim
i

p i

1

= 1 0

:

lim
x a

f = L

= (+ x x
1

lim
x 0

f = lim
x 0

+ x x
1

= e 2

= (+ 0 0

1

n2=0.1

p2=plot(f.subs(p=1), (x, 0.0000001, n2), axes_labels=('x',f)) # main plot

p2+=line([(0,e),(n2,e)],linestyle=':') # add a dotted line at height e

t2 = text("Small scale plot", (n2/2,e+.01), rgbcolor='blue',fontsize=10)

show(graphics_array((p1+t1,p2+t2)),figsize=[6,3]) # show the plot

all this has been laying the groundwork for the topic of real interest to us ...

Limit of a Sequence of Random Variables

We want to be able to say things like in some sensible way. X are some random variables, X is some 'limiting random

variable', but what do we mean by 'limiting random variable'?

To help us, lets introduce a very very simple random variable, one that puts all its mass in one place.

theta = 2.0

show(graphics_array((pmfPointMassPlot(theta),cdfPointMassPlot(theta))),figsize=

[8,4]) # show the plots

This is known as the Point ass() random variable, R): the density f (x) is 1 if x and 0 everywhere else

So, if we had some sequence and

and we had a sequence of random variables X oint ass(), i

then we could talk about a limiting random variable as X oint ass():

lim
i

Xi = X i

M (=

f (x;) =
0

1

if x =

if x =

F (x;) =
0

1

if x

if x

i i=1
lim
i

i =

i P M i = 1 2 3

P M

i.e., we could talk about

mock up a picture of a sequence of point mass rvs converging on theta = 0

ptsize = 20

i = 1

theta_i = 1/i

p = points((theta_i,1), rgbcolor="blue", pointsize=ptsize)

p += line([(theta_i,0),(theta_i,1)], rgbcolor="blue", linestyle=':')

while theta_i > 0.01:

 i+=1

 theta_i = 1/i

 p += points((theta_i,1), rgbcolor="blue", pointsize=ptsize)

 p += line([(theta_i,0),(theta_i,1)], rgbcolor="blue", linestyle=':')

p += points((0,1), rgbcolor="red", pointsize=ptsize)

p += line([(0,0),(0,1)], rgbcolor="red", linestyle=':')

p.show(xmin=-1, xmax = 2, ymin=0, ymax = 1.1, axes=false, gridlines=[None,[0]],

figsize=[7,3])

Now, we want to generalise this notion of a limit to other random variables (that are not necessarily Point ass() RVs)

What about one many of you will be familiar with - the 'bell-shaped curve' - the Gaussian() or Normal() RV?

The probability density function (PDF) f (x) is given by

The two parameters, and , are sometimes referred to as the location and scale parameters.

To see why this is, use the interactive plot below to have a look at what happens to the shape of the density function f (x) when you

change or increase or decrease :

@interact

def _(my_mu=input_box(0, label='mu') ,my_sigma=input_box(1,label='sigma')):

 '' <script type="text/javascript" src="http://sage.math.canterbury.ac.nz

/javascript/tiny_mce/themes/advanced/langs/en.js"></script>9;Interactive function to

plot the normal pdf and ecdf.'''

 if my_sigma > 0:

 html('<h4>Normal('+str(my_mu)+','+str(my_sigma)+'²)</h4>')

 var('mu sigma')

 f = (1/(sigma*sqrt(2.0*pi)))*exp(-1.0/(2*sigma^2)*(x - mu)^2)

 p1=plot(f.subs(mu=my_mu,sigma=my_sigma), (x, my_mu - 3*my_sigma - 2, my_mu +

3*my_sigma + 2), axes_labels=('x','f(x)'))

 show(p1,figsize=[8,3])

 else:

 print "sigma must be greater than 0"

Consider the sequence of random variables X , where

lim
i

Xi = X

M i

2 2

f (x;) =
1

2
exp (x)

!1

2 2
!

2

1 X2 X3

X ormal(0)

X ormal(0)

X ormal(0)

X ormal(0)

X ormal(0)

We can use the animation below to see how the PDF f (x) looks as we move through the sequence of X (the animation only goes to

i 5, 04 but you get the picture ...)

