Density Estimation:

Random variable \(X \) has density \(f \) on \(\mathbb{R}^d \) when

\[
P\{x \in A\} = \int_A f(x) \, dx \quad \text{for all } A \in \mathcal{B}(\mathbb{R}^d), \text{ Borel sets in } \mathbb{R}^d
\]

[i.e., \(P\{x \in A\} = f(x) \cdot \text{Vol}(A) \) if \(A = \{x' \in \mathbb{R}^d : d(x', x) \leq r\} \) for small \(r > 0 \).

Purpose

Estimate unknown density \(f \) from an i.i.d. sample \(X_1, X_2, \ldots, X_n \) drawn from \(f \).

Density estimate

\[
f_n(x) = f_n(x; x_1, \ldots, x_n) : (\mathbb{R}^d)^{n+1} \to \mathbb{R}.
\]

Quality of \(f_n \) measured by T.V. distance

\[
\text{error} = \sup_{B \in \mathcal{B}(\mathbb{R}^d)} \int_B |f_n - f| \, d\lambda
\]

If this is \(\leq \varepsilon \) then all probabilities will be estimated with errors not exceeding \(\varepsilon \).

The distance between two densities \(f \) and \(g \) can be measured by their \(L_1 \) distance \(\|f - g\|_1 \).

Thm 1 (Scheffe's Identity): Let \(f \) and \(g \) be two functions defined on \(\mathbb{R}^d \) satisfying \(\int f = \int g = 1 \).

\[
\sup_{B \in \mathcal{B}(\mathbb{R}^d)} \int_B |f - g| \, d\lambda = \frac{1}{2} \int |f - g| \, d\lambda
\]
Proof
\[\sup_{B \in \mathcal{B}(\mathbb{R}^d)} |f - g| = \int_{\mathbb{R}^d} (f - g) = \int_{\mathbb{R}^d} (g - f) = \frac{1}{2} \int |f - g| \]

\[\Rightarrow 0 \leq \frac{1}{2} \int |f - g| \leq 1, \quad \int |f - g| < 0.02 \]

\[\Rightarrow \text{differences in probabilities are at most } \frac{1}{2} \times 0.02 = 0.01. \]

3) Scale invariance
\[\sup_{B} |P\{X \in B\} - P\{Y \in B\}| = \sup_{B} \left| P\{T(X) \in T(B)\} - P\{T(Y) \in T(B)\} \right| \]
if \(T \) is a bijection and \(\{T(B) : B \in \mathcal{B}(\mathbb{R}^d)\} = \mathcal{B}(T(\mathbb{R}^d)) \).

4) TV distance decreases on any Borel measurable mapping \(T : \mathbb{R}^d \rightarrow \mathbb{S} \subseteq \mathbb{R}^k \), i.e., for any R.V.s \(X \) and \(Y \) on \(\mathcal{B}(\mathbb{R}^d) \)
\[\sup_{A \in \mathcal{B}(\mathbb{R}^d)} \left| P\{X \in A\} - P\{Y \in A\} \right| \leq \sup_{A \in \mathcal{B}(\mathbb{R}^d)} \left| P\{T(X) \in A\} - P\{T(Y) \in A\} \right| \]

Proof:
\[\sup_{A \in \mathcal{B}(\mathbb{R}^k)} \left| P\{T(X) \in A\} - P\{T(Y) \in A\} \right| \]
\[= \sup_{A \in \mathcal{B}(\mathbb{R}^k)} \left| P\{X \in T^{-1}(A)\} - P\{Y \in T^{-1}(A)\} \right| \]
\[\leq \sup_{A \in \mathcal{B}(\mathbb{R}^k)} \left| P\{X \in A\} - P\{Y \in A\} \right| \]

Since \(\{T^{-1}(A) : A \in \mathcal{B}(\mathbb{R}^k)\} \subseteq \mathcal{B}(\mathbb{R}^d) \). \(\square \)
Minimum Distance Estimate

Setting: \(X_1, \ldots, X_n \overset{iid}{\sim} f \)

Objective: non-parametric density estimate \(f_n \) from \(X_1, \ldots, X_n \) with universal performance guarantees (\(S[\hat{f}_n - f] \) is small for any \(f \in \mathbb{L}_1 \) as \(n \) gets large).

Consider the simpler problem of choosing between two densities \(f_n \) and \(g_n \), i.e., construct \(\hat{f}_n \) such that,

\[
\int |\hat{f}_n - f| \leq \min \left(S[f_n - f], S[g_n - f] \right)
\]

Ideas:

- Use empirical measure \(M_n(A) = \frac{1}{n} \sum_{i=1}^{n} 1_{[X_i \in A]} = \frac{\# \text{ of data points in } A}{n} \)
- A Schéffe set of ordered pair \((f_n, g_n) \) is:
 \[
 A = A(f_n, g_n) = \{ x : f_n(x) > g_n(x) \}
 \]

Observe:

If \(S[f_n - g_n] = 1 \) then by Schéffe's identity,

\[
\int |f_n - g_n| = 2 \sum_{A}(f_n - g_n) = 2 S[f_n - g_n]_{A}
\]

to get Schéffe Estimate

\[
\hat{f}_n = \begin{cases}
 f_n & \text{if } |S[A]_{f_n - M_n(A)}| < |S[A]_{g_n - M_n(A)}| \\
 g_n & \text{otherwise}
\end{cases}
\]

Eq. 1: Given data: \(x_1, x_2, \ldots, x_n \), \(\mu_n(A) = 8/10 \), \(S[f_n] = 7/10 \), \(S[g_n] = 4/10 \).

