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Abstract Evaluating the likelihood function of parameters in highly-structured popula-
tion genetic models from extant deoxyribonucleic acid (DNA) sequences is computation-
ally prohibitive. In such cases, one may approximately infer the parameters from summary
statistics of the data such as the site-frequency-spectrum (SFS) or its linear combinations.
Such methods are known as approximate likelihood or Bayesian computations. Using a
controlled lumped Markov chain and computational commutative algebraic methods we
compute the exact likelihood of the SFS and many classical linear combinations of it at a
non-recombining locus that is neutrally evolving under the infinitely-many-sites mutation
model. Using a partially ordered graph of coalescent experiments around the SFS we pro-
vide a decision-theoretic framework for approximate sufficiency. We also extend a family
of classical hypothesis tests of standard neutrality at a non-recombining locus based on the
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SFS to a more powerful version that conditions on the topological information provided by
the SFS.

Keywords controlled lumped Markov chain · unlabeled coalescent · random integer
partition sequences · partially ordered experiments · population genomic inference ·
population genetic Markov bases · approximate Bayesian computation done exactly

1 Introduction

Models in population genetics are highly structured stochastic processes [20]. Inference is
typically conducted with data that is modelled as a partial observation of one realization
of such a process. Likelihood methods are most desirable when they are based on a family
of population genetic models for the probability of an observation at the finest empirical
resolution available to the experimenter. One typically observes DNA sequences of length
m with a common ancestral history from n individuals who are currently present in an ex-
tant population and uses this information to infer some aspect of the population’s history.
Unfortunately, it is computationally prohibitive to evaluate the likelihood P(uo|φ) of the
multiple sequence alignment or MSA data uo ∈U m

n that was observed at the finest available
empirical resolution, given a parameter φ ∈ ΦΦ , that is indexing a biologically motivated
family of models. The MSA sample space U m

n := {A,C,G,T}n×m is doubly indexed by n,
the number of sampled individuals, and m, the number of sequenced homologous sites. In
an ideal world, the optimal inference procedure would be based on the minimally sufficient
statistic and implemented in a computing environment free of engineering constraints. Un-
fortunately, minimally sufficient statistics of data at the currently finest resolution of U m

n
are unknown beyond the simplest models of mutation with small values of n [7, 23, 41, 53].
Computationally-intensive inference, based on an observed uo ∈U m

n , with realistically large
n and m, is currently impossible for recombining loci and prohibitive for non-recombining
loci.

An alternative inference strategy that is computationally feasible involves a relatively
low-dimensional statistic R(uo) = ro ∈Rm

n of uo ∈ U m
n . In this approach, one attempts to

approximate the likelihood P(uo|φ) or the posterior distribution P(φ |uo), on the basis of a
summary ro of the observed data uo. Since R is typically not a sufficient statistic for φ , i.e.,
P(φ |r) #= P(φ |u). Such methods have been termed as approximate likelihood computations
or ALC [52] in a frequentist setting and as approximate Bayesian computations or ABC [3]
in a Bayesian setting. ALC and ABC are popular simulation-based inference methods in
computational population genetics as they both provide an easily implementable inference
procedure for any model that you can simulate from. Several low dimensional (summary)
statistics, each of which are not shown to be sufficient or even necessarily consistent, form
the basis of information in such approximate likelihood or Bayesian computations. The un-
derlying assumption that ensures asymptotic consistency of this estimator is that a large
enough set of such statistics will be a good proxy for the observed data uo, in an approxi-
mately sufficient sense. However, there are several senses in which a set of population ge-
netic statistics can be large enough for asymptotically consistent estimation. Furthermore,
any formal notion of approximate sufficiency in population genetic experiments must ac-
count for the fact that the likelihood is defined by the n-coalescent prior mixture over ele-
ments in a partially observed genealogical space CnTn:

P(ro|φ) =
∫

ct∈Cn Tn
P(ro|ct,φ) dP(ct|φ). (1.1)
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The discrete aspects of this hidden space account for the sequence of coalescence events,
while the continuous aspects account for the number of generations between such events
in units of rescaled time. We formalise at least three notions or senses of asymptotic con-
sistency for various statistics of the data using a graph of partially ordered coalescent ex-
periments under Watterson’s infinitely-many-sites (IMS) model of mutation [51] and show
that asymptotic consistency does not hold in every sense for the site frequency spectrum
(SFS), a popular summary statistic of the MSA data, and its linear combinations, unless one
can appropriately integrate over {ct ∈ CnTn : P(ro|ct,φ) > 0} in Eq. (1.1). This elementary
observation has cautionary implications for simulation-intensive parameter estimation us-
ing ABC or ALC methods as well as outlier-detection using genome scanning methods that
attempt to reject loci that are hypothesised to evolve under the standard neutral null model.

Our first specific objective here is to address the problem of inferring the posterior distri-
bution over the same parameter space ΦΦ across different empirical resolutions or statistics
of n DNA sequences with m homologous sites drawn from a large Wright-Fisher population
at a large non-recombining locus that is neutrally evolving under the infinitely-many-sites
model of mutation. The empirical resolutions of interest at the coarsest end, include classi-
cal statistics, such as (i) the non-negative integer-valued number of segregating sites S ∈ Z+
[51], (ii) the rational-valued average heterozygosity π ∈ Q, (iii) the real-valued Tajima’s
D [47] that combines (i) and (ii). At a slightly finer resolution than the first three that is
of interest is (iv) the nonnegative integer vector called the folded site frequency spectrum
y ∈ Z$n/2%

+ . At an intermediate resolution, (v) the nonnegative integer vector called the site
frequency spectrum x∈Z+

n−1 is a much finer statistic whose linear combinations determine
(i), (ii), (iii) and (iv), in addition to various other statistics in the literature, including folded
singletons y1 := x1 + x(n−1) [24] and Fay and Wu’s θH := (n(n− 1))−1 ∑n−1

i=1 (2 i2 xi) [14].
See [50] for a discussion of the linear relations between various classical summaries and the
site frequency spectrum. At the finest resolution we can conduct inference on the basis of
(vi) binary incidence matrices that are sufficient for the infinitely-many-sites model of mu-
tation using existing methods (for e.g. [46]). The asymptotic consistency emphasised here
involves a single locus, that is free of intra-locus recombination across n individuals and at
m homologous sites, as m approaches infinity.

Our second specific objective here is to extend a class of hypothesis tests of the standard
neutral model for a non-recombining locus toward the intermediate empirical resolution
of the SFS. This class includes various classical “Tajima-like” tests in the sense of [13,
p. 361] as well as others that are based on the null distribution of the SFS. Our extension
involves conditioning the null distribution by an equivalence class of unlabeled coalescent
tree topologies, up to a partial information provided by the observed SFS. Thus, the null
distribution over the SFS sample space, that in turn determines the null distributions of all
the test statistics in our class, are only based on those genealogies whose coalescent tree
topologies have a non-zero probability of underlying our observed SFS. This amounts to an
‘unlabeled topological conditioning’ of any test statistic for neutrality that is a function of
the site frequency spectra, including several classical tests.

Two elementary ideas form the basic structures that are exploited in this paper to achieve
the objectives outlined in the previous two paragraphs. Firstly, we develop a Markov lump-
ing of Kingman’s n-coalescent to Kingman’s unlabeled n-coalescent as suggested in [32,
(5.1),(5.2)] but without explicit pursuit. The unlabeled n-coalescent is a Markov chain on
a many-to-one map of the state space of the n-coalescent (or more specifically, the labeled
n-coalescent) and it is sufficient and necessary to prescribe the Φ-indexed family of mea-
sures for the sample space of the SFS. Secondly, we exactly evaluate the posterior den-
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sity based on one or more linear combinations of the observed site frequency spectrum.
This is accomplished by an elementary study of the algebraic geometry of such statis-
tics using Markov bases [8]. A beta version of LCE-0.1: A C++ class library for
lumped coalescent experiments that implements such algorithms is publicly avail-
able from http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/ under
the terms of the GNU General Public License.

2 Genealogical and Mutational Models

The stochastic models for the genealogy of the sample and the mutational models that gen-
erate data are given in this section.

2.1 Number of Ancestral Lineages of a Wright-Fisher Sample

In the simple Wright-Fisher discrete generation model with a constant population size N, i.e.,
the exponential growth rate φ2 = 0, each offspring “chooses” its parent uniformly and inde-
pendently at random from the previous generation due to the uniform multinomial sampling
of N offspring from the N parents in the previous generation. First, note that the following
ratio can be approximated:

N[ j]

N j :=
(

N
N

)(
N−1

N

)
· · ·

(
N− ( j−1)

N

)
= 1

(
1− 1

N

)
· · ·

(
1− j−1

N

)

=
j−1

∏
k=1

(
1− kN−1) = 1−N−1

j−1

∑
k=1

k +O
(
N−2) = 1−

(
j
2

)
N−1 +O

(
N−2) .

Let S( j)
i denote the Stirling number of the second kind, i.e., S( j)

i is the number of set par-
titions of a set of size i into j blocks. Thus, the N-specific probability of i extant sample
lineages in the current generation becoming j extant ancestral lineages in the previous gen-
eration is:

NPi, j =






S(i)
i

(
N[i]N−i) = 1

(
N[i]N−i) = 1−

( i
2
)
N−1 +O

(
N−2) : if j = i

S(i−1)
i

(
N[i−1]N−i) =

( i
2
)(

N−1N[i−1]N−(i−1)
)

=
( i

2
)
N−1

(
1−N−1(i−1

2
)
+O

(
N−2)

)
=

( i
2
)
N−1 +O

(
N−2) : if j = i−1

S(i−!)
i

(
N[i−!]N−i) = S(i−!)

i

(
N−!N[i−1]N−(i−!)

)
= : if j = i− !,

S(i−!)
i N−!

(
1−N−1(i−!

2
)
+O

(
N−2)

)
= O

(
N−2) 1 < ! < i−1

0 : otherwise.

(2.1)

Let Z− := {0,−1,−2, . . .} denote an ordered and countably infinite discrete time in-
dex set. Next, we rescale time in this discrete time Markov chain {NH↑(k)}k∈Z− over the
state space Hn := {n,n− 1, . . . ,1} with 1-step transition probabilities given by Eq. (2.1).
{NH↑(k)}k∈Z− is the death chain of the number of ancestral sample lineages within the
Wright-Fisher population of constant size N. Let the rescaled time t be g in units of N gen-
erations. Then, the probability that a pair of lineages remain distinct for more than t units of
the rescaled time is: (1−1/N)$Nt% N→∞−→ e−t .

http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/
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The transition probabilities Pi, j(t) of the pure death process {H↑(t)}t∈R+ , in the rescaled
time t over the state space Hn, is a limiting continuous time Markov chain approximation of
the $Nt%-step transition probabilities NPi, j($Nt%) of the discrete time death chain with 1-step
transition probabilities in Eq. (2.1), as the population size N tends to infinity:

NPi, j($Nt%) N→∞−→ Pi, j(t) = exp(Qt), where, qi,i−1 =
(

i
2

)
,qi,i =−

(
i
2

)
,

qi, j = 0 for all other (i, j) ∈Hn×Hn but with 1 as an absorbing state. The matrix Q is called
the instantaneous rate matrix of the death process Markov chain {H↑(t)}t∈R+ and its (i, j)-
th entry is qi, j. Thus, the i-th epoch-time random variable Ti during which time there are i
distinct ancestral lineages of our sample is approximately exponentially distributed with rate
parameter

( i
2
)

and is independent of other epoch-times. In other words, for large N, the ran-
dom vector T = (T2,T3, . . . ,Tn) of epoch-times, corresponding to the transition times of the
pure death process {H↑(t)}t∈R+ on the state space Hn, has the product exponential density

∏n
i=2

( i
2
)
e−( i

2)ti over its support Tn := Rn−1
+ . Note that the initial state of {H↑(t)}t∈R+ is n,

the final absorbing state is 1 and the embedded jump chain {H↑(k)}k∈[n]− of this death pro-
cess, termed the embedded death chain, deterministically marches from n to 1 in decrements
of 1 over Hn, where, [n]− := {n,n− 1, . . . ,2,1} denotes the decreasingly ordered discrete
time index set. Similarly, let [n]+ := {1,2, . . . ,n−1,n} denote the increasingly ordered dis-
crete time index set.