Normal curve animation, looping through for

We can see that the probability mass of X ormal(0) increasingly concentrates about 0 as i and

Does this mean that oint ass(0)?

No, because for any i, however large, P (X) because X is a continuous RV (for any continous RV X , for any x ,

P (X)).

So, we need to refine our notions of convergence when we are dealing with random variables

Convergence in Distribution

Let X be a sequence of random variables and let X be another random variable. Let F denote the distribution function (DF)

of X and let F denote the distribution function of X .

Now, if for any real number t at which F is continuous,

(t) (t)

(in the sense of the convergence or limits of functions we talked about earlier)

Then we can say that the sequence or RVs X , i converges to X in distribution and write X .

An equivalent way of defining convergence in distribution is to go right back to the meaning of the probabilty space 'under the hood'

of a random variable, a random variable X as a mapping from the sample space to the real line (X), and the sample

points or outcomes in the sample space, the . For , X() is the mapping of to the real line . We could look at the

set of such that X() , i.e. the set of that map to some value on the real line less than or equal to t, .

Saying that for any t , (t) (t) is the equivalent of saying that for any t ,

Armed with this, we can go back to our sequence of Normal random variables X , where

X ormal(0)

1 N 1

2 N
2

1

3 N
3

1

4 N
4

1

i N
i
1

i i

= 2 = 0

 =
i

1
i 5 = 1 2

i N
i
1

i
1 0

lim
i

Xi = P M

i = 0 = 0 i

= x = 0

i X2 i

i

lim
i

Fi = F

i = 1 2 i

d
X

:

t () : X t

lim
i

Fi = F

 lim
i

P (): Xi t = P (): X t

1 X2 X3

1 N 1

X ormal(0)

X ormal(0)

X ormal(0)

X ormal(0)

and let X oint ass(0),

and say that the X converge in distribution to the x oint ass RV X ,

X

What we are saying with convergence in distribution, informally, is that as i increases, we increasingly expect to see the next

outcome in a sequence of random experiments becoming better and better modeled by the limiting random variable. In this case, as

i increases, the Point ass(0) is becoming a better and better model for the next outcome of a random experiment with outcomes

ormal(0).

mock up a picture of a sequence of converging normal distributions

my_mu = 0

upper = my_mu + 5; lower = -upper; # limits for plot

var('mu sigma')

stop_i = 12

html('<h4>N(0,1) to N(0, 1/'+str(stop_i)+')</h4>')

f = (1/(sigma*sqrt(2.0*pi)))*exp(-1.0/(2*sigma^2)*(x - mu)^2)

p=plot(f.subs(mu=my_mu,sigma=1.0), (x, lower, upper), rgbcolor = (0,0,1))

for i in range(2, stop_i, 1): # just do a few of them

 shade = 1-11/i # make them different colours

 p+=plot(f.subs(mu=my_mu,sigma=1/i), (x, lower, upper), rgbcolor = (1-shade, 0,

shade))

textOffset = -0.2 # offset for placement of text - may need adjusting

p+=text("0",(0,textOffset),fontsize = 10, rgbcolor='grey')

p+=text(str(upper.n(digits=2)),(upper,textOffset),fontsize = 10, rgbcolor='grey')

p+=text(str(lower.n(digits=2)),(lower,textOffset),fontsize = 10, rgbcolor='grey')

p.show(axes=false, gridlines=[None,[0]], figsize=[7,3])

N(0,1) to N(0, 1/12)

There is an interesting point to note about this convergence:

We have said that the X ormal(0) with distribution functions F converge in distribution to X oint ass(0) with

distribution function F , which means that we must be able to show that for any real number t at which F is continuous,

(t) (t)

Note that for any of the X ormal(0), F (0) , and also note that for X oint ass(0), F (0) , so clearly

F (0) = (0). What has gone wrong? Nothing: we said that we had to be able to show that (t) (t) for any t at which

F is continuous, but the Point ass(0) distribution function F is not continous at 0!