Eq. 2: different data \(x_1, x_2, \ldots, x_n \) from \(f \)

If \(\mu_n(A) = 5/10 \), then \(f_n^* = g_n \).
Thm (DL 6.1) Let \(f_n \) and \(g_n \) be two density estimates with \(\int f_n = \int g_n = 1 \). For the Scheffé estimate \(f_n^* \), we have

\[
\int |f_n^* - f| \leq 3 \min (\int |f_n - f|, \int |g_n - f|) + 4 \max_{A \in \mathcal{A}} \left(\int_{\mathcal{A}} |f - \mathcal{M}_n(A)| \right),
\]

where \(\mathcal{A} = \{ \{f_n > g_n\}, \{g_n > f_n\} \} \).

Proof: (Let's prove a slightly more general Thm.)

Note: \(f_n^* \) has an error that is within \(E_n = 4 \sup_{A \in \mathcal{A}} \left(\int_{\mathcal{A}} |f - \mathcal{M}_n(A)| \right) \) of 3 times the best possible error among \(f_n \) and \(g_n \).

Now consider the problem of selecting from \(k \) densities. (Our main problem here)

\(f_{n_i}, 1 \leq i \leq k, \) \(\int f_{n_i} = 1 \) for all \(i \)

Let \(A_{ij} \) denote the Scheffé set \(A_{ij} = A(f_{n_i}, f_{n_j}) \)

\(\{ x : f_{n_i}(x) > f_{n_j}(x) \} \).

Let the Yatsaras class of such Scheffé sets be:

\(\mathcal{A} = \{ A_{ij}, A_{ji} : 1 \leq i < j \leq k \} \)

The Minimum Distance Estimate (MDE) \(\psi_n \) is the \(f_{n_i} \) of smallest index that minimizes

\[
\Delta_i = \sup_{A \in \mathcal{A}} \left(\int_{\mathcal{A}} |f_{n_i} - \mathcal{M}_n(A)| \right)
\]

\(\psi_n = f_{n_i^*}, \quad i^* = \min \{ \arg \min_{1 \leq i \leq k} \Delta_i \} \).
Thm 2 (Universal Performance Bound of MDE) [DL 6.3]

For the MDE \(\psi_n \), we have (for each \(n \))

\[
\int |\psi_n - f| \leq 3 \min_i \int |f_{n_i} - f| + 4 \Delta, \quad \Delta = \sup_{A \in \mathcal{F}} |S_f - M_A|
\]

Proof:

Let \(\psi_n = f_{n_i} \) and let \(f_{n_j} = \arg \min_{1 \leq k \leq n} \int |f_{n_k} - f| \).

Assume \(j \neq i \), then

\[
(\#) \quad \int |\psi_n - f| = \int |f_{n_i} - f| \leq \int |f_{n_j} - f| + \int |f_{n_i} - f_{n_j}| \quad (\text{of L.1})
\]

Now, assuming WLOG \(i < j \):

\[
\int |f_{n_i} - f_{n_j}| = 2 \sup_{A \in \mathcal{A}} \left| \int f_{n_i} - f_{n_j} \right| \quad (\text{by Sheffe's identity})
\]

\[
\leq 2 \sup_{A \in \mathcal{A}} \left| \int f_{n_i} - f_{n_j} \right| \quad (\text{by Thm 1})
\]

\[
\leq 2 \sup_{A \in \mathcal{A}} \left| \int f_{n_i} - M_A \right| + 2 \sup_{A \in \mathcal{A}} \left| \int f_{n_j} - M_A \right| \quad (\psi_n = f_{n_i} \text{ by assumption})
\]

\[
\leq 4 \sup_{A \in \mathcal{A}} \left| \int f_{n_j} - M_A \right| + 4 \sup_{A \in \mathcal{A}} \left| \int f_{n_i} - M_A \right| \quad (\Delta \leq \Delta_i)
\]

\[
\leq 4 \sup_{B \in \mathcal{B}(R^n)} \left| \int_{B} f_{n_j} - f_{B} \right| + 4 \Delta \quad (\Delta \leq \Delta_i)
\]

\[
(\ast \ast) \quad \int |f_{n_j} - f| \leq 4 \Delta
\]

\[
\int |\psi_n - f| = 3 \int |f_{n_i} - f| + 4 \Delta = 3 \min_i \int |f_{n_i} - f| + 4 \Delta
\]
Thus to obtain error bounds for MDE we need bounds on $\Delta = \sup_{A \in \mathcal{A}} |\mu(A) - \mu_n(A)|$ no matter what $f \in L_1$ is generating data x_1, \ldots, x_n.