2.2 Kingman’s Labeled n-Coalescent

Next, we model the sample genealogy at a finer resolution than the number of ancestral
lineages of our Wright-Fisher sample of size n. If we assign distinct labels to our n samples
and want to trace the ancestral history of these sample-labeled lineages then Kingman’s
labeled n-coalescent lends a helping hand. Let Cn be the set of all partitions of the label set
L = {1,2, . . . ,n} of our n samples. Denote by C(i)

n the set of all partitions with i blocks, i.e.,
Cn =

⋃n
i=1 C(i)

n . Let ci := {ci,1,ci,2, . . . ,ci,i} ∈ C(i)
n denote the i elements of ci. The labeled

n-coalescent partial ordering on Cn is based on the immediate precedence relation ≺c:

ci′ ≺c ci ⇐⇒ ci′ = ci \ ci, j \ ci,k ∪ (ci, j ∪ ci,k), j #= k, j,k ∈ {1,2, . . . , |ci|}.

In words, ci′ ≺c ci, read as ci′ immediately precedes ci, means that ci′ can be obtained from
ci by coalescing any distinct pair of elements in ci. Thus, ci′ ≺c ci implies |ci′ | = |ci|−1.

Consider the discrete time Markov chain {C↑(k)}k∈[n]− on Cn with initial state C↑(n) =
cn = {{1},{2}, . . . ,{n}} and final absorbing state C↑(1) = c1 = {{1,2, . . . ,n}}, with the
following transition probabilities [31, Eq. (2.2)]:

P(ci′ |ci) =

{( i
2
)−1

: if ci′ ≺c ci, ci ∈ C(i)
n

0 : otherwise.
(2.2)

Now, let c := (cn,cn−1, . . . ,c1) be a c-sequence or coalescent sequence obtained from the
sequence of states visited by a realization of the chain, and denote the space of such c-
sequences by

Cn := {c := (cn,cn−1, . . . ,c1) : ci ∈ C(i)
n , ci−1 ≺c ci}.
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The probability that ci ∈ C(i)
n is visited by the chain [31, Eq. (2.3)] is:

P(ci) =
(n− i)! i!(i−1)!

n!(n−1)!

i

∏
j=1

|ci, j|!, (2.3)

and the probability of a c-sequence is uniformly distributed over Cn with

P(c) =
2

∏
i=n

P(ci−1|ci) =
2n−1

n!(n−1)!
=

1
|Cn|

. (2.4)

Kingman’s labeled n-coalescent [31, 32], denoted by {C↑(t)}t∈R+ , is a continuous-time
Markov chain on Cn with rate matrix Q. The entries q(ci′ |ci), ci,ci′ ∈ Cn of Q, specifying
the transition rate from state ci to ci′ , are [32, Eq. (2.10)]:

q(ci′ |ci) =






−
( i

2
)

: if ci = ci′ , ci ∈ C(i)
n

1 : if ci′ ≺c ci

0 : otherwise.
(2.5)

The above instantaneous transition rates for {C↑(t)}t∈R+ are obtained by an indepen-
dent coupling of the death process {H↑(t)}t∈R+ in Sect. 2.1 over Hn with the discrete time
Markov chain {C↑(k)}k∈[n]− on Cn. This continuous time Markov chain approximates the
appropriate N-specific discrete time Markov chain over Cn that is modeling the ancestral ge-
nealogical history of a sample of size n labeled by L and taken at random from the Wright-
Fisher population of constant size N. This asymptotic approximation, as the population size
N → ∞, can be seen using arguments similar to those in Sect. 2.1. See [31, (§1–2)] for this
construction.

Let the space of ranked, rooted, binary, phylogenetic trees with leaves or samples la-
beled by L = {1,2, . . . ,n} [43, §2.3] further endowed with branch or lineage lengths under a
molecular clock — i.e., the lineage length obtained by summing the epoch-times from each
sample (labeled leaf) to the root node or the most recent common ancestor (MRCA) is the
same — be constructively defined by the n-coalescent as:

CnTn := Cn⊗Tn := {ct := (cntn, cn−1tn−1, . . . ,
c2t2) : c ∈ Cn, t ∈ Tn := Rn−1

+ }.

CnTn is called the n-coalescent tree space. An n-coalescent tree ct ∈ CnTn describes the
ancestral history of the sampled individuals. Figure 1 depicts the n-coalescent tree space
C3T3 for the sample label set L = {1,2,3} with sample size n = 3.

2.3 Kingman’s Unlabeled n-Coalescent

Next, we model the sample genealogy at a resolution that is finer than the number of ances-
tral lineages but coarser than that of the labeled n-coalescent. This is Kingman’s unlabeled
n-coalescent. The unlabeled n-coalescent is mentioned as a lumped Markov chain of the
labeled n-coalescent and termed the ‘label-destroyed’ process by Kingman [32, 5.2]. Tavaré
[48, p. 136-137] terms it the ‘family-size process’ along the nomenclature of a more general
birth-death-immigration process [30]. The transition probabilities of this Markov process,
in either temporal direction, are not explicitly developed in [32] or [48]. They are developed
here along with the state and sequence-specific probabilities.
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Fig. 1 Realizations of 3-coalescent trees in the space of such trees is plotted on the three rectangles as
colored points in middle panel. The lines on the rectangles are the contours of the independent exponentially
distributed epoch times for each c-sequence. Each of the three coalescent trees, with two branch lengths
in the epoch-time vector (t3, t2), representing a realization in the corresponding rectangle and the transition
probability diagram of the Markov chain {C↑(k)}k∈{3,2,1} on C3 are shown counter clock-wise in the four
corner panels, respectively.

Consider the coalescent epoch at which there are i lineages. Let fi, j denote the number of
lineages subtending j leaves, i.e., the frequency of lineages that are ancestral to j samples,
at this epoch. Let us summarize these frequencies from the i lineages as j varies over its
support by fi := ( fi,1, fi,2, . . . , fi,n). Then the space of fi’s is defined by,

F(i)
n :=

{
fi := ( fi,1, fi,2, . . . , fi,n) ∈ Zn

+ :
n

∑
j=1

j fi, j = n,
n

∑
j=1

fi, j = i

}
.

Let the set of such frequencies over all epochs be Fn :=
⋃n

i=1 F(i)
n . Let us define an f -

sequence f as:

f := ( fn, fn−1, . . . , f1) ∈Fn :=
{

f : fi ∈ F(i)
n , fi−1 ≺ f fi, ∀i ∈ {2, . . . ,n}

}
,

where, ≺ f is the immediate precedence relation that induces a partial ordering on Fn. It is
defined by denoting the j-th unit vector of length n by e j, as follows:

fi′ ≺ f fi ⇐⇒ fi′ = fi− e j− ek + e j+k. (2.6)

Thus, Fn is the space of f -sequences with n samples, i.e., the space of the frequencies of
the cardinalities of c-sequences in Cn. Recall the c-sequence c = (cn,cn−1, . . . ,c1), where
ci−1 ≺c ci, ci−1 ∈Ci−1

n , ci ∈Ci
n, and ci := {ci,1,ci,2, . . . ,ci,i} contains i subsets. Let 11A(a) be

the indicator function of some set A (i.e., If a ∈ A, then 11A(a) = 1, else 11A(a) = 0). Then the
corresponding f -sequence is given by the map F(c) = f : Cn →Fn, as follows:

F(c) := (F(cn), . . . ,F(c1)) , F(ci) :=

(
i

∑
h=1

11{1}(|ci,h|), . . . ,
i

∑
h=1

11{n}(|ci,h|)
)

. (2.7)
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Thus Fn indexes an equivalence class in Cn via F[−1]( f ), the inverse map of Eq. (2.7).
Having defined f -sequences and their associated spaces, we define a discrete time Markov
chain {F↑(k)}k∈[n]− on Fn that is analogous to {C↑(k)}k∈[n]− on Cn given by Eq. (2.2).
{F↑(k)}k∈[n]− is the embedded discrete time Markov chain of the unlabeled n-coalescent.

Proposition 1 (Backward Transition Probabilities of an f -sequence) The probability of
f := ( fn, fn−1, . . . , f1) ∈Fn under the n-coalescent is given by the product:

P( f ) =
2

∏
i=n

P( fi−1| fi), (2.8)

such that P( fi−1| fi) are the backward transition probabilities of a Markov chain {F↑(k)}k∈[n]−

on Fn, with fi ∈ F(i)
n , fi−1 ∈ F(i−1)

n :

P( fi−1| fi) =






fi, j fi,k
( i

2
)−1

: if fi−1 = fi− e j− ek + e j+k, j #= k
( fi, j

2

)( i
2
)−1

: if fi−1 = fi− e j− ek + e j+k, j = k
0 : otherwise

(2.9)

where, the initial state is fn = (n,0, . . . ,0) and the final absorbing state is f1 = (0,0, . . . ,1).

Proof Since Eq. (2.8) is obtained from Eq. (2.9) by Markov property, we prove Eq. (2.9)
next. When there are i lineages in Kingman’s labeled n-coalescent, a coalescence event can
reduce the number of lineages to i− 1 by coalescing one of

( i
2
)

many pairs. Hence, the

inverse
( i

2
)−1

appears in the transition probabilities. Out of these pairs, there are two kinds
of pairs that need to be differentiated. The first type of coalescence events involve pairs of
edges that subtend the same number of leaves. Since fi, j many edges subtend j leaves, there
are

( fi, j
2

)
many pairs that lead to this event (case when j = k). The second type of coalescence

events involve pairs of edges that subtend different number of leaves. For any distinct j and
k, fi, j fi,k many pairs would lead to coalescence events between edges that subtend j and k
leaves (case when j #= k). Note that our condition that fi−1 = fi− e j − ek + e j+k for each
i∈ {n,n−1, . . . ,3,2} ensures that our f remains in Fn as we go backwards in time from the
n-th coalescent epoch with n samples to the first one with the single ancestral lineage. 01

The next Proposition is a particular case of [48, Eq. (7.11)]. We state and prove it here
in our notation using coalescent arguments for completeness.

Proposition 2 (Probability of an fi) The probability that the Markov chain {F↑(k)}k∈[n]−

visits a particular fi ∈ F(i)
n at the i-th epoch is:

P( fi) =
i!

∏i
j=1 fi, j!