2 N
2

1

3 N
3

1

4 N
4

1

i N
i
1

P M

i P M

i

d
X

M

N
i
1

i N
i
1

i P M

lim
i

Fi = F

i N
i
1

i =
2

1 P M = 1

i F lim
i

Fi = F

M

theta = 0.0

show(graphics_array((pmfPointMassPlot(theta),cdfPointMassPlot(theta))),figsize=

[8,4]) # show the plots

Convergence in Probability

Let X be a sequence of random variables and let X be another random variable. Let F denote the distribution function (DF)

ofX and let F denote the distribution function of X .

Now, if for any real number ,

Then we can say that the sequence X , i converges to X in probability and write X .

Or, going back again to the probability space 'under the hood' of a random variable, we could look the way the X maps each

outcome , X (), which is some point on the real line, and compare this to mapping X().

Saying that for any , is the equivalent of saying that for any ,

Informally, we are saying X is a limit in probabilty if, by going far enough into the sequence X , we can ensure that the mappings

X () and X() will be arbitrarily close to each other on the real line for all .

Note that convergence in distribution is implied by convergence in probability: convergence in distribution is the weakest form of

convergence; any sequence of RV's that converges in probability to some RV X also converges in distribution to X (but not

necessarily vice versa).

mock up a picture of a sequence of converging normal distributions

my_mu = 0

var('mu sigma')

upper = 0.2; lower = -upper

i = 20 # start part way into the sequence

lim = 100 # how far to go

stop_i = 12

html('<h4>N(0,1/'+str(i)+') to N(0, 1/'+str(lim)+')</h4>')

f = (1/(sigma*sqrt(2.0*pi)))*exp(-1.0/(2*sigma^2)*(x - mu)^2)

p=plot(f.subs(mu=my_mu,sigma=1.0/i), (x, lower, upper), rgbcolor = (0,0,1))

for j in range(i, lim+1, 4): # just do a few of them

 shade = 1-(j-i)/(lim-i) # make them different colours

i X2 i

i

0

 lim
i

P Xi ! X = 0

i = 1 2 i

P
X

i

i

 lim
i

P Xi ! X = 0

 lim
i

P X () (): i ! X = 0

i

i

 p+=plot(f.subs(mu=my_mu,sigma=1/j), (x, lower,upper), rgbcolor = (1-shade, 0,

shade))

textOffset = -1.5 # offset for placement of text - may need adjusting

p+=text("0",(0,textOffset),fontsize = 10, rgbcolor='grey')

p+=text(str(upper.n(digits=2)),(upper,textOffset),fontsize = 10, rgbcolor='grey')

p+=text(str(lower.n(digits=2)),(lower,textOffset),fontsize = 10, rgbcolor='grey')

p.show(axes=false, gridlines=[None,[0]], figsize=[7,3])

N(0,1/20) to N(0, 1/100)

For our sequence of Normal random variables X , where

X ormal(0)

X ormal(0)

X ormal(0)

X ormal(0)

X ormal(0)

and X oint ass(0),

It can be shown that the X converge in probability to X oint ass(0) RV X ,

X

(the formal proof of this involves Markov's Inequality, which is beyond the scope of this course).

Some Basic Limit Laws in Statistics

Intuition behind Law of Large Numbers and Central Limit Theorem

Take a look at the Khan academy videos on the Law of Large Numbers and the Central Limit Theorem. This will give

you a working idea of these theorems. In the sequel, we will strive for a deeper understanding of these theorems

on the basis of the two notions of convergence of sequences of random variables we just saw.

1 X2 X3

1 N 1

2 N
2

1

3 N
3

1

4 N
4

1

i N
i
1

P M

i P M

i

P
X

Weak Law of Large Numbers

Remember that a statistic is a random variable, so a sample mean is a random variable. If we are given a sequence of independent

and identically distributed RVs, X , then we can also think of a sequence of random variables X (n

being the sample size).

Since X are IID, they all have the same expection, say E(X) by convention.

If E(X) exists, then the sample mean X converges in probability to E(X) (i.e., to the expectatation of any one of the individual

RVs):

If and if E(X) exists, then X (X)

Going back to our definition of convergence in probability, we see that this means that for any real number ,

Informally, this means that means that, by taking larger and larger samples we can make the probability that the average of the

observations is more than away from the expected value get smaller and smaller.