We are interested in Δ, the maximal deviation of μ_n from μ over \mathcal{A}:

$$g(x_1, \ldots, x_n) = \Delta = \sup_{A \in \mathcal{A}} |\mu_n(A) - \mu(A)|$$

We will first show (using concentration $\neq \delta$) that

$$P \{ |g - Eg| \geq \varepsilon \} \leq 2e^{-2n \varepsilon^2}$$

and thus the maximal deviation is sharply concentrated around its mean and then we will show (using uniform deviation $\neq \delta$) that this mean ($Eg = E\Delta$) can be bounded using combinatorial characteristics of \mathcal{A}.

Using concentration \(\leq \delta \), i.e., \(\leq \delta \) of the form:

\[
P\{ |X_n - EX_n| \geq \delta \} \leq \frac{\delta^{nc}}{c}
\]

Recall Markov's \(\leq \) for any non-negative RV \(X \) and any \(t > 0 \):

\[
P\{ X \geq t \} \leq \frac{EX}{t}
\]

Proof:

\[
EX = \int_0^\infty x dF(x) = \int_0^t x dF(x) + \int_t^\infty x dF(x) \geq \int_t^\infty x dF(x) = t \int_t^\infty df(x) = t P\{ X > t \}
\]

Let \(S \in (0, \infty) \), then for any RV \(X \) and any \(t > 0 \), by Markov's \(\leq \),

\[
P\{ X \geq t \} = P\{ e^{sx} \geq e^{st} \} \leq E\{ e^{sx} \}
\]

In Chernov's bounding method we find \(\leq \) a \(s > 0 \) that minimizes \(E\{ e^{sx} \} / e^{st} \), the upper bound.

If \(X_1, X_2, \ldots, X_n \overset{iid}{\rightleftharpoons} X \), and \(S_n = \sum_{i=1}^n X_i \), we get

\[
P\{ S_n - nEX_n \geq t \} \leq e^{-st} E\left\{ \exp\left(s \sum_{i=1}^n (X_i - EX_i) \right) \right\}
\]

\[
= e^{-st} \prod_{i=1}^n E\{ e^{s(X_i - EX_i)} \} \quad \text{(by independent)}
\]

So finding tight bounds \(\leq \) good upper bounds for MGF of \(X_i - EX_i \).

Lemma 4 (upper bounding the MGF of a bounded RV.)

Let \(X \) be RV with \(EX = 0 \), \(a \leq X \leq b \).

Then for \(s > 0 \):

\[
E\{ e^{sx} \} \leq e^{s^2(b-a)^2 / 8s}
\]
proof: by convexity

\[e^{x} \leq \frac{x-a}{b-a} e^{b} + \frac{b-x}{b-a} e^{a} \]

for \(a \leq x \leq b \).

Since \(E(x) = 0 \),

\[E \{ e^{X} \} \leq E \{ \frac{X-a}{b-a} e^{b} + \frac{b-x}{b-a} e^{a} \} = \left(\frac{a}{b-a} \right) e^{b} + \left(\frac{b}{b-a} \right) e^{a} \]

\[= p e^{b} + (1-p) e^{a} = \left(\frac{p e^{b} + (1-p) e^{a}}{e^{a}} \right) e^{a} \]

\[= (1-p + p e^{(b-a)}) e^{a} = (1-p + p e^{(b-a)}) e^{a} \]

\[\frac{d}{du} e^{u} = \phi(u) \]

where \(u = s(b-a) \) and \(\phi(u) = -p u + \log(1-p + p e^{u}) \)

now,

\[\phi'(u) = \frac{1}{du} \phi(u) = -p + \frac{b e^{u}}{1 - p + p e^{u}} = -p + \frac{p}{p + (1-p) e^{u}} \]

Thus,

\[\phi'(0) = \phi'(0) = 0 \]

and

\[\phi''(u) = \frac{p (1-p) e^{-u}}{(1 - p + p e^{u})^2} \leq \frac{1}{4} \]

since \(0 < p < 1 \) and \(e^{u} < 1 \).

Then, by Taylor's theorem, for some \(\xi \in [0, u] \)

\[\phi(u) = \phi(0) + u \phi'(0) + \frac{u^2}{2} \phi''(\xi) \leq \frac{u^2}{2} \leq \frac{s^2(b-a)^2}{2} \]

Thm 5 (Hoeffding's #:) Let \(X_1, \ldots, X_n \) be indep. RVs such that \(X_i \in [a_i, b_i] \) w.p. 1. Then for any \(t > 0 \),

\[P \{ S_n - ES_n \geq t \} \leq e^{-2t^2/\sum_{i=1}^{n} (b_i - a_i)^2} \]

and

\[P \{ S_n - ES_n \leq -t \} \leq e^{-2t^2/\sum_{i=1}^{n} (b_i - a_i)^2} \]
From Chernov's bounding method, for any $s > 0$, $t > 0$

$$\Pr \{ S_n - E S_n \geq t \} \leq e^{-st} \prod_{i=1}^{n} E \{ e^{s(X_i - E X_i)} \}$$

$$\leq e^{-st} \prod_{i=1}^{n} e^{s^2(b_i - a_i)^2/8}$$

by Lemma 4.