(
n−1
i−1

)−1
. (2.10)

Proof Recall that fi, j is the number of edges that subtend j leaves during the i-th coalescent
epoch, where, j ∈ {1,2, . . . ,n}. Now, label the i edges in some arbitrary manner. Let the
number of the subtended leaves from the i labeled edges be Λ := (Λ1,Λ2, . . . ,Λi). Due to
the n-coalescent, Λ is a random variable with a uniform distribution on integer partitions
of n, such that ∑i

j=1 Λi = n and Λi ≥ 1. Thus, P(Λ) =
(n−1

i−1
)−1

. Since there are i!/∏i
j=1 fi, j!

many ways of labeling the i edges, we get the P( fi) as stated. 01
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Proposition 3 (Forward Transition Probabilities of an f -sequence) The probability of
f := ( fn, fn−1, . . . , f1) ∈Fn is given by the product:

P( f ) =
n

∏
i=2

P( fi| fi−i), (2.11)

such that P( fi| fi−1) are the forward transition probabilities of a Markov chain {F↓(k)}k∈[n]+
on Fn with the ordered time index set [n]+ := {1,2, . . . ,n}:

P( fi| fi−1) =






2 fi−1, j+k(n− i+1)−1 : if fi = fi−1 + e j + ek− e j+k, j #= k,
j + k > 1, fi ∈ F(i)

n , fi−1 ∈ F(i−1)
n

fi−1, j+k(n− i+1)−1 : if fi = fi−1 + e j + ek− e j+k, j = k,
j + k > 1, fi ∈ F(i)

n , fi−1 ∈ F(i−1)
n

0 : otherwise

(2.12)

with initial state f1 = (0,0, . . . ,1) and final absorbing state fn = (n,0, . . . ,0).
Note that we canonically write a sequential realization ( f1, f2, . . . , fn) of {F↑(k)}k∈[n]+

in reverse order as the f -sequence f = ( fn, fn−1, . . . , f1).

Proof Since Eq. (2.11) follows from Eq. (2.12) due to Markov property, we prove Eq. (2.12)
next. An application of the definition of conditional probability twice, followed by Prop. 2
yields:

P( fi| fi−1) = P( fi−1| fi)P( fi)/P( fi−1)

= P( fi−1| fi)
i!

∏i
h=1 fi,h!

(
n−1
i−1

)−1
/

(i−1)!
∏i−1

h=1 fi−1,h!

(
n−1
i−2

)−1

= P( fi−1| fi)
∏i−1

h=1 fi−1,h!
∏i

h=1 fi,h!
i(i−1)

n− (i−1)
.

Next we substitute P( fi−1| fi) of Prop. 1 for the first case: fi = fi−1 + e j + ek − e j+k, j #=
k, j+k > 1, i.e., the coordinates of fi and fi−1 are such that fi, j = fi−1, j +1, fi,k = fi−1,k +1,
fi, j+k = fi−1, j+k−1, and fi,h = fi−1,h,∀h ∈ {1,2, . . . ,n}\{ j,k, j + k}.

P( fi| fi−1) = fi, j fi,k

(
i
2

)−1 ∏i−1
h=1 fi−1,h!

∏i
h=1 fi,h!

i(i−1)
n− (i−1)

= fi, j fi,k
fi−1, j! fi−1,k! fi−1, j+k!

fi, j! fi,k! fi, j+k!
2

n− (i−1)

= fi, j fi,k
( fi, j−1)!( fi,k−1)!( fi, j+k +1)!

fi, j! fi,k! fi, j+k!
2

n− (i−1)

=
2( fi, j+k +1)
n− (i−1)

= 2 fi−1, j+k(n− i+1)−1.

A substitution of P( fi−1| fi) of Prop. 1 for the second case: fi = fi−1 + e j + ek − e j+k, j =
k, j + k > 1, i.e., fi, j = fi−1, j + 2, fi,2 j = fi−1,2 j − 1 and fi,h = fi−1,h,∀h ∈ {1,2, . . . ,n} \
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{ j,2 j}.

P( fi| fi−1) =
(

fi, j

2

)(
i
2

)−1 ∏i−1
h=1 fi−1,h!

∏i
h=1 fi,h!

i(i−1)
n− (i−1)

=
fi, j( fi, j−1)
n− (i−1)

fi−1, j! fi−1,2 j!
fi, j! fi,2 j!

=
fi, j( fi, j−1)
n− (i−1)

( fi, j−2)!( fi,2 j +1)!
fi, j! fi,2 j!

=
( fi,2 j +1)
n− (i−1)

= fi−1,2 j(n− i+1)−1 = fi−1, j+k(n− i+1)−1.

This concludes the proof. 01

Kingman’s unlabeled n-coalescent or the unvintaged and sized n-coalescent in the de-
scriptive nomenclature of [40] is the continuous time Markov chain {F↑(t)}t∈R+ on Fn
whose rate matrix Q = q( fi′ | fi) for any two states fi, fi′ ∈ Fn is:

q( fi′ | fi) =






−i(i−1)/2 : if F(i)
n 4 fi = fi′ ,

fi, j fi,k : if F(i−1)
n 4 fi′ = fi− e j− ek + e j+k, j #= k, fi ∈ F(i)

n ,

( fi, j)( fi, j−1)/2 : if F(i−1)
n 4 fi′ = fi− e j− ek + e j+k, j = k, fi ∈ F(i)

n ,

0 : otherwise.

(2.13)

The initial state is fn = (n,0,0, . . . ,0) and the final absorbing state is f1 = (0,0, . . . ,1).
The above rates for the continuous time Markov chain {F↑(t)}t∈R+ on Fn are obtained by
coupling the independent death process {H↑(t)}t∈R+ of Sect. 2.1 over Hn with the discrete
time Markov chain {F↑(k)}k∈[n]− on Cn.

Let {NF↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of n unla-
beled samples taken at random from the present generation of a Wright-Fisher population
of constant size N over the state space Fn analogous to the death chain {NH↑(k)}k∈Z− . The
next Proposition (proved in [40, Prop. 3.28] using the theory of lumped Markov chains)
states how {F↑(t)}t∈R+ approximates {NF↑(k)}k∈Z− on Fn.

Proposition 4 (Kingman’s Unlabeled n-coalescent) The $Nt%-step transition probabili-
ties, NPfi, fi′ ($Nt%), of the chain {NF↑(k)}k∈Z− , converge to the transition probabilities of
the continuous-time Markov chain {F↑(t)}t∈R+ with rate matrix Q of Eq. (2.13), i.e.

NPfi, fi′ ($Nt%) N→∞−→ Pfi, fi′ (t) = exp(Qt).

Proof For a proof see [40].

Remark 1 (Markovian lumping from Cn to Fn via F) Our lumping of Kingman’s labeled
n-coalescent over Cn to Kingman’s unlabeled n-coalescent over Fn, via the mapping F, is
Markov as pointed out by Kingman [32, (5.1),(5.2)] using the arguments in [39, Sec. IIId].
See [40] for an introduction to lumped coalescent processes and a proof that {F↑(t)}t∈R+ is
a Markov lumping of {C↑(t)}t∈R+ .

First, we introduce a matrix form f of f . Any f -sequence f = ( fn, fn−1, . . . , f1), that is a
sequential realization under {F↑(k)}k∈[n]− or a reverse-ordered sequential realization under
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{F↓(k)}k∈[n]+ , can also be written as an (n−1)× (n−1) matrix F( f ) = f as follows:

F : Fn → Z(n−1)×(n−1)
+ , F( f ) = f :=





f2,1 f2,2 · · · f2,n−1
...

...
. . .

...
fn−1,1 fn−1,2 · · · fn−1,n−1
fn,1 fn,2 · · · fn,n−1




. (2.14)

Thus, the matrix form of f = ( fn, fn−1, . . . , f1) or the f -matrix is the (n−1)×(n−1) matrix
f whose (i−1)-th row is ( fi,1, fi,2, . . . , fi,n−1), where, i = 2,3, . . . ,n.

Next we provide some concrete examples of c-sequences and their lumping into f -
sequences and/or f -matrices for small n. When there are 2 samples there is one c-sequence
c = ({{1},{2}}, {{1,2}}) and one f -sequence f = F(c) = ((2,0), (0,1)).

Example 1 (Three Samples) When there are three samples we have three c-sequences: c(r),
c(b) and c(g) (see Fig. 1) and all of them map to the only f -sequence f :

f = ((3,0,0), (1,1,0), (0,0,1))

= F(c(r)) := F( ({{1},{2},{3}}, {{1,2},{3}}, {{1,2,3}}) )

= F(c(b)) := F( ({{1},{2},{3}}, {{1,3},{2}}, {{1,2,3}}) )

= F(c(g)) := F( ({{1},{2},{3}}, {{2,3},{1}}, {{1,2,3}}) ).

Fig. 2 The two f -sequences f ! and f∧ corresponding to the balanced (left panel) and unbalanced unlabeled
genealogies of four samples (right panel) are depicted as f -matrices f∧ and f!, respectively. Hasse diagram
of the state transition diagrams of {F↑(k)}k∈[4]− and {F↓(k)}k∈[4]+ on F4 (middle panel).

Example 2 (Four Samples) When there are four samples we have two f -sequences and eigh-
teen c-sequences. We denote the f -sequences by f ! and f∧. We can apply Eq. (2.7) to C4
and find that 12 c-sequences map to f ! and 6 map to f∧. They are depicted in Fig. 2 as
f -matrices.

In the Hasse diagram of Fn (see Fig. 3), the states f1, . . . , fn in Fn form the nodes or
vertices and there is an edge between fi and f j if fi ≺ f f j, i.e., fi immediately precedes f j.
Each Hasse diagram of Fn embodies two directed and weighted graphs of the state transition
diagrams of {F↑(k)}k∈[n]− and {F↓(k)}k∈[n]+ . These two state transition graphs are tempo-
rally oriented, directed and edge-weighted by the transition probabilities of {F↑(k)}k∈[n]−
and {F↓(k)}k∈[n]+ . A similar diagram for n = 7 appears in context of a breadth-first count-
ing algorithm that sets the stage for an asymptotic enumerative study of the size of Fn [10,
Fig. 1].
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Fig. 3 Hasse diagrams of the state transition diagrams of the backward and forward Markov chains,
{F↑(k)}k∈[n]− and {F↓(k)}k∈[n]+ , respectively, on Fn for n = 5,6,7 on top row with labeled states and
n = 8,9,10 in bottom row.

2.4 Exponentially Growing Population

So far we have focused on stochastic processes whose realizations yield labeled and un-
labeled sample genealogies of a Wright-Fisher population of constant size N. Consider a
demographic model of steady exponential growth forward in time:

N(t) = N(0)(exp(φ2t)) ,

where N(0) is the current population size. Let Ak:n := ∑n
j=k A j denote the partial sum. One

can apply a deterministic time-change to the epoch times of the constant population model
to obtain the epoch times of the growing population [48]:

P

(
Tk > t

∣∣∣∣∣

n

∑
j=k+1

Tj = tk+1:n

)
= exp

(
−

(
k
2

)
φ2
−1 exp(φ2tk+1:n)(exp(φ2t)−1)

)
.

2.5 Mutation Models

Recall that a coalescent tree ct, realized under the n-coalescent, describes the labeled an-
cestral history of the sampled individuals as a binary tree. Figure 5 shows a coalescent
tree for a sample of four individuals. In neutral models considered here under parameter
φ = (φ1,φ2) ∈ ΦΦ , mutations are independently super-imposed upon the coalescent trees at
each site according to a model of mutation for a specific biological marker with two or more
states. The basic idea involves mutating the sampled or given state at an ancestral node to a
possibly different state at the descendent node with a probability that depends on the muta-
tion model and the lineage length between the two nodes. The two basic types of mutation
models in population genetics are briefly summarised below.
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2.5.1 Infinitely-many-sites models

Under the infinitely-many-sites (IMS) model [51] independent mutations are super-imposed
on the coalescent tree ct at each site according to a homogeneous Poisson process at rate
φ1l•, where φ1 := 4Neµ , l• is the total size of the tree, Ne is the effective population size, µ
is the mutation rate per generation per site. We further stipulate that at most one mutation is
allowed per site. The ancestral state is coded as 0 and the derived or mutant state is coded as
1.