Proof of this is beyond the scope of this course, but we have already seen it in action when we looked at the Bernoulli running

means. Have another look, this time with only one sequence of running means. You can increase n, the sample size, and change

. Note that the seed for the random number generator is also under your control. This means that you can get replicable

samples: in particular, in this interact, when you increase the sample size it looks as though you are just adding more to an existing

sample rather than starting from scratch with a new one.

@interact

def

_(nToGen=slider(1,1500,1,100,label='n'),my_theta=input_box(0.3,label='theta'),rSeed=input_box(1234,label='

seed')):

 '''Interactive function to plot running mean for a Bernoulli with specified n,

theta and random number seed.'''

 if my_theta >= 0 and my_theta <= 1:

 html('<h4>Bernoulli('+str(my_theta.n(digits=2))+')</h4>')

 xvalues = range(1, nToGen+1,1)

 bRunningMeans = bernoulliRunningMeans(nToGen, myTheta=my_theta, mySeed=rSeed)

 pts = zip(xvalues, bRunningMeans)

 p = line(pts, rgbcolor = (0,0,1))

 p+=line([(0,my_theta),(nToGen,my_theta)],linestyle=':',rgbcolor='grey')

 show(p, figsize=[5,3], axes_labels=['n','sample mean'],ymax=1)

 else:

 print 'Theta must be between 0 and 1'

Central Limit Theorem

1 X2
IID
X1 1 X2 Xn

1 X2 1

1 n 1

X1 X2
IID
X1 1 n

P
E 1

0

 lim
n

P X (X)n ! E 1 = 0

You have probably all heard of the Central Limit Theorem before, but now we can relate it to our definition of convergence in

distribution.

Let X and suppose E(X) and V (X) both exist,

then

And remember Z ormal(0)?

Consider Z =

If , then

and

so Z = Z ormal

Thus, for sufficiently large n (say n 0), probability statements about X can be approximated using the Normal distribution.

The beauty of the CLT, as you have probably seen from other courses, is that does not require the X

to be normally distributed.

We can try this with our Bernoulli RV generator. First, a small number of samples:

theta, n, samples = 0.6, 10, 5 # concise way to set some variable values

sampleMeans=[] # empty list

for i in range(0, samples, 1): # loop

 thisMean = QQ(sum(bernoulliSample(n, theta)))/n # get a sample and find the mean

 sampleMeans.append(thisMean) # add mean to the list of means

sampleMeans # disclose the sample means

 [3/5, 7/10, 2/5, 7/10, 4/5]

You can use the interactive plot to increase the number of samples and make a histogram of the sample means. According to the

CLT, for lots of reasonably-sized samples we should get a nice symmetric bell-curve-ish histogram centred on . You can adjust the

number of bins in the histogram as well as the number of samples, sample size, and .

import pylab

@interact

def _(samples=slider(1,3000,1,100,label='number of samples'),

nToGen=slider(1,1500,1,100,label='sample size

n'),my_theta=input_box(0.3,label='theta'),Bins=5):

 '''Interactive function to plot distribution of sample means for a Bernoulli

process.'''

 if my_theta >= 0 and my_theta <= 1 and samples > 0:

 sampleMeans=[] # empty list

 for i in range(0, samples, 1):

 thisMean = RR(sum(bernoulliSample(nToGen, my_theta)))/nToGen

 sampleMeans.append(thisMean)

 pylab.clf() # clear current figure

 n, bins, patches = pylab.hist(sampleMeans, Bins, normed=true)

 pylab.ylabel('normalised count')

 pylab.title('Normalised histogram for Bernoulli samples')

 pylab.savefig('myHist') # to actually display the figure

 pylab.show()

1 X2
IID
X1 1 1

X ormal n =
n

1
n

i=1

Xi
d
X N E(X)1 n

V (X)1

N 1

n :

V (X)n

X (X)n ! E n
=

V (X)1

n X (X)n ! E 1

X X ormal n =
n

1
n

i=1

Xi
d

 N E(X)1 n

V (X)1
X (X) X (X) ormal n ! E 1

d
 ! E 1 N 0

n

V (X)
1

ormal n X (X)n ! E 1
d

 n X (X)! E 1 N 0 (X)V 1

n :

