
STAT221Week11

STAT 221 Week 11: Non-parametric Estimation

and Testing

STAT 221 2010 S1: Monte Carlo Methods

©2009 2010 Jennifer Harlow, Dominic Lee and Raazesh Sainudiin.

Creative Commons Attribution-Noncommercial-Share Alike 3.0

Inference and Estimation: The Big Picture

Non-parametric Estimation

Glivenko-Cantelli Theorem

Dvoretsky-Kiefer-Wolfowitz Inequality

Hypothesis Testing

Permutation Testing

Permutation Testing with Shells Data

Inference and Estimation: The Big Picture

The Big Picture is about inference and estimation, and especially inference and estimation problems

where computational techniques are helpful.

 Point estimation Set estimation

Parametric

MLE of finitely many

parameters

done

Confidence intervals,

via the central limit

theorem

Non-parametric

(infinite-dimensional parameter

space)

about to see ... about to see ...

One/Many-dimensional

Integrals

(finite-dimensional)

coming up ... coming up ...

So far we have seen parametric models, for example

X ernoulli(), 0]1 X2 Xn
IID
B [1

X xponential(), 0)

X ormal(), , 0)

In all these cases the parameter space (the space within which the parameter(s) can take values) is

finite dimensional:

for the Bernoulli, 0]

for the Exponential, 0)

for the Normal, , 0) , so ()

For parametric experiments, we can use the maximum likelihood principle and estimate the

parameters using the Maximum Likelihood Estimator (MLE).

Non-parametric estimation

Suppose we don't know what the distribution function (DF) is? We are not trying to estimate some

fixed but unknown parameter for some RV we are assuming to be Bernoulli(), we are trying to

estimate the DF itself. In real life, data does not come neatly labeled "I am a realisation of a

Bernoulli RV", or "I am a realisation of an Exponential RV": an important part of inference and

estimation is to make inferences about the DF itself from our observations.

Observations from some unknown process

Consider the following non-parametric product experiment:

X all DFs

We want to produce a point estimate for F , which is a allowed to be any DF ("lives in the space of

all DFs"), i.e.,

 is infinite dimensional

1 X2 Xn
IID
E (

1 X2 Xn
IID
N (

[1 1

(1

1 (1 2

1 X2 Xn
IID
F

F all DFs

all DFs

We have already seen an estimate, made using the data, of a distribution function: the empirical or

data-based distribution function (or empirical cumulative distribution function). This can be formalized

as the following process of adding indicator functions of the half-lines beginning at the data points

[X) X) X):

where

We can remind ourselves of this for a small sample of de oivre(k) RVs:

deMs=[randint(1,5) for i in range(20)] # randint can be used

to uniformly sample integers in a specified range

deMs

sortedUniqueValues = sorted(list(set(deMs)))

freqs = [deMs.count(i) for i in sortedUniqueValues]

from pylab import cumsum

cumFreqs = list(cumsum(freqs)) #

cumRelFreqs = [QQ(i)/QQ(len(deMs)) for i in cumFreqs] # get

cumulative relative frequencies as rationals

zip(sortedUniqueValues, cumRelFreqs)

show(ecdfPlot(deMs), figsize=[6,3]) # use hidden ecdfPlot

function to plot

1 + [2 + [n +

F (x) (x) n =
n

1
n

i=1

1[X +)
i

where 1 (x) = [X +)
i

:
1 X if i x

0 X if i x

M = 5

We can use the empirical cumulative distribution function F for our non-parametric estimate

because this kind of estimation is possible in infinite-dimensional contexts due to the following two

theorems:

Glivenko-Cantelli Theorem ("Fundamental Theorem of Statistics")

Dvoretsky-Kiefer-Wolfowitz (DKW) Inequality

Glivenko-Cantelli Theorem

Let X all DFs

and the empirical distribution function (EDF) is , then

sup

Remember that the EDF is a statistic of the data, a statistic is an RV, and (from our work the

convergence of random variables), means "converges in probability". The proof is beyond the

scope of this course, but we can gain an appreciation of what it means by looking at what happens to

the ECDF for n simulations from:

 and

Uniform(0) as n increases:

@interact

def _(n=(10,(0..200))):

 '''Interactive function to plot ecdf for obs from de Moirve

(5).'''

 if (n > 0):

 us = [randint(1,5) for i in range(n)]

 p=ecdfPlot(us) # use hidden ecdfPlot function to plot

 #p+=line([(-0.2,0),(0,0),(1,1),(1.2,1)],linestyle=':')

n

1 X2 Xn
IID
F

F (x) = (x) n :
n

1
n

i=1

1[X +)
i

x

F (x) (x)n ! F
P

0

P

de oivre(1 5 5 5 5 5) M 1 1 1 1

1

 p.show(figsize=[3,3])

@interact

def _(n=(10,(0..200))):

 '''Interactive function to plot ecdf for obs from

Uniform(0,1).'''

 if (n > 0):

 us = [random() for i in range(n)]

 p=ecdfPlot(us) # use hidden ecdfPlot function to plot

 p+=line([(-0.2,0),(0,0),(1,1),(1.2,1)],linestyle='-')

 p.show(figsize=[5,4],aspect_ratio=1)

It is clear, that as n increases, the ECDF F gets closer and closer to the true DF F ,

sup .