2.5.2 Finitely-many-states models

There are several finitely-many-states models. A continuous-time Markov chain over finitely
many states is used to model mutation from one state to another at each site. For example,
over the nucleotide state space, a simple symmetric model [28] allows transitions between
any two distinct states at rate µ/3. Mutations are modelled independently across sites over
a given coalescent tree ct whose lineage lengths are in units of 4Ne.

3 n-Coalescent Experiments

We give the statistical formalities needed to graphically frame our n-coalescent statistical
experiments. Recall that a statistical experiment (X m

n ,σ(X m
n ),P ΦΦ ) is the ordered triple

consisting of the sample space X m
n , a sigma-algebra over the sample space σ(X m

n ) and
an identifiable ΦΦ -indexed family of probability measures P ΦΦ , i.e., ΦΦ 4 φ 6→ Pφ ∈P ΦΦ ,
over the sample space, such that, Pφ := P(x|φ) ∈P ΦΦ for each φ ∈ ΦΦ . Our samples spaces
V m

n and X m
n are finite and therefore Pφ ‘s are dominated by the counting measure. Our con-

tinuous parameter space in this study is two-dimensional, i.e., ΦΦ := ( ΦΦ 1, ΦΦ 2)⊂R2
+. The

first parameter φ1 is the per-locus mutation rate scaled by the effective population size and is
often denoted by θ in population genetics literature. The second parameter φ2 is the growth
rate of our population whose size is growing exponentially from the past. For Bayesian
decisions, we allow our parameter to be a random vector Φ := (Φ1,Φ2) with a Lebesgue-
dominated density P(φ) and realizations φ := (φ1,φ2). This prior density P(φ) is taken to be
a uniform density over a compact rectangle to allow simple interpretations from Bayesian,
frequentist and information-theoretic schools of inference. We are interested in approxi-
mately sufficient statistics [6] for the purpose of computational efficiency. Recall that a
statistic Tα,β (zα) = zβ : Zα →Zβ is sufficient for the experiment Xα = (Zα ,σ(Zα),P ΦΦ ),
provided:

P(Zα = zα |Tα,β (zα) = zβ ,φ) = P(Zα = zα |Tα,β (zα) = zβ ),

for any φ ∈ ΦΦ . Given a sufficient statistic Tα,β for the experiment Xα and a prior density
such that P(φ) #= 0 for all φ ∈ ΦΦ , we get Bayes sufficiency in the Kolmogorov sense [33],
in terms of the following posterior identity:

P(φ |zα) = P(φ |Tα,β (zα) = zβ ).

The fundamental experiment of this study is X01 := (X m
n ,σ(X m

n ),P ΦΦ ) at the reso-
lution of SFS. We also pursue X0 := (V m

n ,σ(V m
n ),P ΦΦ ) using existing methods for com-

parison. The other experiment nodes in the experiments graph of Fig. 4 are included to
decision-theoretically unify various classical population genetic experiments. They include
(Ḧ m

n ,σ(Ḧ m
n ),P ΦΦ ) that is based on the haplotype frequency spectrum or HFS Ḧ [11, 12],
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Fig. 4 An n-coalescent experiments graph. An observed multiple sequence alignment of the mother experi-
ment and its offspring are shown on the left. The corresponding formalities are shown on the right.

and the three liner sub-experiments of X01, namely, X011 := (Y m
n ,σ(Y m

n ),P ΦΦ ) for the
folded site frequency spectrum or FSFS Y , X012 := (Z m

n ,σ(Z m
n ),P ΦΦ ) for the heterozy-

gosity Z and X013 := (S m
n ,σ(S m

n ),P ΦΦ ) for the number of segregating sites S = ∑n−1
i=1 xi.

Using Markov bases, we approach the Tajima’s D product experiment of X012 and X013.

3.1 Multiple Sequence Alignment

The data uo is the DNA multiple sequence alignment or MSA obtained from a sample of n
individuals in a population at m homologous sites. This is assumed to be the finest empir-
ical resolution available to our experimenter. The mutation model is typically a reversible
Markov model on the nucleotide state space {A,C,G,T} under the assumption of indepen-
dence across sites. The conditional probability P(uo|φ) that is proportional to the likelihood
of φ is computed by integrating over all ancestral nucleotide states using a product-sum al-
gorithm [15] for each coalescent tree ct in the coalescent tree space CnTn that is distributed
according to φ .

Exact maximum likelihood estimation (e.g. [7, 23, 53]) as well as exact posterior sam-
pling [41] is only feasible for small sample sizes (n≤ 4). The standard approach is to rely on
Monte Carlo Markov chain (MCMC) algorithms [21, 36] to obtain dependent samples from
the posterior under the assumption that the algorithm has converged to the desired stationary
distribution. Unfortunately, there are no proven bounds for the burn-in period and thin-out
rate that are needed to obtain Monte Carlo standard errors [27] from the MCMC samples.
Thus, there is no guarantee that an MCMC sampler is indeed close to the desired station-
ary distribution over CnTn [37, 38]. Moreover, polymorphic sites are typically bi-allelic in
human population genomic data. Thus, one need not have a finite state Markov model of
mutations to explain most of the observed data patterns and can thereby circumvent the
computational demands on evaluating the likelihood at the finest resolution of the MSA.
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3.2 Binary Incidence Matrix

We assume the ancestral nucleotides are known, and at most one derived nucleotide occurs
at each site among the sampled sequences (such bi-allelic data is common and sites showing
ancestral and derived characters are commonly referred to as single nucleotide polymor-
phisms or SNPs). Then from the aligned sequence data u, we obtain a BIM v ∈ V m

n :=
{0,1}n×m by replacing all ancestral states with 0 and derived states with 1.

BIM data is modelled by superimposing Watterson’s infinitely-many-sites (IMS) model
of mutation [51] over an n-coalescent sample genealogy [31, 32]. We can conduct inference
on the basis of the observed binary incidence matrix or BIM v using existing importance
sampling methods (e.g. [1, 5, 18, 19, 26, 45, 46]). In this study we are not interested in
inference on the basis of the observed BIM at a single locus, but instead on its SFS, a further
summary of BIM.

3.3 Site Frequency Spectrum

We can obtain the site frequency spectrum x from the BIM v via its site sum spectrum or SSS
w. With w denoting the vector of column sums of v, the SFS x is the vector of frequencies of
occurrences of each positive integer in w. Thus the i-th entry of x records at how many sites
exactly i sequences in u show the derived state. We assume that no site displays only the
derived state. Thus, x has only n−1 entries. Figure 5 depicts the BIM v, SSS w and SFS x
on the right for a sample of four individuals with the genealogical and mutational history on
the left. Next, we describe the basic probability models required to compute the likelihood
of SFS.

Fig. 5 At most one mutation per site under the infinitely-many-sites model are superimposed as a homoge-
neous Poisson process upon the realization of identical coalescent trees at nine homologous SITES labeled
{1,2, . . . ,9} that constitute a non-recombining locus from four INDividuals labeled {1,2,3,4}.
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3.3.1 Inference under the Unlabeled n-Coalescent

For a given coalescent tree ct ∈ CnTn, let the map:

L(ct) = l := (l1, l2, . . . , ln−1) : CnTn →Ln := Rn−1
+ (3.1)

compress the tree ct into the n− 1 lineage lengths that could lead to singleton, doubleton,
. . . , and “(n−1)-ton” observations of mutationally derived states, respectively, i.e., li is the
length of all the lineages in ct that subtend i samples or leaves. For example in Fig. 5, (i) the
bold lineage of the tree with label set L = {1,2,3,4} upon which the mutations at sites 3 and
6 occur, lead to singleton mutations, (ii) the bold-dashed lineage upon which the mutation
at site 7 occurs leads to doubleton mutations and (iii) the thin-dashed lineage upon which
mutations at sites 2 and 9 occur lead to tripleton mutations. Thus, l1, l2 and l3 are the lengths
of these three types of lineages, respectively. Finally, l• := ∑n−1

i=1 li ∈R+ is the total length of
all the lineages of the tree ct that are ancestral to the sample since the most recent common
ancestor at each one of the m sites at our locus. Now, let l̄i := li/l• be the relative length
of lineages that subtend i leaves at each site. Now, define l̄ := (l̄1, l̄2, . . . , l̄n−1) ∈ 9n−2, the
(n− 2)-unit-simplex containing all l̄ ∈ Rn−1

+ such that ∑n−1
i=1 l̄i = 1. Then, if L(ct) = l, the

following conditional probability of x is given by the Poisson-Multinomial distribution:

P(x|φ , ct) = P(x|φ , l) = e−φ1ml•(φ1ml•)s
n−1

∏
i=1

l̄xi
i /

n−1

∏
i=1

xi!, (3.2)

where, s = ∑n−1
i=1 xi is the number of segregating sites. The distribution on CnTn is given

by the φ2-indexed n-coalescent approximation of the sample genealogy in an exponentially
growing Wright-Fisher model. This distribution on CnTn in turn determines the distribu-
tion of the random vector L on Ln. We employ the appropriate lumped Markov process to
efficiently obtain P(φ |x) as per Remark 2.

Remark 2 Kemeney & Snell [29, p. 124] observe the following about a lumped process: “It
is also often the case in applications that we are only interested in questions which relate to
this coarser analysis of the possibilities. Thus it is important to be able to determine whether
the new process can be treated by Markov chain methods.”

By lumping the states we are doing far fewer summations during the integration of proba-
bilities over the hidden space of f -sequences, as opposed to c-sequences, when evaluating
the likelihood of the observed SFS. The extent of this lumping as |Fn|/|Cn|, the ratio of the
number of integer partitions of n and the n-th Bell number for a range of sample sizes is
tabulated below.

n = |Hn| 4 10 30 60 90

|Cn| 15 1.2×105 8.5×1023 9.8×1059 1.4×10101

|Fn| 5 42 5.6×103 9.7×105 5.7×107

|Fn|/|Cn| 0.33 3.6×10−4 6.6×10−21 9.9×10−55 4.0×10−94

Using the unlabeled n-coalescent we can directly prescribe the φ -indexed family of mea-
sures over X m

n and obtain the sampling distribution over X m
n , i.e., the probability of an

SFS x ∈ X m
n when conditioned on the parameter φ and an f -sequence f ∈ Fn. Recall

P(x|φ , ct) = P(x|φ , l), where l = L(ct), as in Eq. (3.2). We show that l is determined by
the f -matrix f = F( f ) of the f -sequence f = F(c) of the c-sequence c and the epoch-times
vector t of the coalescent tree ct.
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Proposition 5 (Probability of SFS given f -sequence and epoch-times) Let ct ∈ CnT be
a given coalescent tree, c be its c-sequence, f = F(c) be its f -sequence, f = F( f ) be its
f -matrix and t = (t2, t3, . . . , tn) ∈ (0,∞)n−1 be its epoch times as a column vector and its
transpose tT be the corresponding row vector. Then, L(ct) = l of Eq. (3.1) is given by the
following matrix multiplications:

l = tTf =

(
n

∑
i=2

ti fi,1,
n−1

∑
i=2

ti fi,2, . . .
2

∑
i=2

ti fi,n−1

)
. (3.3)

More succinctly, l j = ∑n+1− j
i=2 ti fi, j for j = 1,2, . . . ,n− 1. And the probability of an SFS x

given a vector of epoch-times t ∈ (0,∞)n−1 and any coalescent tree ct ∈ F−1( f )t := {ct : c ∈
F−1( f )} is:

P(x|φ , ct) = P(x|φ , l) = P
(
x|φ , tTf

)

=
1

∏n−1
i=1 xi!

exp



−φ1m
n−1

∑
j=1

n+1
− j

∑
i=2

ti fi, j







φ1m
n−1

∑
j=1

n+1
− j

∑
i=2

ti fi, j





∑n−1
i=1 xi

n−1

∏
i=1





n+1
− j

∑
i=2

ti fi, j




n−1

∑
j=1

n+1
− j

∑
i=2

ti fi, j





−1



xi

. (3.4)

Proof The proof of Eq. (3.3) is merely a consequence of the encoding of f as the matrix f
and Eq. (3.4) follows from Eqs. (3.3) and (3.2). 01

The computation of l from t and f requires at most n2−2n+1 multiplications and additions
over R. Exploiting the predictable sparseness of f is more efficient especially for large n.
Thus, given the parameter φ = (φ1,φ2) and a sample size n, we can efficiently draw SFS
samples from X m

n via Alg. 1.