$$= e^{-st} \frac{s^2 \sum_{i=1}^{n} (b_i - a_i)^2}{8}$$

by choosing

$$s = \arg \min_{s} \left(-st + \frac{s^2 \sum_{i=1}^{n} (b_i - a_i)^2}{8} \right)$$

$$= 4t \left(\sum_{i=1}^{n} (b_i - a_i)^2 \right)$$

Similarly for

$$\Pr \{ S_n - E S_n \leq -t \} = \Pr \{ E S_n - S_n \geq t \}$$

Example

$$X_1, \ldots, X_n \text{ i.i.d. Bernoulli (p)} \Rightarrow \Pr \{ S_n/n - p \geq \varepsilon \} \leq e^{-2n \varepsilon^2}$$

Lemma 5 (Expected Maximal Deviation ≠)

Let $\sigma > 0$, $n \geq 2$, and let Y_1, \ldots, Y_n be real-valued RVs such that for all $s > 0$ and $1 \leq i \leq n$, $E \{ e^{s Y_i} \} \leq e^{s \sigma^2/2}$

Then

$$E \{ \max_{i \leq n} Y_i \} \leq \sigma \sqrt{2 \ln n}$$

If, additionally, $E \{ e^{s (-Y_i)} \} \leq e^{s \sigma^2/2}$ for every $s > 0$ and $1 \leq i \leq n$, then for any $n \geq 1$,

$$E \{ \max_{i \leq n} |Y_i| \} \leq \sigma \sqrt{2 \ln(2n)}$$

Proof: First let's recall Jensen's

$$\int g \text{ is convex } \Rightarrow E g(X) \geq g(E X)$$

$$g \text{ is concave } \Rightarrow E g(X) \leq g(E X)$$
Let \(L(x) = ax + bx \) be a line tangent to \(g(x) \) at the point \(EX \).

Since \(g \) is convex it lies above \(L(x) \), so
\[
E g(x) \geq E L(x) = E(a + bX) = a + bEX = \underbrace{L(EX)}_{=g(EX)}
\]

Proof

By Jensen's inequality and convexity of \(\exp(x) \), for all \(s > 0 \),
\[
E \{ \max_{i \leq n} Y_i \} \leq E \{ e^{s \max_{i \leq n} Y_i} \} \\
= E \{ \max_{i \leq n} e^{sY_i} \} \\
\leq \sum_{i=1}^{n} E \{ e^{sY_i} \} \\
\leq n \cdot e^{s \cdot \frac{\sigma^2}{2}}
\]

Thus,
\[
E \{ \max_{i \leq n} Y_i \} \leq \frac{\ln n}{s} + \frac{s \cdot \sigma^2}{2}
\]

for any \(s > 0 \), and taking
\[
s = \text{argmin}_s \frac{\ln n}{s} + \frac{s \cdot \sigma^2}{2} = \sqrt{2 \ln n / \sigma^2}
\]
gives
\[
E \{ \max_{i \leq n} Y_i \} \leq \frac{\ln n}{\sqrt{2 \ln n / \sigma^2}} + \frac{2 \ln n \cdot \sigma^2}{2 \cdot 2 \ln n} = \frac{2 \ln n \sigma^2 + (\ln n)^2 \sigma^2}{2 \cdot 2 \ln n} = \frac{2 \ln n \sigma^2}{2 \cdot 2 \ln n} = \sigma \sqrt{2 \ln n} \quad (\star)
\]

Finally, \(\max_{i \leq n} |Y_i| = \max (Y_1, -Y_1, Y_2, -Y_2, \ldots, Y_n, -Y_n) \)

and applying (\star) to \(2n \) terms we get
\[
E \{ \max_{i \leq n} |Y_i| \} \leq \sigma \sqrt{2 \ln (2n)} \quad (\star\star)
\]
Lemma 7: [Extension of lemma 4]

Let V and Z be RVs such that $E\{V \mid Z\} = 0$ with prob. 1, and for some function h and constant $c > 0$:

$$h(Z) \leq V \leq h(Z) + c.$$

Then for all $s > 0$:

$$E \{ e^{sV} \mid Z \} \leq e^{s^2 c^2 / 8}.$$

Now, we get to an extension of tboofding's \neq.

Thm 8 (Bounded Difference \neq)

Let A be some set and suppose the function $g : A^n \to \mathbb{R}$ satisfies the bounded difference assumption

$$\sup_{x_i, \ldots, x_n, x'_i \in A} \left| g(x_1, \ldots, x_n) - g(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) \right| \leq c_i,$$

$$1 \leq i \leq n.$$

(i.e., changing the i^{th} variable of g while fixing all others does not change the value of g by more than c_i)

and let X_1, \ldots, X_n be independent RVs, taking values in A.