This will hold no matter what the (possibly unknown) F is. Thus, F is a point estimate of F .

We need to add the DKW Inequality be able to get confidence sets or a 'confidence band' that traps

F with high probability.

Dvoretsky-Kiefer-Wolfowitz (DKW) Inequality

Let X all DFs

and the empirical distribution function (EDF) is ,

then, for any ,

We can use this inequality to get a 1 confidence band about our point

estimate F of our possibly unknown F such that the F is 'trapped' by the band with probability at

least 1 .

and

n

x

F (x) (x)n ! F
P

0

n

1 X2 Xn
IID
F

F (x) = (x) n :
n

1
n

i=1

1[X +)
i

0

P (!2n) sup
x

F (x) (x) n ! F 2 exp 2

! C (x) = n : C (x) (x)
n

Cn

n

!

C (x)
n

C (x) n

 n

=

=

=

max F (x) n ! n 0

min F (x) n + n 1

1

2n
log

2

You try in class

Try this out for a simple sample from the Uniform(0), which you can generate using random.

First we will just make the point estimate for F , the EDF F

n=10

uniformSample = [random() for i in range(n)]

uniformSample

In one of the assessments, you did a question that took you through the steps for getting the list of

points that you would plot for an empirical distribution function (EDF). We will do exactly the same

thing here.

First we find the unique values in the sample, in order from smallest to largest, and get the frequency

with which each unique value occurs:

sortedUniqueValuesUniform = sorted(list(set(uniformSample)))

sortedUniqueValuesUniform

freqsUniform = [uniformSample.count(i) for i in

sortedUniqueValuesUniform]

freqsUniform

Then we accumulate the frequences to get the cumulative frequencies:

from pylab import cumsum

cumFreqsUniform = list(cumsum(freqsUniform)) # accumulate

cumFreqsUniform

And the the relative cumlative frequencies:

cumRelFreqsUniform = [QQ(i)/QQ(len(uniformSample)) for i in

cumFreqsUniform] # cumulative rel freqs as rationals

cumRelFreqsUniform

And finally zip these up with the sorted unique values to get a list of points we can plot:

ecdfPointsUniform = zip(sortedUniqueValuesUniform,

cumRelFreqsUniform)

ecdfPointsUniform

P C (x) (x) (x)
n

F Cn 1 !

1

n

You are not expected to know how to actually create the ECDF plot, so here is a function that you

can just use to do it:

%auto

ECDF plot given a list of points to plot

def ecdfPointsPlot(listOfPoints, colour='grey',

lines_only=False):

 '''Returns an empirical probability mass function plot from

a list of points to plot.

 Param listOfPoints is the list of points to plot.

 Param colour is used for plotting the lines, defaulting to

grey.

 Param lines_only controls wether only lines are plotted

(true) or points are added (false, the default value).

 Returns an ecdf plot graphic.'''

 ecdfP = point((0,0), pointsize="0")

 if not lines_only: ecdfP = point(listOfPoints, rgbcolor =

"red", faceted = false, pointsize="20")

 for k in range(len(listOfPoints)):

 x, kheight = listOfPoints[k] # unpack tuple

 previous_x = 0

 previous_height = 0

 if k > 0:

 previous_x, previous_height = listOfPoints[k-1] #

unpack previous tuple

 ecdfP += line([(previous_x, previous_height),(x,

previous_height)], rgbcolor=colour)

 ecdfP += line([(x, previous_height),(x, kheight)],

rgbcolor=colour, linestyle=":")

 if not lines_only:

 ecdfP += points((x, previous_height),rgbcolor =

"white", faceted = true, pointsize="20")

 # padding

 max_index = len(listOfPoints)-1

 ecdfP += line([(listOfPoints[0][0]-0.2,

0),(listOfPoints[0][0], 0)], rgbcolor=colour)

 ecdfP += line([(listOfPoints[max_index][0],

listOfPoints[max_index][1]),(listOfPoints[max_index][0]+0.2,

listOfPoints[max_index][1])],rgbcolor=colour)

 return ecdfP

This makes the plot of the F , the point estimate for F for these n 0 simulated samples.

show(ecdfPointsPlot(ecdfPointsUniform), figsize=[6,3])

10 = 1

What about adding those confidence bands? You will do essentially the same thing, but adjusting for

the required . First we need to decide on an and calculate the corresponding to this alpha.