Algorithm 1 SFS Sampler under Kingman’s unlabeled n-coalescent
1: input:

1. scaled mutation rate φ1 per site
2. sample size n
3. number of sites m at the locus

2: output: an SFS sample x from the standard neutral n-coalescent
3: generate an f -sequence f either under {F↑(k)}k∈[n]− or {F↓(k)}k∈[n]+

4: draw t ∼ T = (T2,T3, . . . ,Tn)∼
⊗n

i=2
( i

2
)
e−( i

2)ti , or as desired from Rn−1
+

5: draw x from the ( f , t)-dependent Poisson-Multinomial distribution of Eq. (3.4)
6: return: x

Note that Alg. 1 is quite general since the only restriction on t in step 4 is that it be a
positive real vector. Thus, any indexed family of measures over (0,∞)n−1, including non-
parametric ones, may be used provided the c-sequence c and its f -sequence f = F(c) are
drawn from the labeled n-coalescent and the corresponding unlabeled n-coalescent, respec-
tively, in an exchangeable manner that is independent of the epoch-times vector t.

Next we study one f -sequence in detail as it is an interesting extreme case that will
resurface in the sequel.
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Example 3 (completely unbalanced tree) Let the f -sequence f ! ∈ Fn denote that of the
completely unbalanced tree. Its probability based on Eqs. (2.8) and (2.9) are:

f ! := ( f !
1 , f !

2 , . . . , f !
n ), where, f !

i = (i−1)e1 + e(n−i+1), (3.5)

P( f !) =
2

∏
i=n

P( f !
i−1| f !

i ) =
2

∏
i=n−1

(i−1)1
i(i−1)/2

=
2n−2

(n−1)!
. (3.6)

The number of c-sequences corresponding to it is |F−1( f !)| = n!/2.

The posterior distribution P(φ |x) ∝ P(x|φ)P(φ) over ΦΦ is the object of inferential inter-
est. For an efficient inference based on SFS x, we first investigate the topological information
about the tree ct that the SFS x was realized upon. We are only interested in this informa-
tion provided by the drawn x and thus can only resolve the topology of ct up to equivalence
classes of F−1( f ), where f is the f -sequence corresponding to the c-sequence of ct. For
samples of size 2 ≤ n ≤ 3 there is only one f -sequence in Fn. For samples with n ≥ 4,
consider the following mapping of the SFS x ∈ X m

n into vertices of the unit hyper-cube
{0,1}n−1, a binary encoding of 2{1,2,...,n−1}, the power set of {1,2, . . . ,n−1}:

X"(x) = x" := (x"
1 , . . . ,x"

n−1) := (11N(x1), . . . ,11N(xn−1)) : X m
n → {0,1}n−1.

If x"
h = 1 then the h-th entry of the SFS x is at least one, i.e., xh > 0. Thus, X"(x) = x"

encodes the presence or absence of at least one site’s ancestral lineage that has been hit
by a mutation while subtending h samples, where h ∈ {1,2, . . . ,n− 1}. Next, consider the
following two sets of f -sequences:

!n(x") :=
⋃

{h: x"
h =1}

{ f ∈Fn :
n

∑
i=1

fi,h = 0}, #!n(x") := Fn \!n(x"). (3.7)

The set of f -sequences !n(x") and its complement #!n(x") play a fundamental role in in-
ference from an SFS x and its X" = x". Note that when an SFS x has none of the xi’s equal-
ing 0, then its x" = (1,1, . . . ,1) and #!n(x") only contains the f -sequence corresponding
to the completely unbalanced tree f ! given by Eq. (3.5). At the other extreme, when an
SFS x has all its xi’s equaling 0 with x" = (0,0, . . . ,0), we are unable to discriminate among
f -sequences since #!n(x") = Fn. Thus,

#!n(0,0, . . . ,0) = Fn and #!n(1,1, . . . ,1) = { f !}. (3.8)

Therefore, the size of #!n(x") can range from 1 to |Fn|, depending on x". More generally,
we have the following Proposition.

Proposition 6 (Likelihood of SFS) For any t ∈ (0,∞)n−1 and any x ∈ X m
n with x" =

X"(x),

If f ∈!n(x") and l = tT ·F( f ) then
n−1

∏
i=1

l̄xi
i = 0. (3.9)

Therefore, the likelihood of SFS x is proportional to:

P(x|φ) =
1

∏n−1
i=1 xi!

∑
f∈#!n(x")

P( f )




∫

t∈(0,∞)n−1



exp



−φ1m
n−1

∑
j=1

n+1
− j

∑
i=2

ti fi, j







φ1m
n−1

∑
j=1

n+1
− j

∑
i=2

ti fi, j





∑n−1
i=1 xi

n−1

∏
i=1





n+1
− j

∑
i=2

ti fi, j




n−1

∑
j=1

n+1
− j

∑
i=2

ti fi, j





−1




xi


dP(t|φ)



 . (3.10)
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Proof We first prove the implication in Eq. (3.9). Given any t ∈ (0,∞)n−1 and any x ∈X m
n

with x" = X"(x), let f ∈ !n(x"). First, suppose x"
h = 0 for every h ∈ {1,2, . . . ,n− 1},

then !n(x") = /0 and we have nothing to prove. Now, suppose there exists some h such that
x"

h = 1, or equivalently xh > 0, then by the constructive definition of !n(x"), we have that
for any f ∈!n(x") ∑n

i=1 fi,h = 0, which implies that fi,h = 0 for every i ∈ {1,2, . . . ,n} since
fi, j ≥ 0. Therefore, by applying this implication to the expression for lh in Prop. 5, we have
that lh = ∑n+1−h

i=2 ti fi,h = 0 and finally the desired equality that ∏n−1
i=1 l̄xi

i = 0 in Eq. (3.9) is a
consequence of l̄xh

h = (lh/l•)xh = 0xh = 0.
Next we prove Eq. (3.10). For simplicity, we abuse notation and write P(·) to denote the

probability as well as the probability density under the appropriate dominating measure. Re-
peated application of the definition of conditional probability and the neutral structure of the
n-coalescent model leads to the following expression for P(x,φ) in P(x|φ) = P(x,φ)/P(φ).

P(x,φ) = ∑
c∈Cn

∫

t∈(0,∞)n−1
P(x,φ , t,c) = ∑

f∈Fn

∫

t∈(0,∞)n−1
P(x,φ , t, f )

= ∑
f∈Fn

∫

t∈(0,∞)n−1
P(x|φ , t, f )P(φ , t, f )

= ∑
f∈Fn

P( f )
∫

t∈(0,∞)n−1
P

(
x|φ , l = tT ·F( f )

)
P(t|φ)P(φ)

since, by independence of f and (φ , t)

P(φ , t, f ) = P( f |φ , t)P(φ , t) = P( f )P(φ , t) = P( f )P(t|φ)P(φ).

Thus, by letting F( f ) = f, the likelihood of the SFS x is:

P(x|φ) = P(x,φ)/P(φ) = ∑
f∈Fn

P( f )
∫

t∈(0,∞)n−1
P

(
x|φ , l = tT · f

)
dP(t|φ).

Substituting for P(x|φ , l = tT · f) from Prop. 5 and only summing over f ∈ #!n(x") with
non-zero probability P(x|φ , l = tT · f), we get the discrete sum weighted by integrals on Tn :=
(0,∞)n−1, the required equality in Eq. (3.10). 01

Next we devise an algorithm to estimate P(x|φ), the probability of an observed SFS x
given a parameter φ . This is accomplished by constructing a Markov chain {F$x"(k)}k∈[n]+
on the state space Fx"

n ⊂ Fn× {0,1}n−1 such that every sequence of states visited by this
chain yields a probable f -sequences f for the observed SFS x, i.e., f ∈ #!n(x"). In this
paper, we focus on small n ∈ {4,5, . . . ,10} and exhaustively sum over all f ∈ #!n(x")
that are unique sequential realizations of {F$x"(k)}k∈[n]+ . The maximal number of such
f -sequences is:

max
x"∈{0,1}n−1

∣∣#!n(x")
∣∣ =

∣∣#!n((0,0, . . . ,0))
∣∣ = |Fn| .

A breadth-first search on the transition graph of {F$x"(k)}k∈[n]+ revealed that

|Fn| = 2,4,11,33,116,435,1832, . . . ,6237505, as n = 4,5,6,7,8,9,10, . . . ,15,

respectively. Our computations are in agreement with similar numerical calculations of |Fn|
in [10, Sec. 2]. This x"-indexed family of 2n−1 Markov chains {F$x"(k)}k∈[n]+ over state
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1

Fig. 6 Transition diagram of {F$x" (k)}k∈[5]+ over states in Fx"
n . The simplified diagram replaces the states

that do not affect the transitions, namely, x"
1 and x"

2 , with ∗ ∈ {0,1}.

spaces contained in Fn × {0,1}n−1 may also be thought of as a controlled Markov chain
(e.g. [9, §7.3]) over the state space Fn with control space {0,1}n−1 that can produce the
desired f -sequences in #!n(x").

Optimal importance sampling by using the sequential realizations of {F$x"(k)}k∈[n]+
and its continuous time variant as a proposal distribution in order to get the Monte Carlo
estimate of P(x|φ) for larger n is necessary and possible. However, this is a subsequent
problem in variance reduction of the Monte Carlo estimate for large values of n that depends
further on the precise nature of φ -indexed measures on CnTn.

Proposition 7 (A Proposal over #!n(x")) For a given SFS x ∈ X m
n and X"(x) = x" ∈

{0,1}n−1, consider the discrete time Markov chain {F$x"(k)}k∈[n]+ over the state space
of ordered pairs ( fi′ ,zi′) ∈ Fx"

n ⊂ Fn× {0,1}n−1, with the initial state given by ( f1,x") =
((0,0, . . . ,1),x"), the transition probabilities obtained by a controlled reweighing of the
transition probabilities of {F↓(k)}k∈[n]+ over Fn as follows:

P(( fi′ ,zi′)|( fi,zi)) =

{
P( fi′ | fi)/Σ( fi,zi) : if ( fi,zi)≺ f ,z ( fi′ ,zi′),
0 : otherwise,

(3.11)

where,
Σ( fi,zi) = ∑

( j,k)∈Ξ( fi,zi)
P( fi− e j+k + e j + ek| fi),

Ξ( fi,zi) :=
{
( j,k) : fi, j+k > 0, 1≤ j ≤ ĵ ≤ k ≤ j + k−1

}
,

ĵ := max
{

min
{

max{! : zi,! = 1}, j + k−1
}

,

⌈
j + k

2

⌉}
,
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( fi,zi)≺ f ,z ( fi′ ,zi′) ⇐⇒
{

fi′ = fi + e j + ek− e j+k,( j,k) ∈ Ξ( fi,zi), and
zi′ = zi−11{1}(zi, j)e j−11{1}(zi,k)ek,

and with ( fn,(0,0, . . . ,0)) = ((n,0, . . . ,0),(0,0, . . . ,0)) as the final absorbing state.
Let F x"

n be the set of sequential realizations of the first component of the ordered pairs
of states visited by {F$x"(k)}k∈[n]+ , i.e.