V (X)n

X (X)n ! E n
=

V (X)1

n X (X)n ! E 1 d
 N 0 1

3 n

X ormal n
d
N E(X)1 n

V (X)
1

i

 #show(p, figsize=[5,3], axes_labels=['n','sample mean'],ymax=1)

 else:

 print 'Theta must be between 0 and 1, and samples > 0'

But although the X do not have to be ormal for , remember that we said "Let

X and suppose E(X) and V (X) both exist", then,

This is where is all goes horribly wrong for the standard Cauchy distribution (any Cauchy distribution in fact): neither the expectation

nor the variance exist for this distribution. The Central Limit Theorem cannot be applied here. In fact, if X standard

Cauchy, then standard Cauchy.

You try

Try looking at samples from two other RVs where the expectation and variance do exist, the Uniform and the Exponential:

import pylab

@interact

def _(samples=input_box(100,label='number of samples'),

nToGen=slider(1,1500,1,100,label='sample size

n'),my_theta1=input_box(2,label='theta1'),my_theta2=input_box(4,label='theta1'),Bins=5):

 '''Interactive function to plot distribution of sample means for a

Uniform(theta1, theta2) process.'''

 if (my_theta1 < my_theta2) and samples > 0:

 sampleMeans=[] # empty list

 for i in range(0, samples, 1):

 thisMean = RR(sum(uniformSample(nToGen, my_theta1, my_theta2)))/nToGen

 sampleMeans.append(thisMean)

 pylab.clf() # clear current figure

 n, bins, patches = pylab.hist(sampleMeans, Bins, normed=true)

 pylab.ylabel('normalised count')

 pylab.title('Normalised histogram for Uniform samples')

 pylab.savefig('myHist') # to actually display the figure

 pylab.show()

 #show(p, figsize=[5,3], axes_labels=['n','sample mean'],ymax=1)

 else:

 print 'theta1 must be less than theta2, and samples > 0'

import pylab

@interact

def _(samples=input_box(100,label='number of samples'),

nToGen=slider(1,1500,1,100,label='sample size

n'),my_lambda=input_box(2,label='lambda'),Bins=5):

 '''Interactive function to plot distribution of sample means for an

Exponential(lambda) process.'''

 if my_lambda > 0 and samples > 0:

 sampleMeans=[] # empty list

 for i in range(0, samples, 1):

 thisMean = RR(sum(exponentialSample(nToGen, my_lambda)))/nToGen

 sampleMeans.append(thisMean)

 pylab.clf() # clear current figure

 n, bins, patches = pylab.hist(sampleMeans, Bins, normed=true)

 pylab.ylabel('normalised count')

 pylab.title('Normalised histogram for Exponential samples')

 pylab.savefig('myHist') # to actually display the figure

i N X ormal n =
d
X N E(X)1 n

V (X)
1

1 X2
IID
X1 1 1

X ormal n =
n

1
n

i=1

Xi
d
X N E(X)1 n

V (X)1

1 X2
IID

X n =
n

1
n

i=1

Xi

 pylab.show()

 #show(p, figsize=[5,3], axes_labels=['n','sample mean'],ymax=1)

 else:

 print 'lambda must be greater than 0, and samples > 0'

More You try

random for sampling and sequence manipulation

The python random module, available in Sage, provides a useful way of taking samples if you have already generated a 'population'

to sample from, or otherwise playing around with the elements in a sequence. See http://docs.python.org/library/random.html for

more details. Here we will try a few of them.

The aptly-named sample function allows us to take a sample of a specified size from a sequence. We will use a list as our

sequence:

pop = range(1, 101, 1) # make a population

sample(pop, 10) # sample 10 elements from it at random

Each call to sample will select unique elements in the list (not that 'unique' here means that it will not select the element at any

particular position in the list more than once, but if there are duplicate elements in the list, such as with a list [1,2,4,2,5,3,1,3], then

you may well get any of the repeated elements in your sample more than once). sample samples with replacement, which means

that repeated calls to sample may give you samples with the same elements in.

popWithDuplicates = range(1, 11, 1)*4 # make a population with repeated elements

popWithDuplicates

for i in range (5):

 print sample(popWithDuplicates, 10)

Try experimenting with choice, which allows you to select one element at random from a sequence, and shuffle, which shuffles

the sequence in place (i.e, the ordering of the sequence itself is changed rather than you being given a re-ordered copy of the list). It

is probably easiest to use lists for your sequences. See how shuffle is creating permutations of the list. You could use sample

and shuffle to emulate permuations of k objects out of n ...