Here is some of our code to calculate the corresponding to 05 (95% confidence bands),

using a hidden function calcEpsilon:

alpha = 0.05

epsilon = calcEpsilon(alpha, n)

epsilon

See if you can write your own code to do this calculation, . For completeness, do

the whole thing:assign the value 0.05 to a variable named alpha, and then use this and the variable

called n that we have already declared to calculate a value for . Call the variable to which you

assign the value for epsilon so that it replaces the value we calculated in the cell above (you

should get the same value as us!).

Now we need to use this to adjust the EDF plot. In the two cells below we first of all do the

adjustment for C (x) F (x) , and then use zip again to get the points to actually plot

for the lower boundary of the 95% confidence band.

Now we need to use this to adjust the EDF plot. In the two cells below we first of all do the

adjustment for , and then use zip again to get the points to actually plot

for the lower boundary of the 95% confidence band.

cumRelFreqsUniformLower = [max(crf - epsilon, 0) for crf in

cumRelFreqsUniform] # heights for the lower band

cumRelFreqsUniformLower

ecdfPointsUniformLower = zip(sortedUniqueValuesUniform,

cumRelFreqsUniformLower)

= 0

 n = 1

2n
log 2

n
= max n ! n 0

C (x) F (x) n = min n + n 1

ecdfPointsUniformLower

We carefully gave our ecdfPointsPlot function the flexibility to be able to plot bands, by having a

colour parameter (which defaults to 'grey') and a lines_only parameter (which defaults to false).

Here we can plot the lower bound of the confidence interval by by adding

ecdfPointsPlot(ecdfPointsUniformLower, colour='green', lines_only=true) to

the previous plot:

pointEstimate = ecdfPointsPlot(ecdfPointsUniform)

lowerBound = ecdfPointsPlot(ecdfPointsUniformLower,

colour='green', lines_only=true)

show(pointEstimate + lowerBound, figsize=[6,3])

Now you try writing the code to create the list of points needed for plotting the upper band

. You will need to first of all get the upper heights (call them say

cumRelFreqsUniformUpper) and then zip them up with the sortedUniqueValuesUniform to

get the points to plot.

Once you have got done this you can add them to the plot by altering the code below:

pointEstimate = ecdfPointsPlot(ecdfPointsUniform)

lowerBound =

ecdfPointsPlot(ecdfPointsUniformLower,colour='green',

lines_only=true)

show(pointEstimate + lowerBound, figsize=[6,3])

C (x) F (x) n = min n + n 1

If we are doing lots of collections of EDF points we may as well define a function to do it, rather than

repeating the same code again and again. We use an offset parameter to give us the flexibility to

use this to make points for confidence bands as well.

%auto

def makeEDFPoints(myDataList, offset=0):

 '''Make a list empirical distribution plotting points from

from a data list.

 Param myDataList, list of data to make ecdf from.

 Param offset is an offset to adjust the edf by, used for

doing confidence bands.

 Return list of tuples comprising (data value, cumulative

relative frequency(with offset)) ordered by data value.'''

 sortedUniqueValues = sorted(list(set(myDataList)))

 freqs = [myDataList.count(i) for i in sortedUniqueValues]

 from pylab import cumsum

 cumFreqs = list(cumsum(freqs))

 cumRelFreqs = [QQ(i)/QQ(len(myDataList)) for i in cumFreqs]

get cumulative relative frequencies as rationals

 if offset > 0: # an upper band

 cumRelFreqs = [min(i+offset ,1) for i in cumRelFreqs]

 if offset < 0: # a lower band

 cumRelFreqs = [max(i+offset, 0) for i in cumRelFreqs]

 return zip(sortedUniqueValues, cumRelFreqs)

(end of You Try)

Now we will try looking at the Earthquakes data we have used before to get a confidence band

around an EDF for that. We start by bringing in the data and using our own interQuakeTimes

function to calculate the times between earthquakes in seconds:

myFilename = 'earthquakes_1July2009_19Mar2010.csv'

myData = getData(myFilename,headerlines=1,sep=',')

interQuakesSecs = interQuakeTimes(myData, -50, -30, 150, 200)

len(interQuakesSecs)

There is a lot of data here, so let's use an interactive plot to do the non-parametric DF estimation just

for some of the last data:

@interact

def _(takeLast=(500,(0..min(len(interQuakesSecs),1999))), alpha=

(0.05)):