F x"
n := { f = ( fn, fn−1, . . . , f1) : fi ∈ F(i)

n ,( fi,zi)≺ f ,z ( fi+1,zi+1),z1 = x"}.

Then F x"
n = #!n(x").

Proof We will prove that F x"
n = #!n(x") for three cases after noting that the ortho-normal

basis vector ei in {0,1}n−1 and Fn takes the appropriate dimension. The first two cases
involve constructive proofs.

Case 1: Suppose x" = (0,0, . . . ,0). Since #!n(x") = Fn by Eq. (3.8), we need to show
that F x"

n = Fn. Initially, at time step 1,

F$x"
(1) = ( f1,z1) = ( f1,x") = ((0,0, . . . ,0,1),(0,0, . . . ,0))

Note that for any time step i, zi in the current state ( fi,zi) remains at (0,0, . . . ,0). Thus,
max{! : zi,! = 1} = max{ /0} =−∞ and therefore,

ĵ := max
{

min
{

max{! : zi,! = 1}, j + k−1
}

,

⌈
j + k

2

⌉}
=

⌈
j + k

2

⌉
, and

Ξ( fi,zi) :=
{

( j,k) : fi, j+k > 0, 1≤ j ≤
⌈

j + k
2

⌉
≤ k ≤ j + k−1

}
.

Therefore, the first component of the chain can reach all states in Fn that are immediately
preceded by fi under≺ f making Σ( fi,zi) = 1. Thus, when x" = (0,0, . . . ,0) our fully uncon-
trolled Markov chain {F$x"(k)}k∈[n]+ visits states in Fn in a manner identical to the Markov
chain {F↓(k)}k∈[n]+ over Fn. Therefore, F x"

n = Fn = #!n(x") when x" = (0,0, . . . ,0).
Case 2: Suppose x" = (1,1, . . . ,1). Since #!n(x") = { f !} by Eq. (3.8), we need to

show that F x"
n = { f !}. Initially, at time step 1,

F$x"
(1) = ( f1,z1) = ( f1,x") = ((0,0, . . . ,0,1),(1,1, . . . ,1,1))

then fi, j+k > 0 =⇒ j + k = n, max{! : z1,! = 1} = max{1,2, . . . ,n−1} = n− 1, ĵ =
max{min{n−1,n−1},<n/2=} = n−1 and

Ξ( f1,z1) =
{
( j,k) : fi, j+k > 0, 1≤ j ≤ n−1≤ k ≤ n−1} = {(1,n−1)

}
.

Thus, the only state that is immediately preceded by ( f1,z1) is our next state ( f2,z2) = ( f1−
en + e1 + en−1,z1−11{1}(z1,1)e1−11{1}(zi,n−1)en−1) with probability 1 due to the equality of
the numerator and denominator in Eq. (3.11):

( f1,z1)≺ f ,z ( f2,z2) = ((1,0, . . . ,1,0),(0,1, . . . ,1,0)) = F$x"
(2)

In general, at time step i, Ξ( fi,zi) = {(1,n− i)}, P(( fi+1,zi+1)|( fi,zi)) = 1 and

fi+1 = f1−
n

∑
j=1

e j +
i

∑
j=1

e1 +
i

∑
j=1

en− j = en−i + ie1, zi+1 = x"− e1−
n

∑
j=i

e j−1.
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By Eq. (3.5), fi+1 = en−i + ie1 = f !
i+1 and we get the desired f ! = ( f !

n , f !
n−1, . . . , f !

1 ) in
the forward direction as the only realization over Fn of our fully controlled Markov chain
{F$x"(k)}k∈[n]+ . Therefore, F x"

n = { f !} = #!n(x") when x" = (1,1, . . . ,1).
Case 3: Now, suppose x" ∈ {0,1}n−1 \ {(0,0, . . . ,0),(1,1, . . . ,1)}. First, we will show

that f ∈F x"
n implies that f ∈ #!n(x") or equivalently that f /∈ !n(x"). We will prove by

contradiction. Assume f ∈F x"
n . Suppose that f ∈!n(x"). Then by Eq. (3.7), there exists an

h with x"
h = 1 such that ∑n

i=1 fi,h = 0. Since ∑n
i=1 fi,1 > 0 and ∑n

i=1 fi,2 > 0 for every f ∈Fn,
with n > 2, h ∈ {3,4, . . . ,n− 1}. Recall that ∑n

i=1 fi,h = 0 implies that there was never a
split of any lineage that birthed a child lineage subtending h leaves at any time step in the
sequential realization of f = ( f1, f2, . . . , fn) over Fn by {F$x"(k)}[n]+ . This contradicts our
assumption that f ∈F x"

n as it violates the constrained splitting imposed by Ξ( fi,zi) at the
time step i when max{! : zi,! = 1} = h in the definition of ĵ. So, our supposition that f ∈
!n(x") is false. Therefore, if f ∈F x"

n then f ∈ #!n(x"). Next, we will show f ∈ #!n(x")
implies that f ∈F x"

n . Assume that f ∈ #!n(x"), then ∑n
i=1 fi,h > 0 for every h∈ {h : x"

h = 1}
by Eq. (3.7). This means that for each h with x"

h = 1 there is at least one split in f that birthed
a child lineage subtending h leaves. Since this splitting condition satisfies the constraints
imposed by Ξ( fi,zi) at each time step i when max{! : zi,! = 1} = h, h ∈ {h : x"

h = 1}, in
the definition of ĵ, this f can be sequentially realized over Fn by {F$x"(k)}[n]+ . Therefore,
if f ∈ #!n(x") then f ∈F x"

n . 01

Thus, given φ1 and an x", we can efficiently propose SFS samples from X m
n , such that

the underlying f -sequence f belongs to #!n(x"), using Alg. 2. Note however that a further
straightforward importance sampling step using Eqs. (3.11) and (2.11) is needed to obtain
SFS samples that are distributed over X m

n according to the unlabeled n-coalescent over
#!n(x").

Algorithm 2 SFS Proposal under an x"-controlled unlabeled n-coalescent
1: input:

1. scaled mutation rate φ1 per site
2. number of sites m at the locus
3. observed x" (note that sample size n = |x"|+1)

2: output: an SFS sample x such that the underlying f -sequence f ∈ #!n(x")
3: generate an f -sequence f under {F$x" (k)}k∈[n]+

4: draw t ∼ T = (T2,T3, . . . ,Tn)∼
⊗n

i=2
( i

2
)
e−( i

2)ti , or as desired from Rn−1
+

5: draw x from the ( f , t)-dependent Poisson-Multinomial distribution of Eq. (3.4)
6: return: x

3.4 Linear experiments of the site frequency spectrum

We describe a method to obtain the conditional probability P(r|φ , ct), where r = Rx is a set
of classical population genetic statistics that are linear combinations of the site frequency
spectrum x, φ is the vector of parameters in the population genetic model and ct is the
underlying coalescent tree upon which mutations are superimposed to obtain the data. The
conditional probability is obtained by an appropriate integration over

R−1(r) := {x : x ∈ Zn−1
+ ,Rx = r}.
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R−1(r) is called a fiber.
We want to compute P(r|φ), since the posterior distribution of interest is P(φ |r) ∝

P(r|φ)P(φ). Furthermore, we assume a uniform prior over a biologically sensible grid of
φ values and evaluate P(r|φ) over each φ in our grid. More precisely, we have:

P(r|φ , ct) = P(r|φ , l = L(ct)) = ∑
x∈R−1(r)

P(x|φ , l), (3.12)

P(r|φ) =
∫

l∈Ln
P(r|φ , l)P(l|φ) =

∫

l∈Ln
∑

x∈R−1(r)
P(x|φ , l)P(l|φ). (3.13)

We can approximate the two integrals in Eq. (3.13) by the finite Monte Carlo sums,

P(r|φ)≈ 1
N

N

∑
j=1

1
M

M

∑
h=1,

x(h)∈R−1(r)

P(x(h)|φ , l( j)), l( j) ∼ P(l|φ). (3.14)

The inner Monte Carlo sum approximates ∑x P(x|φ , l) over M x(h)‘s in R−1(r) and the outer
Monte Carlo sum over N different l( j)‘s can be obtained from simulation under φ . Therefore,
P(φ |r) ∝ P(r|φ)P(φ)

≈ 1
N

N

∑
j=1

1
M

M

∑
h=1,

x(h)∈R−1(r)

P(x(h)|φ , l( j)), l( j) ∼ P(l|φ)P(φ).

If |R−1| is not too large, say less than a million, then we can do the inner summation exactly
by a breadth-first traversal of an implicit graph representation of R−1(r). In general, the sum
over R−1(r) is accomplished by a Monte Carlo Markov chain on a graph representation
of the state space R−1(r) that guarantees irreducibility. This article is mainly concerned
with the application of Markov bases to facilitate these integrations over R−1(r). Although
Markov bases were first introduced in the context of exact tests for contingency tables [8],
we show in this article that they can also be used to obtain the posterior distribution P(φ |ro)
of various observed population genetic statistics ro.

Definition 1 (Markov Basis) Let R be a q× (n− 1) integral matrix. Let MR be a finite
subset of the intersection of the kernel of R and Zn−1. Consider the undirected graph G r

R,
such that (1) the nodes are all lattice points in R−1(r) and (2) edges between a node x and
a node y are present if and only if x− y ∈ MR. If G r

R is connected for all r with G r
R #=

/0, then MR is called a Markov basis associated with the matrix R. We refer to an m :=
(m1, . . . ,m(n−1)) ∈MR as a move.

A Markov basis can be computed with computational commutative algebraic algorithms
[8] implemented in algebraic software packages such as Macaulay 2 [17] and 4ti2 [22].
Monte Carlo Markov chains constructed with moves from MR are irreducible and can be
made aperiodic, and are therefore ergodic on the finite state space R−1(r). An ergodic
Markov chain is essential to sample from some target distribution on R−1(r) using Monte
Carlo Markov chain (MCMC) methods.
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3.4.1 Number of Segregating Sites

A classical statistic in population genetics is S, the number of segregating sites [51]. It can
be expressed as the sum of the components of the SFS x:

S(x) :=
n−1

∑
i=1

xi = s : X m
n →S m

n . (3.15)

S is the statistic of the n-coalescent experiment X013 := (S m
n ,σ(S m

n ),P ΦΦ ). For some
fixed sample size n at m homologous and at most bi-allelic sites, let the s-simplex S−1(s) =
{x ∈X m

n : S(x) = s} denote the set of SFS that have the same number of segregating sites s.
The size of S−1(s) is given by the number of compositions of s by n−1 parts, i.e., |S−1(s)|=(s+n−2

s
)
. The conditional probability of S is Poisson distributed with rate parameter given by

the product of the total tree size l• := ∑n−1
i=1 li, number of sites m and the per-site scaled

mutation rate parameter φ1 in φ

P(S = s|φ , ct) = P(S = s|φ , l) = ∑
x∈S−1(s)

P(x|φ , l)

= ∑
x∈S−1(s)

e−φ1ml•(φ1ml•)s
n−1

∏
i=1

l̄xi
i

(
n−1

∏
i=1

xi!

)−1

= e−φ1ml•(φ1ml•)s/s!