You may need to check the documentation to see how use these functions.

help(sample)

 docs-0.html

help(shuffle)

 docs-0.html

help(choice)

 docs-0.html

Strictly optional

Animations in Sage

These cells show how the animations were made. If you want to use them, you should uncomment the final two lines in each

animation-making cell. The cells with the gif function command will also need uncommenting if you want to do that part of it. Note

that there will a delay of the order of 30-60 seconds while the plots are made and a similar delay for the gif. The final two lines are

commented out in the published worksheet so that you have to read this warning about delays before you evaluate the cells!

Making animations is definitely not part of this course, but if you are interested you can find out more on the Sage reference manual

page on animations and in the Sage wiki animate section.

v = [] # an empty list to store our animation in

animDelay = 40 # delay between frames for animation

n = 2 # starting value for n

inc = 1 # starting value to increment n by

while n < 1000: # a while loop - you are not expected to know about these

 v.append(plotBernoulliLikelihoodSecretTheta(n)) # add a plot (made by a hidden

function) to the list of plots

 n = n + inc # increment n

 if inc < 30: inc = inc+2 # increment the increment if it is less than 30

#animLik = animate(v, xmin=0, xmax=1.1, ymin=0) # animate

#animLik.show(delay = animDelay, iterations = 1)

#animLik.gif(delay=40) #Animation to gif

v = [] # an empty list to store our animation in

animDelay = 50 # delay between frames for animation

i = 1 # starting value for i

my_mu = 0

my_sigma = 1/i

stop_sigma = 0.04

upper = my_mu + 3*my_sigma + 1; lower = -upper

var('mu sigma')

f = (1/(sigma*sqrt(2.0*pi)))*exp(-1.0/(2*sigma^2)*(x - mu)^2)

y_max = f.subs(x=0,mu=0,sigma=stop_sigma)

while my_sigma > stop_sigma: # a while loop

 p1=plot(f.subs(mu=my_mu,sigma=my_sigma), (x, lower, upper))

 textOffset = -0.25 # offset for placement of text - may need adjusting

 p1+=text("0",(0,textOffset),fontsize = 10, rgbcolor='grey')

 p1+=text(str(upper),(upper,textOffset),fontsize = 10, rgbcolor='grey')

 p1+=text(str(lower),(lower,textOffset),fontsize = 10, rgbcolor='grey')

 v.append(p1) # add a plot to the list of plots

 i = i +1 # increment i

 my_sigma = 1/i #recalculate sigma

#animNormal = animate(v, xmin=lower, xmax=upper, ymax=y_max,fontsize=0,axes=false,

gridlines=[[0],[0]], axes_labels=('x','f(x)')) # animate

#animNormal.show(delay = animDelay, iterations = 1)

#animNormal.gif(delay=50) #animation to gif

%hide

%auto

def likelihoodBernoulli(theta, n, tStatistic):

 '''Bernoulli likelihood function.

 theta in [0,1] is the theta to evaluate the likelihood at.

 n is the number of observations.

 tStatistic is the sum of the n Bernoulli observations.

 return a value for the likelihood of theta given the n observations and

tStatistic.'''

 retValue = 0 # default return value

 if (theta >= 0 and theta <= 1): # check on theta

 mpfrTheta = RR(theta) # make sure we use a Sage mpfr

 retValue = (mpfrTheta^tStatistic)*(1-mpfrTheta)^(n-tStatistic)

 return retValue

%hide

%auto

def bernoulliFInverse(u, theta):

 '''A function to evaluate the inverse CDF of a bernoulli.

 Param u is the value to evaluate the inverse CDF at.

 Param theta is the distribution parameters.