 '''Interactive function to plot the edf estimate and

confidence bands for inter earthquake times.'''

 if takeLast > 0 and alpha > 0 and alpha < 1:

 lastInterQuakesSecs =

interQuakesSecs[len(interQuakesSecs)-takeLast:len(interQuakesSecs)]

 interQuakePoints = makeEDFPoints(lastInterQuakesSecs)

 p=ecdfPointsPlot(interQuakePoints, lines_only=true)

 epQuakes = calcEpsilon(alpha, len(lastInterQuakesSecs))

 interQuakePointsLower =

makeEDFPoints(lastInterQuakesSecs, offset=-epQuakes)

 lowerQuakesBound =

ecdfPointsPlot(interQuakePointsLower, colour='green',

lines_only=true)

 interQuakePointsUpper =

makeEDFPoints(lastInterQuakesSecs, offset=epQuakes)

 upperQuakesBound =

ecdfPointsPlot(interQuakePointsUpper, colour='green',

lines_only=true)

 show(p + lowerQuakesBound + upperQuakesBound, figsize=

[6,3])

 else:

 print "check your input values"

What if we are not interested in estimating F itself, but we are interested in scientificially

investigating whether two distributions are the same. For example, perhaps, whether the distribution

of earthquake magnitudes was the same in April as it was in March. Then, we should attempt to

reject a falsifiable hypothesis ...

Hypothesis Testing

A formal definition of hypothesis testing is beyond our current scope. Here we will look in particular

at a non-parametric hypothesis test called a permutation test. First, a quick review:

The outcomes of a hypothesis test, in general, are:

'true state of nature' Do not reject H Reject H

H is true

OK Type I error

H is false Type II error OK

So, we want a small probability that we reject H when H is true (minimise Type I error). Similarly,

we want to minimise the probability that we fail to reject H when H is false (type II error).

The P-value is one way to conduct a desirable hypothesis test. The scale of the evidence against H

is stated in terms of the P-value. The following interpretation of P-values is commonly used:

P-value 0 01]: Very strong evidence against H

P-value 0 01 05]: Strong evidence against H

P-value 0 05 1]: Weak evidence against H

P-value 0 1]: Little or no evidence against H

Permutation Testing

A Permuation Test is a non-parametric exact method for testing whether two distributions are the

same based on samples from each of them.

What do we mean by "non-parametric exact"? It is non-parametric because we do not impose any

parametric assumptions. It is exact because it works for any sample size.

Formally, we suppose that:

X

are two sets of independent samples where the possibly unknown DFs .

(Notice that we have written it so that the subscripts on the Xs run from 1 to m .)

Now, consider the following hypothesis test:

H =

Our test statistic uses the observations in both both samples. We want a test statistic that is a

sensible one for the test, i.e., will be large when when F is 'too different' from G

So, let our test statistic T (X) be say:

0 0

0

0

0 0

0 0

0

(0 0

(0 0

(0 0

(1 0

1 X2 Xm
IID
F and Xm+1 Xm+2 Xm+n

IID
G

F all DFs G

+ n

0 : F = G versus H1 : F G

1 Xm Xm+1 Xm+n

(In words, we have chosen a test statistic that is the absolute value of the difference in the sample

means. Note the limitation of this: if F and G have the same mean but different variances, our

test statistic T will not be large.)

Then the idea of a permutation test is as follows:

Let N = be the pooled sample size and consider all N ! permutations of the observed

data x = x).

1.

For each permutation of the data compute the statistic T (permuted data x) and denote these

N ! values of T by t .

2.

Under H , each of the permutations of

x x) has the same joint probability -- f (x) is

the density function corresponding to F , f (x) F (x) G(x).

3.

Therefore, the transformation of the data by our statistic T also has the same probability over

the values of T , namely t . Let P be this permutation distribution under the null

hypothesis. P is discrete and uniform over t .

4.

Let t = (x) be the observed value of the test statistic.5.

Assuming we reject H when T is large, the P-value = 6.

Saying that P is discrete and uniform over t says that each possible permutation has

an equal probabability of occuring (under the null hypothesis). There are N ! possible permutations

and so the probability of any individual permutation is

This will make more sense if we look at some real data.

Permutation Testing with Shell Data

In 2008, Guo Yaozong and Chen Shun collected data on the diameters of coarse venus shells from

New Brighton beach for a course project. They recorded the diameters for two samples of shells,

one from each side of the New Brighton Pier. The data is given in the following two cells.