Then, for all $t > 0$,

$$P \{ g(X_1, \ldots, X_n) - Eg(X_1, \ldots, X_n) \geq t \} \leq e^{-2t^2 / \sum_{i=1}^{n} c_i^2},$$

and

$$P \{ Eg(X_1, \ldots, X_n) - g(X_1, \ldots, X_n) \geq t \} \leq e^{-2t^2 / \sum_{i=1}^{n} c_i^2}.$$

Proof [by martingale technique of McDiarmid (1989)]
Proof

Let $V = g(X, \ldots, X_n) - E g(X, \ldots, X_n) = y - E g$

Let $V_i = E \{ g \mid X, \ldots, X_i \} - E \{ g \mid X, \ldots, X_{i-1} \}$, $i = 1, \ldots, n$

Then $V = \sum_{i=1}^{n} V_i$.

Let $H_i(x, \ldots, X_i) = E \{ g(x, \ldots, X_n) \mid x, \ldots, X_i \}$

and F_i be the distribution of X_i for $i = 1, \ldots, n$

Then, $V_i = H_i(x, \ldots, X_i) - \int H_i(x, \ldots, X_{i-1}, x) F_i(dx)$

Let $W_i = \sup_u \left(H_i(x, \ldots, X_{i-1}, u) - \int H_i(x, \ldots, X_{i-1}, x) F_i(dx) \right)$

and $Z_i = \inf_v \left(H_i(x, \ldots, X_{i-1}, v) - \int H_i(x, \ldots, X_{i-1}, x) F_i(dx) \right)$

then $Z_i \leq V_i \leq W_i$ for $i = 1, \ldots, n$ with prob 1

and by bounded difference assumption:

$W_i - Z_i = \sup_u \sup_v \left(H_i(x, \ldots, X_{i-1}, u) - H_i(x, \ldots, X_{i-1}, v) \right) \leq c_i$

Therefore by lemma 7, for $i = 1, \ldots, n$:

$E \{ e^{SV_i} \mid X, \ldots, X_{i-1} \} \leq e^{S^2 c_i^2 / 8}$

Using the fact that if X, Y are arbitrary bounded RVs then $E [XY] = E[E[XY|Y]] = E[Y E[X|Y]]$

and Chernov's bounding method; for any $s > 0$:

$P \{ g - E g > t \} = P \{ V > t \} = P \{ \sum_{i=1}^{n} V_i > t \}$

$\leq E \{ e^{S \sum_{i=1}^{n} V_i} \} = E \{ e^{S \sum_{i=1}^{n} V_i / E[V]} \}$

$= E \{ e^{S \sum_{i=1}^{n} V_i} \} E \{ e^{S V_n \mid X, \ldots, X_n} \}$

$\leq e^{S^2 c_i^2 / 8}$
\[
\begin{align*}
\leq \ e^{-\frac{s^2 c^2}{18} E \left\{ e^{s \sum_{i=1}^{n} \xi_i^2} \right\} / e^{st}}.
\end{align*}
\]

(by repeating \(n\) times)

\[
\leq \ e^{-st \ e^{s \sum_{i=1}^{n} \xi_i^2 / 8}}
\]

Now choosing \(s = 4t / \sum_{i=1}^{n} \xi_i^2\) gives

\[
P \{ g - \mathbb{E} g \geq t \} \leq e^{-\frac{4t^2}{\sum_{i=1}^{n} \xi_i^2} + \left(\frac{2 \sum_{i=1}^{n} \xi_i^2}{\left(\sum_{i=1}^{n} \xi_i^2 \right)^2} \right) \sum_{i=1}^{n} \xi_i^2 \} = e^{-2t^2 / \sum_{i=1}^{n} \xi_i^2}
\]

\[
P \{ \mathbb{E} g - g \geq t \} \leq e^{-2t^2 / \sum_{i=1}^{n} \xi_i^2} \]

is proved similarly.

Recall our main reason for tour of concentration is

\[\text{Markov's} \quad \rightarrow \quad \text{Chernov's bounding method} \quad \rightarrow \quad \text{Hoeffding's} \quad \rightarrow \quad \text{Upper bounding MGF of bounded RV (Lemma 4)} \quad \rightarrow \quad \text{combined lemma?} \quad \rightarrow \quad \text{Expected Maximal Deviation} \quad \rightarrow \quad \text{Jensen's?}\]

is to upper bound \(\Delta = g(X_1, \ldots, X_n) = \sup_{A \in \mathcal{A}} |\mu(A) - \mathbb{E}g(A)| \)

where \(X_1, \ldots, X_n\) are iid RVs taking values in \(X\),
\(\mathcal{A}\) is a collection of subsets of \(X\) with \(\mu(A) = \mathbb{P}\{X_i \in A\}\) and \(\mathbb{E}g(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{X_i \in A\}}\) for any \(A \in \mathcal{A}\).

Regardless of the nature of \(\mathcal{A}\), by changing one \(X_i\), \(g\) can change by at most \(\frac{1}{n}\).