 Returns inverse CDF under theta evaluated at u'''

 return floor(u + theta)

def bernoulliSample(n, theta, simSeed=None):

 '''A function to simulate samples from a bernoulli distribution.

 Param n is the number of samples to simulate.

 Param theta is the bernoulli distribution parameter.

 Param simSeed is a seed for the random number generator, defaulting to 30.

 Returns a simulated Bernoulli sample as a list.'''

 set_random_seed(simSeed)

 us = [random() for i in range(n)]

 set_random_seed(None)

 return [bernoulliFInverse(u, theta) for u in us] # use bernoulliFInverse in a

list comprehension

def bernoulliSampleSecretTheta(n, theta=0.30, simSeed=30):

 '''A function to simulate samples from a bernoulli distribution.

 Param n is the number of samples to simulate.

 Param theta is the bernoulli distribution parameter.

 Param simSeed is a seed for the random number generator, defaulting to 30.

 Returns a simulated Bernoulli sample as a list.'''

 set_random_seed(simSeed)

 us = [random() for i in range(n)]

 set_random_seed(None)

 return [bernoulliFInverse(u, theta) for u in us] # use bernoulliFInverse in a

list comprehension

%hide

%auto

def bernoulliRunningMeans(n, myTheta, mySeed = None):

 '''Function to give a list of n running means from bernoulli with specified

theta.

 Param n is the number of running means to generate.

 Param myTheta is the theta for the Bernoulli distribution

 Param mySeed is a value for the seed of the random number generator, defaulting

to None.'''

 sample = bernoulliSample(n, theta=myTheta, simSeed = mySeed)

 from pylab import cumsum # we can import in the middle of code

 csSample = list(cumsum(sample))

 samplesizes = range(1, n+1,1)

 return [RR(csSample[i])/samplesizes[i] for i in range(n)]

%hide

%auto

#return a plot object for BernoulliLikelihood using the secret theta bernoulli

generator

def plotBernoulliLikelihoodSecretTheta(n):

 '''Return a plot object for BernoulliLikelihood using the secret theta bernoulli

generator.

 Param n is the number of simulated samples to generate and do likelihood plot

for.'''

 thisBSample = bernoulliSampleSecretTheta(n) # make sample

 tn = sum(thisBSample) # summary statistic

 from pylab import arange

 ths = arange(0,1,0.01) # get some values to plot against

 liks = [likelihoodBernoulli(t,n,tn) for t in ths] # use the likelihood function

to generate likelihoods

 redshade = 1*n/1000 # fancy colours

 blueshade = 1 - redshade

 return line(zip(ths, liks), rgbcolor = (redshade, 0, blueshade))

%hide

%auto

def cauchyFInverse(u):

 '''A function to evaluate the inverse CDF of a standard Cauchy distribution.

 Param u is the value to evaluate the inverse CDF at.'''

 return RR(tan(pi*(u-0.5)))

def cauchySample(n):

 '''A function to simulate samples from a standard Cauchy distribution.

 Param n is the number of samples to simulate.'''

 us = [random() for i in range(n)]

 return [cauchyFInverse(u) for u in us]

%hide

%auto

def cauchyRunningMeans(n):

 '''Function to give a list of n running means from standardCauchy.

 Param n is the number of running means to generate.'''

 sample = cauchySample(n)

 from pylab import cumsum

 csSample = list(cumsum(sample))

 samplesizes = range(1, n+1,1)

 return [RR(csSample[i])/samplesizes[i] for i in range(n)]

%hide

%auto

def twoRunningMeansPlot(nToPlot, iters):

 '''Function to return a graphics array containing plots of running means for

Bernoulli and Standard Cauchy.

 Param nToPlot is the number of running means to simulate for each iteration.

 Param iters is the number of iterations or sequences of running means or lines

on each plot to draw.