%auto

leftSide = [52, 54, 60, 60, 54, 47, 57, 58, 61, 57, 50, 60, 60,

60, 62, 44, 55, 58, 55, 60, 59, 65, 59, 63, 51, 61, 62, 61, 60,

61, 65, 43, 59, 58, 67, 56, 64, 47, 64, 60, 55, 58, 41, 53, 61,

60, 49, 48, 47, 42, 50, 58, 48, 59, 55, 59, 50, 47, 47, 33, 51,

61, 61, 52, 62, 64, 64, 47, 58, 58, 61, 50, 55, 47, 39, 59, 64,

63, 63, 62, 64, 61, 50, 62, 61, 65, 62, 66, 60, 59, 58, 58, 60,

59, 61, 55, 55, 62, 51, 61, 49, 52, 59, 60, 66, 50, 59, 64, 64,

T = (X) : T 1 Xm Xm+1 Xm+n = abs
1

m

m

i=1

Xi ! n

1
n

i=m+1

Xi

: m + n

obs : (1 x2 xm xm+1 xm+2 xm+n

1 t2 tN !

0 : X1 Xm Xm+1 Xm+n
IID
F = G

= (1 x2 xm xm+1 xm+2 xm+n (x) i=1
m+n

f i i

= G i = d i = d i

1 t2 tN ! 0

0 1 t2 tN !

obs : T obs

0 P 0 T tobs

0 1 t2 tN !

1

N !

P-value (t) = P0 T tobs =
1

N !
(t)

N !

j=1

1 j tobs

 1 j tobs =
1

0

if tj tobs

otherwise

62, 60, 65, 44, 58, 63]

%auto

rightSide = [58, 54, 60, 55, 56, 44, 60, 52, 57, 58, 61, 66,

56, 59, 49, 48, 69, 66, 49, 72, 49, 50, 59, 59, 59, 66, 62, 44,

49, 40, 59, 55, 61, 51, 62, 52, 63, 39, 63, 52, 62, 49, 48, 65,

68, 45, 63, 58, 55, 56, 55, 57, 34, 64, 66, 54, 65, 61, 56, 57,

59, 58, 62, 58, 40, 43, 62, 59, 64, 64, 65, 65, 59, 64, 63, 65,

62, 61, 47, 59, 63, 44, 43, 59, 67, 64, 60, 62, 64, 65, 59, 55,

38, 57, 61, 52, 61, 61, 60, 34, 62, 64, 58, 39, 63, 47, 55, 54,

48, 60, 55, 60, 65, 41, 61, 59, 65, 50, 54, 60, 48, 51, 68, 52,

51, 61, 57, 49, 51, 62, 63, 59, 62, 54, 59, 46, 64, 49, 61]

len(leftSide); len(rightSide)

(115 39)! is a very big number. Lets start small, and take a subselection of the shell data to

demonstrate the permutation test concept: the first two shells from the left of the pier and the first

one from the right:

rightSub = [52, 54]

leftSub = [58]

totalSample = rightSub + leftSub

totalSample

So now we are testing the hypotheses

With the test statistic

Our observed data x x) 52 4 8)

and the realisation of the test statistic for this data is

+ 1

H 0

H 1

:

:

X 1 X2 X3
IID
F = G

X = 1 X2
IID
F X3

IID
G F G

T (X) 1 X2 X3 =

=

abs
2

1
2

i=1

Xi ! 1

1
3

i=2+1

Xi

abs
2

X1 + X2
!

1

X3

obs = (1 x2 x3 = (5 5

t (!5) obs = abs
2

52 4+ 5
!

1

58
= abs 53 8! 5 = abs = 5

Now we need to tabulate the permutations and their probabilities. There are 3! = 6 possible

permutataions of three items. For larger samples, you could use the factorial function to

calculate this:

factorial(3)

We said that under the null hypotheses (the samples have the same DF) each permutation is equally

likely, so each permutation has probability .

There is a way in Python (the language under the hood in Sage), to get all the permuations of a

sequence:

list(permutations(totalSample))

We can tabulate the permuations, their probabilities, and the value of the test statistic that would be

associated with that permutation:

Permutation t P (T)

(52, 54, 58) 5

(52, 58, 54) 1

(54, 52, 58) 5

(54, 58, 52) 4

(58, 52, 54) 1

(58, 54, 52) 4

allPerms = list(permutations(totalSample))

for p in allPerms:

 t = abs((p[0] + p[1])/2 - p[2]/1)

 print p, " has t = ", t

To calculate the P-value for our test statistic t , we need to look at how many permutations

would give rise to test statistics that are at least as big, and add up their probabilities.