Therefore the bounded difference is:
\[
P\{ \sup_{A \in \mathcal{A}} |M_n(A) - M_n'(A)| - E\{ \sup_{A \in \mathcal{A}} |M_n(A) - M_n'(A)| \} > t \} \\
\leq 2e^{-\frac{2t^2}{\sum_{i=1}^{n} \sigma_i^2}} = 2e^{-\frac{2t^2}{\sigma^2}} = 2e^{-\frac{2nt^2}}
\]
for any \(n \) and \(t > 0 \).

This shows that for any class \(\mathcal{A} \), the maximal deviation of empirical measure \(M_n \) from true measure \(\mu \) is sharply concentrated around its expected value. (\(\Delta=g \to 0 \) in probability if and only if \(g \to 0 \) almost surely). Thus, we only worry about bounding the expected value of the maximal deviation, i.e.

\[
E\{ \sup_{A \in \mathcal{A}} |M_n(A) - M_n'(A)| \}^2
\]

To do this in generality, we need uniform deviation \(\Delta \)

but when \(|\mathcal{A}| < \infty \) as in our Thm 2's MDE setting of selecting from \(k \) densities \(f_{ni}, 1 \leq i \leq k, \sum_{i=1}^{k} f_{ni} = 1 \)

for all \(i \), \(\mathcal{A} = \{ A_{ij}, A_{ji}: 1 \leq i < j \leq k \} \) made up of Scheffe sets \(A_{ij} = \{ x: f_{ni}(x) > f_{nj}(x) \} \). Then all we need are lemmas 4 and 6.

Lemma 9: If \(\mathcal{A} = \{ A_{ij} \}; i, j \in \{1, \ldots, k\}, \) with \(k < \infty \)

\[\text{Then } E \Delta = E \left\{ \sup_{A \in \mathcal{A}} |M_n(A) - M_n'(A)| \right\} \leq \sqrt{\frac{\ln(2k^2)}{2n}} \]
proof. Note that \(A = \{ A_{ij}, A_{ji} : 1 \leq i \leq j \leq k \} \) has at most \(k^2 \) sets.

Let \(X_A = M(A) - M_n(A) \) for each \(A \in \mathcal{A} \). For \(s > 0 \),

\[
E \{ e^{s X_A} \} = \frac{E \{ e^{s (M(A) - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \mathbf{1}_{X_i \in A})} \}}{\sum_{i=1}^{n} \frac{1}{n} \mathbf{1}_{X_i \in A}}
\]

\[
= \frac{1}{n} E \{ e^{s (M(A) - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \mathbf{1}_{X_i \in A})} \} \text{ by independence of } X_1, \ldots, X_n
\]

\[
\leq \frac{1}{n} e^{s^2 \left(\frac{1}{2 n^2} \right) / 2}
\]

by lemma 4, since

\[
E \{ \left(M(A) - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \mathbf{1}_{X_i \in A} \right)^2 / n \} = 0
\]

and

\[
M_n(A) \leq M(A) - \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{X_i \in A} \leq M(A) + \frac{1}{n}
\]

Note that we also have \(E \{ e^{s X_A} \} \leq e^{s^2 \left(\frac{1}{2 n^2} \right) / 2} \).

Thus for each \(A \in \mathcal{A} \), \(X_A = M(A) - M_n(A) \), \(E \{ e^{s X_A} \} \leq e^{s^2 \left(\frac{1}{2 n^2} \right) / 2} \).

where \(\sigma = \frac{1}{2 n} \). Therefore by lemma 6 (expected maximal deviation ^ ?)

\[
E \{ \max_{A \in \mathcal{A}} | M(A) - M_n(A) | \} = \frac{1}{2 \sqrt{n}} \sqrt{ \ln(\phi(A)) } \leq \frac{1}{2 \sqrt{n}} \sqrt{ \ln(2k) } \]

\[
= \sqrt{ \frac{\ln(2k^2)}{2n} }
\]

Finally from lemma 9 and taking Expectations in Thm 2, we get our full asymptotic story for MDE for the problem of selecting from k densities.

Corollary 10

\[
E(\| \hat{f} - f \|) \leq 2 \min \left\{ \left\| \hat{f}_n - f \right\| + \sqrt{ \frac{\ln(2k^2)}{n} } \right\}
\]
Corollary 10 has applications in situations where \(k \) is allowed to grow with sample size \(n \), say as \(k_n \), such that \[\min_{1 \leq i \leq k_n} \int |f_{n i} - f| \to 0 \quad \text{as} \quad k_n \to \infty \]

and \[\sqrt{\frac{\xi \ln(2k_n^2)}{n}} \to 0, \quad \text{for e.g.} \quad \ln(k_n) \leq \sqrt{n} \quad \implies \quad k_n = \exp(n^{1/2}) \]