3.4.2 Heterozygosity

Another classical summary statistic called average heterozygosity is also a symmetric lin-
ear combination of SFS x [47]. We define heterozygosity Z(x) = z and average pair-wise
heterozygosity Π(x) = π for the entire locus as follows:

Z(x) :=
n−1

∑
i=1

i(n− i)xi, Π(x) :=
1(n
2
)Z(x). (3.16)

Z is the statistic of the n-coalescent experiment X012 := (Z m
n ,σ(Z m

n ),P ΦΦ ). For some
fixed sample size n at m homologous and at most biallelic sites, consider the set of SFS that
have the same heterozygosity z denoted by Z−1(z) = {x∈X m

n : Z(x) = z}. This set is the in-
tersection of a hyper-plane with X m

n . The conditional probability P(Z|φ , ct) = P(Π |φ , ct) =
P(Z = z|φ , l) is

P(Z = z|φ , l) = ∑
x∈Z−1(z)

P(x|φ , l) = e−φ1ml• ∑
x∈Z−1(z)

(φ1ml•)∑n−1
i=1 xi ∏n−1

i=1 l̄xi
i

∏n−1
i=1 xi!

.

3.4.3 Tajima’s D

Tajima’s D statistic [47] for a locus only depends on the number of segregating sites of
Eq. (3.15), average pair-wise heterozygosity of Eq. (3.16) and the sample size n, as follows:

D(x) :=
Π(x)−S(x)/d1√

d3S(x)+d4S(x)(S(x)−1)
, (3.17)
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where, d1 := ∑n−1
i=1 i−1, d2 := ∑n−1

i=1 i−2,

d3 :=
n+1

3d1(n−1)
− 1

d2
1
, d4 :=

1
d2

1 +d2

(
2(n2 +n+3)

9n(n−1)
− n+2

nd1
+

d2

d2
1

)
.

Thus, Tajima’s D is a statistic of X012×X013, a product n-coalescent experiment. Let r =
(s,z)′ for a given sample size n. Observe that fixing n and r also fixes the average heterozy-
gosity π and Tajima’s d. Next we will see that inference based on s, π and d for a fixed
sample size n depends on the kernel or null space of the matrix R given by:

R :=
(

1 . . . 1 . . . 1
1(n−1) . . . i(n− i) . . . (n−1)(n− (n−1))

)
.

The space of all possible SFS x for a given sample size n is the non-negative integer lattice
Zn−1

+ . Let the intersection of {x : Rx = r} with Zn−1
+ be the set:

R−1(r) :=
{

x ∈ Zn−1
+ : Rx = r

}
.

Since n is fixed, every SFS x in R−1(r) has the same s, z, π and d.

Fig. 7 A: Polytopes containing R−1((s,z)′), where z ∈ {30,31, . . . ,40}, n = 4 and s = 10 are at the in-
tersection of the s-simplex, Z3

+ and each of the z-simplexes. B: Projected rectangular polytopes containing
R−1((s,z)′), where z ∈ {20,22, . . . ,30}, n = 5 and s = 5 (see text).

When n = 4 we can visualize any SFS x∈R−1(r) using Cartesian coordinates. Let R1 =
(1,1,1) and R1

−1(s) := {x ∈ Z3
+ : ∑3

i=1 xi = s}, the set of SFS with s segregating sites, be
formed by the intersection of Z3

+ with the the s-simplex given by x3 = s−x1−x2. Figure 7 A
shows R1

−1(10), the set of 66 SFS with 10 segregating sites, as colored balls embedded in
the orange s-simplex with s = 10. Similarly, with R2 = (3,4,3), R2

−1(z) := {x ∈Z3
+ : 3x1 +

4x2 + 3x3 = z} is the set of SFS at the intersection of Z3
+ with the z-simplex given by x3 =

(z−3x1−4x2)/3. Figure 7 A shows three z-simplexes for z = 30,35 and 40, in hues of violet,
turquoise and yellow, respectively. Finally, the intersection of a z-simplex, s-simplex and Z3

+
is our polytope R−1((s,z)′), the set of SFS that lie along the line (x1,z−3s,−z+4s−x1). In
Fig. 7 A, as z ranges over {30,31, . . . ,40}, (1) the z-specific hue of the set of balls depicting
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the set R−1((10,z)′) ranges over {violet,blue, . . . ,yellow}, (2) |R−1((10,z)′)| ranges over
{11,10, . . . ,1} and (3) Tajima’s d ranges over {−0.83,−0.53, . . . ,+2.22}, respectively. For
example, there are eleven SFS in R−1((10,30)′) and their Tajima’s d =−0.83 (purple balls
in Fig. 7 A) and there is only one SFS in R−1((10,40)′) = {(0,10,0)} such that its Tajima’s
d = +2.22 (yellow ball in Fig. 7 A).

Analogously, when n = 5, we can project the first three coordinates of x, since x4 = s−
x1− x2− x3. The intersection of the s-simplex, z-simplex and Z4

+ gives our set R−1((s,z)′)
in the rectangular polytope via the parametric equation (x1,x2,z/2−2s− x2,3s− z/2− x1)
with 0≤ x1 ≤ 3s− z/2, 0≤ x2 ≤ s. In Fig. 7 B, as z ranges over {20,22,24,26,28,30}, (1)
the z-specific hue of the set of balls depicting the set R−1((5,z)′) in the projected polytope
ranges over {violet,blue, . . . ,yellow}, (2) |R−1((5,z)′)| ranges over {6,10,12,12,10,6} and
(3) Tajima’s d ranges over {−1.12,−0.56,0.00,+0.56,+1.69}, respectively.

Unfortunately, |R−1((s,z)′)| grows exponentially with n and for any fixed n it grows
geometrically with s. Thus, it becomes impractical to explicitly obtain R−1(r) for reason-
able sample sizes (n > 10). For small sample sizes we used Barvinok’s cone decomposition
algorithm [2] as implemented in the software package LattE [34] to obtain |R−1((s,z)′)|
for 1000 data sets simulated under the standard neutral n-coalescent [25] with the scaled
mutation rate φ ∗1 = 10. As n ranged in {4,5, . . . ,10}, the maximum of |R−1((s,z)′)| over the
1000 simulated data sets of sample size n ranged in:

{73,940,6178,333732,1790354,62103612,190176626},

respectively. Thus, even for samples of size 10, there can be more than 190 million SFS with
exactly the same s and z. The SFS data in this simulation study with φ ∗1 = 10 corresponds to
an admittedly long stretch of non-recombining DNA sites. On the basis of average per-site
mutation rate in humans, this amounts to simulating human SFS data from n individuals
at a non-recombining locus that is 100kbp long, i.e., m = 105. Although such a large m
is atypical for most non-recombining loci, it does provide a good upper bound for m and
computational methods developed under a good upper bound are more likely to be efficient
for smaller m. Our choices of φ ∗1 and m are biologically motivated by a previous study on
human SNP density [42].

Thus |R−1((s,z)′)| can make explicit computations over R−1(r) impractical, especially
for larger n. However, there are two facts in our favor: (1) if we are only interested in an
expectation over R−1(r) (with respect to some concentrated density) for reasonably sized
samples (e.g. 4 ≤ n ≤ 120), then we may use a Markov basis of R−1(r) to facilitate Monte
Carlo integration over R−1(r) and (2) for specific summaries of SFS, such as the folded SFS
y := (y1,y2, . . . ,y$n/2%), where y j := 11{ j #=n− j}( j) x j +xn− j, one can specify the Markov basis
for any n.

The number of moves |MR| ranged over {2,4,6,8,14,12,26,520,10132} as n ranged
over {4,5, . . . ,9,10,30,90}, respectively. The Markov basis for R−1(r) when n = 4 is MR =
{(+1,0,−1),(−1,0,+1)}. From the example of Fig. 7 A we can see how R−1(r) can be
turned into a connected graph by MR for every r with S = 10. For instance, when r =
(10,36)′,

R−1(r) = {(0,6,4),(1,6,3),(2,6,2),(3,6,1),(4,6,0)}

and we can reach a neighboring SFS x̃ ∈ R−1(r) from any SFS x ∈ R−1(r) by adding
(+1,0,−1) or (−1,0,+1) to x, provided the sum is non-negative. When the sample size
n = 5, a Markov basis for R−1(r) is

MR = {(+1,0,0,−1),(−1,0,0,+1),(0,+1,−1,0),(0,−1,+1,0)}
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and once again we can see from Fig. 7 B that any element m ∈ MR can be added to any
x ∈R−1(r), for any r, to reach a neighbor within R−1(r), proviso quod, xi +mi ≥ 0,∀i. Note
that the maximum possible neighbors of any x ∈ R−1(r) is bounded from above by |MR|.

3.4.4 Folded Site Frequency Spectrum

The folded site frequency spectrum or FSFS y := (y1,y2, . . . ,y$n/2%) is essentially the SFS
when one does not know the ancestral state of the nucleotide. It is determined by the map
Y (x) = y : X m

n → Y m
n :

Y (x) := (Y1(x),Y2(x), . . . ,Y$n/2%(x)),
Yj(x) := x j11{ j #=n− j}( j)+ xn− j, j ∈ {1,2, . . . ,$n/2%} (3.18)

Y is the statistic of the n-coalescent experiment X011 := (Y m
n ,σ(Y m

n ),P ΦΦ ). The case
of the FSFS y is particularly interesting since a Markov basis is known for any sample size
n. Let ei be the i-th unit vector in Zn−1. A Markov basis of the set of y-preserving SFS
Y−1(y) := {x : Yx = y} can be obtained by considering the null space of the matrix Y,
whose i-th row Yi is:

Yi = 11{ j: j #=(n− j)}(i) ei + en−i, i = 1,2, . . . ,$n/2%.

A minimal Markov basis MY for Y−1(y) is known explicitly for any n and contains the
union of the following 2$n/2% moves only:

{
mi = ei− en−i, i = 1,2, . . . ,$n/2%,
mn−i =−ei + en−i, i = 1,2, . . . ,$n/2%.

The following algorithm can be used to make irreducible random walks in Y−1(y): (i)
Given an SFS x with folded SFS y, (ii) Uniformly pick j ∈ {1,2, . . . ,$(n− 1)/2%}, (iii)
Uniformly pick k ∈ { j,n− j}, (iv) Add +1 to xk and add−1 to x(n−k), provided x(n−k)−1≥
0, to obtain an y-preserving SFS x̃ from x.

Note that x and x̃ have the same folded SFS y and fixing y also fixes s, z, Tajima’s d and
other summaries that are symmetric linear combinations of the SFS x. Thus, MY ⊆ MR.
For instance, when n = 3, MY = MR = {(−1,+1),(+1,−1)} and we have already seen
that MY = MR when n = 4,5. However, when n ≥ 6 we may not necessarily have such
an equality, i.e., MY " MR. When n = 6 our MR has extra moves so that MR \MY =
{(+1,−4,+3,+0,+0),(−1,+4,−3,+0,+0)}. The size of the set Y−1(y) follows from a
basic permutation argument as:

|Y−1(y)| =
$ n−1

2 %
∏
i=1

(yi +1).