6

1

0 = t

6

1

6

1

6

1

6

1

6

1

6

1

obs = 5

We could write ourselves a little bit of code to do this in Sage. As you can see, we could easily

improve this to make it more flexible so that we could use it for different numbers of samples, but it

will do for now.

allPerms = list(permutations(totalSample))

pProb = 1/QQ(len(allPerms))

pValue = 0

tobs = 5

for p in allPerms:

 t = abs((p[0] + p[1])/2 - p[2]/1)

 if t >= tobs:

 pValue = pValue + pProb

pValue

This means that there is little or no evidence against the null hypothesis (that the shell diameter

observations are from the same DF).

Pooled sample size

The lowest possible P-value for a pooled sample of size N is . Can you see why this is?

So with our small sub-samples the smallest possible P-value would be 167. If we are looking

for P-value 01 to constitute very strong evidence against H , then we have to have a large

enough pooled sample for this to be possible. Since 5! 20, it is good to

have N

You try in class

Try copying and pasting our code and then adapting it to deal with a sub-sample (52, 54, 60) from the

left of the pier and (58, 54) from the right side of the pier.

rightSub = [52, 54, 60]

leftSub = [58, 54]

totalSample = rightSub + leftSub

totalSample

P-value =

=

=

=

=

P (T) 0 tobs

P (T) 0 5

6

1 +
6

1

6

2

3

1

0 333

= m + n
1

N !

6

1 0

0 0

= 5 4 3 2 1 = 1

5

You will have to think about:

calculating the value of the test statistic for the observed data and for all the permuations of the

total sample

calculating the probability of each permutation

calculating the P-value by adding the probabilities for the permutations with test statistics at

least as large as the observed value of the test statistic

(add more cells if you need them)

(end of You Try)

We can use the sample function and the Python method for making permutations to experiment with

a larger sample, say 5 of each.

n, m = 5, 5

leftSub = sample(leftSide, n)

rightSub = sample(rightSide,m)

totalSample = leftSub + rightSub

leftSub; rightSub; totalSample

tobs = abs(mean(leftSub) - mean(rightSub))

tobs

We have met sample briefly already: it is part of the Python random module and it does exactly

what you would expect from the name: it samples a specified number of elements randomly from a

sequence.

help(sample)

 docs-0.html

#define a helper function for calculating the tstat from a

permutation

def tForPerm(perm, samplesize1, samplesize2):

 '''Calculates the t statistic for a permutation of data

given the sample sizes to split the permuation into.

 Param perm is the permutation of data to be split into the

two samples.

 Param samplesize1, samplesize2 are the two sample sizes.

 Returns the absolute value of the difference in the means

of the two samples split out from perm.'''

 sample1 = [perm[i] for i in range(samplesize1)]

 sample2 = [perm[samplesize1+j] for j in range(samplesize2)]

 return abs(mean(sample1) - mean(sample2))

allPerms = list(permutations(totalSample))

pProb = 1/QQ(len(allPerms))

pValue = 0

tobs = abs(mean(leftSub) - mean(rightSub))

for p in allPerms:

 t = tForPerm(p, n, m)

 if t >= tobs:

 pValue = pValue + pProb

pValue

n+m

factorial(n+m) # how many permutations is it checking

As you can see from the length of time it takes to do the calculation for (5)! 0! permutations,

we will be here a long time if we try to this on all of both shell data sets. Monte Carlo methods to the

rescue: we can use Monte Carlo integration to calculate an approximate P-value, and this will be our

next topic.

You try

Try working out the P-value for a sub-sample (58, 63) from the left of the pier and (61) from the right

(the two last values in the left-side data set and the last value in the right-side one). Do it as you

would if given a similar question in the exam: you choose how much you want to use Sage to help

and how much you do just with pen and paper.

%hide

%auto

def safeInt(obj):

 '''make an Int out of a given object if possible.

 the int(...) function only works with strings containing

 characters that can be part of an int, such as '123',

 so we have to check that the string we pass in can be made

+ 5 = 1

 into an int, otherwise we will get an error when we try make

 a float out of a alpha-character string such as "AK".

 We use exception handling to do this '''

 try:

 retval = int(obj)

 except (ValueError, TypeError), diag:

 retval = str(diag)

 return retval

end of safeInt

def safeFloat(obj):

 '''make a float out of a given object if possible.

 the float(...) function only works with strings containing

 characters that can be part of a float, such as '123.45',

 so we have to check that the string we pass in can be made

 into a float, otherwise we will get an error when we try

make

 a float out of a alpha-character string such as "AK".

 We use exception handling to do this '''

 try:

 retval = float(obj)

 except (ValueError, TypeError), diag:

 retval = str(diag)

 return retval

end of safeFloat

import pylab

def getData(filename, headerlines=0, sep=None):

 '''Open the file filename and return a pylab.array of the

contents.