Concretely,

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k_n = \exp(n^{1/2}))</th>
<th>(\frac{\xi \ln(2k_n^2)}{n})</th>
<th>(k_n = \exp(n^{5/20}))</th>
<th>(\frac{\xi \ln(2k_n^2)}{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>150</td>
<td>0.926</td>
<td>2.3</td>
<td>0.750</td>
</tr>
<tr>
<td>1,000</td>
<td>7,4621</td>
<td>0.430</td>
<td>2.76</td>
<td>0.310</td>
</tr>
<tr>
<td>10,000</td>
<td>(\approx 8.1 \times 10^6)</td>
<td>0.202</td>
<td>22.026</td>
<td>0.129</td>
</tr>
<tr>
<td>100,000</td>
<td>(\approx 2.6 \times 10^{24})</td>
<td>0.095</td>
<td>(\approx 5.2 \times 10^4)</td>
<td>0.054</td>
</tr>
<tr>
<td>1,000,000</td>
<td>(\approx 4.7 \times 10^{54})</td>
<td>0.045</td>
<td>(\approx 5.4 \times 10^{13})</td>
<td>0.023</td>
</tr>
</tbody>
</table>

How to control first error term \(\min_{1 \leq i \leq k} \int |f_{ni} - f| \) ?

Situation 1

If \(f \in \{ f_{ni} : 1 \leq i \leq k \} \) Then \(\min_{1 \leq i \leq k} \int |f_{ni} - f| = 0 \) (this is useful in some simulation settings only)

Situation 2

Suppose \(f \in \tilde{f} \), a class of totally bounded densities i.e., \(\forall \epsilon > 0, \exists \mathcal{G}_\epsilon = \{ g_1, g_2, \ldots, g_{N_{\epsilon}} \} \subseteq \tilde{f} \), s.t.

\[
\tilde{f} \subseteq \bigcup_{i=1}^{N_{\epsilon}} B_{g_i, \epsilon}, \quad B_{g, \epsilon} = \{ f : \| f - g \|_1 \leq \epsilon \}
\]

The smallest such \(N_{\epsilon} \) is the complexity or covering number of \(\tilde{f} \) and \(\log_2 N_{\epsilon} \) is the Kolmogorov entropy of \(\tilde{f} \)

and \(\mathcal{G}_\epsilon \) is the skeleton of \(\tilde{f} \).
Define the Yatracos class:

$A^*_e = \{ \{ x : g_i(x) > g_\delta(x) \} ; g_i, g_\delta \in G^2_e \}

with $|A^*_e| \leq N_e^2$.

Now, the MDE of Yatracos (skeleton estimate) is:

$\psi_n = \arg\min_{A \in A^*_e} \sup_{g_i \in G^2_e} |g_i - M_n(A)|$

Thus, by corollary 10 and dfn of N_e we have:

$E(\psi_n - f) \leq 3 \min_{g \in G^2_e} \int |g - f| + \sqrt{\frac{8 \log(2N_e^2)}{n}}$

$= 3 \varepsilon + \sqrt{\frac{8 \log(2N_e^2)}{n}}$ \hspace{1cm} \varepsilon > 0 \hspace{1cm} N_e \geq 2$

Remark. Regardless of how quickly $N_e \to \infty$ as $\varepsilon \to 0$, we can choose an $\varepsilon = \varepsilon_n = \inf\{ \varepsilon : \log N_e \leq \sqrt{n} \}$ so that the expected L_1 error of the MDE ψ_n converges to 0 uniformly, provided $f \in \tilde{F}$ and \tilde{F} is totally bounded.

Situation 3 (realistic): But if $f \not\in \tilde{F}$ and $f \not\in \tilde{f}$, the set of all L_1 densities, then by corollary 10

$E(\psi_n - f) \leq 3 \min_{g \in G^2_e} \int |g - f| + \sqrt{\frac{8 \log(2N_e^2)}{n}}$

$\leq 3 \min_{g \in G^2_e} \int |g - f| + 3\varepsilon + \sqrt{\frac{8 \log(2N_e^2)}{n}}$

(by dfn. N_e an Δ_e)

MDE is robust and accounts for the distance between true f and the best estimate in the class ψ_n. If f is close to one of the g_i, ψ_n will give the best estimate.
Situation 4. \(f \in L_1 \) and we want to construct \(\frac{\text{from data}}{X_1, \ldots, X_n} \) a set of densities \(\{ F_{n_i} : 1 \leq i \leq k_n \} \) s.t.

\[
3 \min_{1 \leq i \leq k_n} \int |F_{n_i} - f| \to 0 \quad \text{and} \quad 4 \sup_{A \in \mathcal{A}} |\text{Pr}_f(M_{n_i}(A)) - \text{Pr}_A(A)| \to 0
\]

Want data-adaptive strategies for constructing \(\{ F_{n_i} : 1 \leq i \leq k_n \} \).

Want better bounds for this that are based on \(|\mathcal{A}| \).

Theorem (Vapnik-Chervonenkis ≤)

\[
E \left\{ \sup_{A \in \mathcal{A}} |M_{n}(A) - \mu(A)| \right\} \leq 2 \sqrt{\frac{\ln(2S_A(n))}{n}}
\]

where \(S_A(n) = \max_{x_1, \ldots, x_n \in \mathbb{R}^d} \left| \{ x_1, \ldots, x_n \cap A : A \in \mathcal{A} \} \right| \).