 Returns a graphics array object containing both plots with titles.'''

 xvalues = range(1, nToPlot+1,1)

 for i in range(iters):

 shade = 0.5*(iters - 1 - i)/iters # to get different colours for the lines

 bRunningMeans = bernoulliSecretThetaRunningMeans(nToPlot)

 cRunningMeans = cauchyRunningMeans(nToPlot)

 bPts = zip(xvalues, bRunningMeans)

 cPts = zip(xvalues, cRunningMeans)

 if (i < 1):

 p1 = line(bPts, rgbcolor = (shade, 0, 1))

 p2 = line(cPts, rgbcolor = (1-shade, 0, shade))

 cauchyTitleMax = max(cRunningMeans) # for placement of cauchy title

 else:

 p1 += line(bPts, rgbcolor = (shade, 0, 1))

 p2 += line(cPts, rgbcolor = (1-shade, 0, shade))

 if max(cRunningMeans) > cauchyTitleMax: cauchyTitleMax =

max(cRunningMeans)

 titleText1 = "Bernoulli running means" # make title text

 t1 = text(titleText1, (nToGenerate/2,1), rgbcolor='blue',fontsize=10)

 titleText2 = "Standard Cauchy running means" # make title text

 t2 = text(titleText2, (nToGenerate/2,ceil(cauchyTitleMax)+1),

rgbcolor='red',fontsize=10)

 return graphics_array((p1+t1,p2+t2))

%hide

%auto

def pmfPointMassPlot(theta):

 '''Returns a pmf plot for a point mass function with parameter theta.'''

 ptsize = 10

 linethick = 2

 fudgefactor = 0.07 # to fudge the bottom line drawing

 pmf = points((theta,1), rgbcolor="blue", pointsize=ptsize)

 pmf += line([(theta,0),(theta,1)], rgbcolor="blue", linestyle=':')

 pmf += points((theta,0), rgbcolor = "white", faceted = true, pointsize=ptsize)

 pmf += line([(min(theta-2,-2),0),(theta-0.05,0)],

rgbcolor="blue",thickness=linethick)

 pmf += line([(theta+.05,0),(theta+2,0)], rgbcolor="blue",thickness=linethick)

 pmf+= text("Point mass f", (theta,1.1), rgbcolor='blue',fontsize=10)

 pmf.axes_color('grey')

 return pmf

def cdfPointMassPlot(theta):

 '''Returns a cdf plot for a point mass function with parameter theta.'''

 ptsize = 10

 linethick = 2

 fudgefactor = 0.07 # to fudge the bottom line drawing

 cdf = line([(min(theta-2,-2),0),(theta-0.05,0)],

rgbcolor="blue",thickness=linethick) # padding

 cdf += points((theta,1), rgbcolor="blue", pointsize=ptsize)

 cdf += line([(theta,0),(theta,1)], rgbcolor="blue", linestyle=':')

 cdf += line([(theta,1),(theta+2,1)], rgbcolor="blue", thickness=linethick) #

padding

 cdf += points((theta,0), rgbcolor = "white", faceted = true, pointsize=ptsize)

 cdf+= text("Point mass F", (theta,1.1), rgbcolor='blue',fontsize=10)

 cdf.axes_color('grey')

 return cdf

%hide

%auto

def uniformFInverse(u, theta1, theta2):

 '''A function to evaluate the inverse CDF of a uniform(theta1, theta2)

distribution.

 u, u should be 0 <= u <= 1, is the value to evaluate the inverse CDF at.

 theta1, theta2, theta2 > theta1, are the uniform distribution parameters.'''

 return theta1 + (theta2 - theta1)*u

def uniformSample(n, theta1, theta2):

 '''A function to simulate samples from a uniform distribution.

 n > 0 is the number of samples to simulate.

 theta1, theta2 (theta2 > theta1) are the uniform distribution parameters.'''

 us = [random() for i in range(n)]

 return [uniformFInverse(u, theta1, theta2) for u in us]

%hide

%auto

def exponentialFInverse(u, lam):

 '''A function to evaluate the inverse CDF of a exponential distribution.

 u is the value to evaluate the inverse CDF at.

 lam is the exponential distribution parameter.'''

 # log without a base is the natural logarithm

 return (-1.0/lam)*log(1 - u)

def exponentialSample(n, lam):

 '''A function to simulate samples from an exponential distribution.

 n is the number of samples to simulate.

 lam is the exponential distribution parameter.'''

 us = [random() for i in range(n)]

 return [exponentialFInverse(u, lam) for u in us]