 Param filename is the filename to get the data from

 When used in the SAGE notebook interface, the data

file must be uploaded to the worksheet

 Param headerlines is the number of headerlines (omitted

from parsing, defaults to 0)

 Param sep is the separator for data within each line

(defaults to None)

 getData only deals with 2-d data.

 If used with a space separated txt file, getData will

reject any line with less than

 or more than the expected number of elements.

 This is because the pylab.array cannot be a

ragged array.'''

 try: # use try ... except ... to check that we can open the

file

 myFile = open(DATA+filename) # open the file - myFile

is now a file object

 expElements = None # a variable to hold the expected

number of elements in each line

 # while is another way of looping, until the condition

headerlines>0 is false

 while(headerlines>0):

 headers = myFile.readline() # read and discard each

headerline

 headerlines = headerlines - 1 # decrement

headerlines

 if headerlines == 0: # if we are on the last

headerline

 # assume last headerline gives column titles,

count them

 expElements = len(headers.split(sep))

 tempList = [] # start with an empty list

 for line in myFile: # this for loop reads each line of

the file one by one

 # split is a method that allows you to split a string

up into elements separated by sep

 rlist = line.split(sep)

 if expElements == None: # if the expElements is not

set yet

 expElements = len(rlist) # set it based on

elements in the first line

 if len(rlist) >= expElements: # check the line has

the expected number of elements

 tempList.append(rlist) # if so, add to the

retlist

 else:

 print 'Omitted line\n', line, '\nwhich does not

match column headers/first line'

 myFile.close() # don't have to here but good practice

 retArray = pylab.array(tempList) # make the list of

lists into an array

 return retArray # the function returns array it has

created

 except IOError, e: # error handling used if we could not

open the file

 print 'Error opening file. Error is ', e

 print 'Check file attached.'

 return

end of getData(...)

%hide

%auto

def makeQuakeTimes(myArray, minLat, maxLat, minLng, maxLng,

verbose=0):

 '''Return a list earthquake times as a Unix time number for

earthquakes occurring between specified latitudes and

longitudes.

 Param myArray is a pylab.array of the data as strings

 Param minLat, maxLat are the minimum and maximum latitudes

to include in the results

 Param minLng, maxLng are the minimum and maximum longitudes

to include in the results

 Latitudes are expected to be in the second column of the

array

 Longitudes are expected to be in the third column of the

array

 Date and time elements are expected to be in the 6th to

11th columns of the array

 makeQuakeTimes returns a list occurrence times between for

earthquakes a Unix time number

 Unix time starts at 1.1.1970; the Unix time number counts

seconds since 1.1.1970.'''

 import datetime

 import time

 try: # use try ... except ... to make sure we can do what

we want to do

 indexes = range(myArray.shape[0]) # using number of

rows in array

 times = [] # empty list

 for i in indexes:

 myTime = [] # empty list for time elements for row

 j = 5

 allOkay = true

 lat = safeFloat(myArray[i,1]) # get the latitude

and longitude for checking

 lng = safeFloat(myArray[i,2])

 if (isinstance(lat, float) & isinstance(lng,

float)): # if we got floats for lat and longitude

 if (lat >= minLat) & (lat <= maxLat) & (lng >=

minLng) & (lng <= maxLng):

 while (j < 10) and allOkay: # deal with

year, month, day, hour, minute for this row

 intTm = safeInt(myArray[i,j])

 if isinstance(intTm, int) and allOkay:

check we could turn time element into an int

 myTime.append(intTm)

 j+=1 # increment j

 else:

 allOkay = false # this means that

we will stop the loop for this row

 # deal with seconds and microseconds

 # j should be 10 if we have got through

year, month, day, hour, minute okay

 if j==10:

 seconds = safeFloat(myArray[i,j])

 if isinstance(seconds, float): # check

we could turn time element into a float

 myTime.append(int(seconds))

 microseconds = int((seconds -

int(seconds))*1000000)

 myTime.append(microseconds)

 else:

 allOkay = false

 if allOkay:

 yr, mth, dy, hr, mn, sec, msec =

tuple(myTime)

 tm = datetime.datetime(yr, mth, dy, hr,

mn, sec, msec)

times.append(time.mktime(tm.timetuple()))

 else: # omit and report on lines outside lat or

longitude range

 if verbose:

 print 'Omitted row with latitude', lat,

'longititude', lng

 else: # omit and report on any lines with latitude

or longitude we can't turn into floats

 if verbose:

 print 'Ignored row' , (i+1), ' error

diagnosis lat ', lat, 'long ', lng

 return times # the function returns the list of lists

it has created

 except TypeError, e: # error handling for type

incompatibilities

 print 'Error: Error is ', e

 return

end of makeQuakeTimes(...)