\(S_A(n) \) is V-C shatter coefficient and gives the maximal number of different subsets of a set of \(n \) points that can be obtained by intersecting with elements of \(\mathcal{A} \).

Proof. (Giné & Zinn (1984))

Introduce \(X'_1, \ldots, X'_n \), as an independent copy of \(X_1, \ldots, X_n \)

\(\sigma_1, \ldots, \sigma_n \), as \(n \) i.i.d. sign variables with

\[
P\{ \sigma_1 = -1 \} = P\{ \sigma_1 = +1 \} = \frac{1}{2}
\]

that are also independent of \(X_1, X'_1, X_2, X'_2, \ldots, X_n, X'_n \).

Let \(\mu'_n(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[X'_i \in A]} \)
Then,
\[E \left\{ \sup_{A \in \mathcal{A}} |M_n(A) - M(A)| \right\} \]
\[= E \left\{ \sup_{A \in \mathcal{A}} \left[E \left\{ |M_n(A) - M_n'(A)| \mid X_1, \ldots, X_n \right\} \right] \right\} \]
\[\leq E \left\{ \sup_{A \in \mathcal{A}} E \left\{ |M_n(A) - M_n'(A)| \mid X_1, \ldots, X_n \right\} \right\} \quad \text{(by Jensen's inequality and convexity of } 1-t) \]
\[= \frac{1}{n} E \left\{ \sup_{A \in \mathcal{A}} \left| \sum_{i=1}^{n} \sigma_i \left(1_{[X_i \in A]} - 1_{[X_i' \in A]} \right) \right| \right\} \]
\[= \frac{1}{n} E \left\{ \left| \sum_{i=1}^{n} \sigma_i \left(1_{[X_i \in A]} - 1_{[X_i' \in A]} \right) \right| \mid X_1, X_1', \ldots, X_n, X_n' \right\} \]

Since \(\sigma_i \)'s are independent of \(X_1, X_1', \ldots, X_n, X_n' \), let us fix \(X_1 = x_1, X_1' = x_1', \ldots, X_n = x_n, X_n' = x_n' \) and investigate
\[E \left\{ \sup_{A \in \mathcal{A}} \left| \sum_{i=1}^{n} \sigma_i \left(1_{[X_i \in A]} - 1_{[X_i' \in A]} \right) \right| \right\} \]

Let \(\mathcal{A} \subseteq \mathcal{A} \) be a collection of sets such that any two sets in \(\mathcal{A} \) have different intersections with the set \(\{x_1, x_1', \ldots, x_n, x_n'\} \) and every possible intersection is represented once. Thus, \(|\mathcal{A}| \leq S_{\mathcal{A}}(2n) \), and
\[E \left\{ \sup_{A \in \mathcal{A}} \left| \sum_{i=1}^{n} \sigma_i \left(1_{[X_i \in A]} - 1_{[X_i' \in A]} \right) \right| \right\} \]
\[= E \left\{ \max_{A \in \mathcal{A}} \left| \sum_{i=1}^{n} \sigma_i \left(1_{[X_i \in A]} - 1_{[X_i' \in A]} \right) \right| \right\} \]
Now, since each \(\bar{\sigma}_i (1 \mathbb{1}_{x_i \in A} - 1 \mathbb{1}_{x_i \in \hat{A}}) \) has mean zero and range \([-1, 1]\), by \textbf{Lemma 4}, we have (upperbounding MGF of a bounded RV).

\[
E \left\{ e^{s \sum_{i=1}^{n} \bar{\sigma}_i (1 \mathbb{1}_{x_i \in A} - 1 \mathbb{1}_{x_i \in \hat{A}})} \right\} \leq \prod_{i=1}^{n} E \left\{ e^{s^2 \mathbb{1}_{x_i \in A}} e^{s^2 \mathbb{1}_{x_i \in \hat{A}}} \right\} \leq \prod_{i=1}^{n} e^{s^2 2^{-1/2}} = e^{ns^{2/2}}.
\]

Since the distribution of \(\bar{\sigma}_i (1 \mathbb{1}_{x_i \in A} - 1 \mathbb{1}_{x_i \in \hat{A}}) \) is symmetric, \textbf{Lemma 6} (expected maximal deviation \#) implies that

\[
E \left\{ \max_{A \in \mathcal{A}} \left| \sum_{i=1}^{n} \bar{\sigma}_i (1 \mathbb{1}_{x_i \in A} - 1 \mathbb{1}_{x_i \in \hat{A}}) \right| \right\} \leq \sqrt{2n \log 2 S_2^2(2n)}
\]

\[
\leq \sqrt{2n \log 2 S_A(n)^2}
\]

(by dividing by \(n \) on both sides we get \(V-C \neq \))

\[
E \left\{ \sup_{A \in \mathcal{A}} \left| Mn(A)-M(\hat{A}) \right| \right\} \leq 2 \sqrt{\frac{\log 2 S_A(n)}{n}}
\]