%hide

%auto

def interQuakeTimes(myArray, minLat, maxLat, minLng, maxLng):

 '''Return a list inter-earthquake times in seconds for

earthquakes occurring between specified latitudes and

longitudes.

 Param myArray is a pylab.array of the data as strings

 Param minLat, maxLat are the minimum and maximum latitudes

to include in the results

 Param minLng, maxLng are the minimum and maximum longitudes

to include in the results

 Latitudes are expected to be in the second column of the

array

 Longitudes are expected to be in the third column of the

array

 Date and time elements are expected to be in the 6th to

11th columns of the array

 interQuakeTimes returns a list of inter-quake times in

seconds.'''

 quakeTimes = makeQuakeTimes(myArray, minLat, maxLat,

minLng, maxLng)

 retList = []

 if len(quakeTimes) > 1:

 retList = [quakeTimes[i]-quakeTimes[i-1] for i in

range(1,len(quakeTimes),1)]

 return retList

%hide

%auto

def makeEMFHidden(myDataList):

 '''Make an empirical mass function from a data list.

 Param myDataList, list of data to make emf from.

 Return list of tuples comprising (data value, relative

frequency) ordered by data value.'''

 sortedUniqueValues = sorted(list(set(myDataList)))

 freqs = [myDataList.count(i) for i in sortedUniqueValues]

 relFreqs = [QQ(fr)/QQ(len(myDataList)) for fr in freqs] #

use a list comprehension

 return zip(sortedUniqueValues, relFreqs)

from pylab import array

def makeEDFHidden(myDataList, offset=0):

 '''Make an empirical distribution function from a data list.

 Param myDataList, list of data to make ecdf from.

 Param offset is an offset to adjust the edf by, used for

doing confidence bands.

 Return list of tuples comprising (data value, cumulative

relative frequency) ordered by data value.'''

 sortedUniqueValues = sorted(list(set(myDataList)))

 freqs = [myDataList.count(i) for i in sortedUniqueValues]

 from pylab import cumsum

 cumFreqs = list(cumsum(freqs)) #

 cumRelFreqs = [QQ(i)/QQ(len(myDataList)) for i in cumFreqs]

get cumulative relative frequencies as rationals

 if offset > 0: # an upper band

 cumRelFreqs = [min(i ,1) for i in cumRelFreqs] # use a

list comprehension

 if offset < 0: # a lower band

 cumRelFreqs = [max(i, 0) for i in cumFreqs] # use a

list comprehension

 return zip(sortedUniqueValues, cumRelFreqs)

EPMF plot

def epmfPlot(samples):

 '''Returns an empirical probability mass function plot from

samples data.'''

 epmf_pairs = makeEMFHidden(samples)

 epmf = point(epmf_pairs, rgbcolor = "blue", pointsize="20")

 for k in epmf_pairs: # for each tuple in the list

 kkey, kheight = k # unpack tuple

 epmf += line([(kkey, 0),(kkey, kheight)],

rgbcolor="blue", linestyle=":")

 # padding

 epmf += point((0,1), rgbcolor="black", pointsize="0")

 return epmf

ECDF plot

def ecdfPlot(samples):

 '''Returns an empirical probability mass function plot from

samples data.'''

 ecdf_pairs = makeEDFHidden(samples)

 ecdf = point(ecdf_pairs, rgbcolor = "red", faceted = false,

pointsize="20")

 for k in range(len(ecdf_pairs)):

 x, kheight = ecdf_pairs[k] # unpack tuple

 previous_x = 0

 previous_height = 0

 if k > 0:

 previous_x, previous_height = ecdf_pairs[k-1] #

unpack previous tuple

 ecdf += line([(previous_x, previous_height),(x,

previous_height)], rgbcolor="grey")

 ecdf += points((x, previous_height),rgbcolor = "white",

faceted = true, pointsize="20")

 ecdf += line([(x, previous_height),(x, kheight)],

rgbcolor="grey", linestyle=":")

 # padding

 ecdf += line([(ecdf_pairs[0][0]-0.2, 0),(ecdf_pairs[0][0],

0)], rgbcolor="grey")

 max_index = len(ecdf_pairs)-1

 ecdf += line([(ecdf_pairs[max_index][0],

ecdf_pairs[max_index][1]),(ecdf_pairs[max_index][0]+0.2,

ecdf_pairs[max_index][1])],rgbcolor="grey")

 return ecdf

%hide

%auto

def calcEpsilon(alphaE, nE):

 '''Return confidence band epsilon calculated from

parameters alphaE > 0 and nE > 0.'''

 return sqrt(1/(2*nE)*log(2/alphaE))