3.4.5 Other Linear Experiments of the Site Frequency Spectrum

In principle, we can compute a Markov basis for any conditional lattice G−1(g), such that
Gx = g∈Zk, for some k×(n−1) matrix G := (gi, j),gi, j ∈Z+. Specifically, it is straightfor-
ward to add other popular summaries of the SFS. Examples of such linear summaries range
from the unfolded singletons x1, folded singletons y1 := x1 + x(n−1) [24] and Fay and Wu’s
θH := (n(n−1))−1 ∑n−1

i=1 (2 i2 xi) [14].
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3.4.6 Integrating over Neighborhoods of Site Frequency Spectra

Recall that a Markov basis MR for an observed linear summary ro of the observed SFS xo
may be used to integrate some target distribution of interest over the set R−1(ro) := {x ∈
Zn−1

+ : Rx = ro}. Such an integration may be conducted deterministically or stochastically. A
simple deterministic strategy may entail a depth-first or a breadth-first search on the graph
G ro

R associated with the set R−1(ro) after initialization at xo. A simple stochastic strategy
may entail the use of moves in MR as local proposals for a Monte Carlo Markov chain
sampler (MCMC) that is provably irreducible on R−1(ro). Such an MCMC sampler can be
constructed, via the Metropolis-Hastings kernel for instance, to asymptotically target any
distribution over the set R−1(ro) := {x ∈ Zn−1

+ : Rx = ro}. Since every SFS state visited
by such an MCMC sampler is guaranteed to exactly satisfy ro, provided the algorithm is
initialized at the observed SFS xo and quickly converges to stationarity, one may hope to
vanish the acceptance-radius ε altogether in practical approximate Bayesian computations
that employ linear summaries of the SFS. One may use standard algebraic packages to com-
pute MR for reasonably large sample sizes (n < 200). Furthermore, for perfectly symmetric
summaries such as the folded SFS y we know a Markov basis for any n.

Unfortunately, the methodology is not immune to the curse of dimensionality. The set’s
cardinality (|R−1((s,z)′)|) grows exponentially with n and for any fixed n it grows geo-
metrically with the number of segregating sites s. This makes exhaustive integration of a
target distribution over R−1(ro) impractical even for samples of size 10 with a large num-
ber of segregating sites. Also, even if we were to approximate the integral via Monte Carlo
Markov chain with local proposals from the moves in MR, the number of possible neigh-
bors for some points in R−1(ro) may be as high as |MR|. For instance, when the sample size
n = 90, we may have up to 10132 moves. Such large degrees can lead to poor mixing of the
MCMC sampler, especially when the initial condition is at the tail of the target distribution.
However, there are some blessings that counter these curses. Firstly, the concentration of the
target distribution under the n-coalescent greatly reduces the effective support on R−1(ro).
Secondly, we can be formally interpolative in our integration strategy by exploiting the graph
G ro

R associated with the set R−1(ro) and the observed SFS xo. Instead of integrating a target
distribution over all of R−1(ro), either deterministically or stochastically, we can integrate
over a ball of edge radius α about the observed SFS xo:

R−1
α (ro) := {x ∈ Zn−1

+ : Rx = ro, ||x− xo||≤ α},

where, ||x− xo|| is the minimum number of edges between an SFS x and the observed SFS
xo. This integration over R−1

α (ro) may be conducted deterministically via a simple breadth-
first search on the graph G ro

R associated with the set R−1(ro) by initializing at xo. When a
deterministic breadth-first search becomes inefficient, especially for large values of α , one
may supplement with a Monte Carlo sampler that targets the distribution of interest over
R−1

α (ro). Since R−1
0 (ro) = {xo} and R−1

∞ (ro) = R−1(ro), one can think of R−1
α (ro) itself

as an α-family of summary statistics that interpolates between the observed SFS xo at one
extreme and the observed coarser summary ro at the other. For a given observation xo with its
corresponding ro and some reasonably large values of α , we can obtain R−1

α (ro) independent
of the target distribution via a single depth-first search. This is more efficient than a target-
specific Monte Carlo integration over R−1

α (ro) when we want to integrate multiple targets.
Thus, we can integrate any target or set of targets over R−1

α (ro) and thereby measure the
extent of posterior concentration as α decreases from ∞ at one extreme to 0 at the other.
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3.4.7 A Demographic Structured Population

Next we demonstrate the generality of the methodology by studying a more complex model
through linear summaries of more general summaries of the full data. For example, consider
data from two known sub-populations A and B with sample sizes nA and nB, respectively,
such that n = nA +nB. We can first summarize the data do into three vectors xA, xB and xAB

that can be thought of as a decomposition of the SFS based on sub-populations. Unlike the
full SFS x ∈ Zn−1

+ ,
xA := (xA

1 , . . . ,xA
nA) ∈ ZnA

+ ,

xB := (xB
1 , . . . ,xB

nB) ∈ ZnB
+ ,

xAB := (xAB
2 , . . . ,xAB

n−1) ∈ Zn−2
+ ,

where, xJ
i is the number of sites that have i samples only from sub-population J ∈ {A,B}

sharing a mutation (there are no mutations at these sites in the other sub-population). We
can think of xA and xB as sub-population specific SFS and xAB as the shared SFS. Thus, xAB

i
is the number of sites with a total of i samples (at least one sample from each population)
having a mutation. Observe that the full SFS x for the entire sample can be recovered from
the sub-population determined components as follows:

x1 = xA
1 + xB

1 ,x2 = xA
2 + xB

2 + xAB
2 , . . . ,xi = xA

i + xB
i + xAB

i , . . . ,xn−1 = xAB
n−1.

Now, let SA, SB and SAB be the number of segregating sites for A-specific, B-specific and
shared SFS, i.e.,

SA :=
nA

∑
i=1

xA
i , SB :=

nB

∑
i=1

xB
i , and SAB :=

n−1

∑
i=2

xAB
i .

Note that the total number of segregating sites is

S =
n−1

∑
i=1

xi = SA +SB +SAB.

We are interested in the sub-population determined SFS ẍ given by,

ẍ := (xA,xB,xAB) = (xA
1 , . . . ,xA

nA ,xB
1 , . . . ,xB

nB ,xAB
2 , . . . ,xAB

n−1) ∈ Z2n−2
+ .

We refer to ẍ as the structured SFS (SSFS).
Let the non-averaged pair-wise heterozygosity be z for the entire sample and be zA and

zB for sites segregating only within sub-population A and B, respectively, i.e.

zA :=
nA−1

∑
i=1

i(nA− i)xA
i , and zB :=

nB−1

∑
i=1

i(nB− i)xB
i .

Thus, the matrix R encoding the summary r = (SA,SB,SAB,zA,zB,z) is:

R :=





1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0 1 . . . 1

1(nA−1) . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 1(nB−1) . . . 0 0 . . . 0

1(n−1) . . . nA(n−nA) 1(n−1) . . . nB(n−nB) 2(n−2) . . . n−1




.

Observe that Tajima’s D for the entire sample as well as the sub-population specific DA

and DB computed from the sites that are segregating only within sub-population A and B,
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respectively, are also constrained by the six summaries. We could naturally add other linear
summaries of x, xA, xB and xAB.

Finally, we can compute a Markov basis for R and use it to run Monte Carlo Markov
chains on R−1(r) = {ẍ : Rẍ = r}. The final ingredient we need is the target distribution on
R−1(r) when given some structured n-coalescent tree cẗ simulated according to φ , i.e., we
need the probability P(ẍ|cẗ). This is also a Poisson multinomial distribution analogous to
the simpler case with the sample SFS. However, the compression is not as simple as the
total tree length (l•) and the relative time leading to singletons, doubletons, . . . , “n−1-tons”
(l ∈9n−2). Now, we need to divide the total length l• of the tree cẗ into the length of lineages
leading to mutations in sub-population A alone (lA

• ), in sub-population B alone (lB
• ) and those

leading to mutations in both sub-populations (lAB
• ). Note that l• = lA

• + lB
• + lAB

• . The products
of these three lengths lA

• , lB
• and lAB

• with φ1 specifies the Poisson probability of observing
SA, SB and SAB, respectively. To get the multinomial probabilities of xA, xB and xAB, we
do a sub-population-labeled compression of the structured n-coalescent tree cẗ into points
in three simplexes. First, we label all the lineages of cẗ leading exclusively to mutations in
sub-population A. Next we compress these labeled lineages into the relative time leading to
singletons, doubletons, . . . , “nA-tons” exclusively within sub-population A. These labeled
relative times yield lA ∈9nA−1. By an analogous labeling and compression of cẗ we obtain
lB ∈ 9nB−1. Finally, we obtain the probabilities lAB ∈ 9n−3 by labeling the lineages on cẗ
that lead to both sub-populations.

3.5 n-Coalescent Experiments Graph

Having defined each one of the n-coalescent experiments, we next define a graph of n-
coalescent experiments. This experiments graph sets a unified decision-theoretic stage that
allows one to appreciate the different asymptotic senses and the partially ordered graph of
sub-σ -algebras or graph filtrations that underlie these classical experiments in population
genetics.

Definition 2 (The Experiments Graph) Consider {Xα , α ∈ A}, an A-indexed set of ex-
periments. Let, Tα,β : Zα → Zβ , for some α,β ∈ A with σ(Zα) ⊃ σ(Zβ ) be a statistic
(measurable map). Let M be a set of such maps as well as the identity map. Then, the
directed graph of experiments GA,M with nodes {Xα , α ∈ A} and directed edges from a
node Xα to a node Xβ , provided there exists an Tα,β ∈M, is the experiments graph. Con-
sider the partial ordering AX induced on the experiments in {Xα , α ∈ A} by the maps in
M, i.e., Xα AX Xβ if and only if there exists a composition of maps from M given by
T ◦α,β := Tα,i ◦ Ti, j ◦ · · · ◦ Ti′, j′Tj′,β : Zα → Zβ , such that σ(Zα) ⊃ σ(Zβ ). Then, by con-
struction, (i) the random variables {Xα ,α ∈ A} that are adapted to this partially ordered
filtration, i.e., for each α ∈ A, Xα is σ(Xα)-measurable, such that (ii) E(|Xα |) < ∞ for all
α ∈ A, form a martingale relative to P ΦΦ and the partially ordered filtration on GA,M, i.e.,
E(Xα |σ(Xβ )) = Xβ , provided Xα AX Xβ .

In an n-coalescent experiments graph GA,M on an A-indexed set of n-coalescent exper-
iments with a family of statistics M, as partly constructed in Sects. 3.1, 3.2, 3.3 and 3.4,
for instance, there are three distinct linearly ordered sequential asymptotics at every exper-
iment Xα , in addition to the partially-ordered filtration on GA,M. This triple asymptotics
is a peculiar aspect of the n-coalescent experiments. The first one involves the sequential
limit in the number of sampled individuals n ∈ N, i.e., n→ ∞. The second one involves the
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sequential limit in the number of sites m ∈ N, i.e., m → ∞. The first two asymptotics only
involve one non-recombining locus of m DNA sites sampled from n individuals. The third
limit results from a product of single-locus experiments involving the number of sampled
loci k ∈ N, i.e., k → ∞. The product structure is justified under the assumption of infinite
recombination between the loci. Thus, asymptotic statistical properties of estimators, for
instance, have at least three pure senses of → ∞ and several bi/tri-sequential mixed senses
of (n,m,k)→ (∞,∞,∞) with distinct asymptotic rates of convergence that are of decision-
theoretic interest. See [16] and references therein for treatments of the three asymptotics in
the pure sense. In the sequel, we are primarily interested in the relative information across
different n-coalescent experiments in our GA,M for one locus with fixed values of n and m.
We are not interested in asymptotic experiments, ‘shooting’ out of each node of our experi-
ments graph along the n→∞, m→∞, and/or k→∞ axes, in this paper and instead focus on
the ‘small’ or fixed sample experiments in our graph GA,M. There is only a finite collection
of sequentially ordered filtrations, corresponding to the unique paths through GA,M from the
coarsest to the finest empirical resolution. However, in a ‘scientific/technological limit’ one
would expect GA,M itself to grow. It is worth noting that the experiment nodes at the finest
resolutions of GA,M were non-existent over two decades ago, the large values of n, m, and k
one encounters today were non-existent half a decade ago and empirical resolutions that are
much finer than our finest resolution of gap-free MSA are readily available today. However,
population genomic inference at the finer resolutions of GA,M, say at the currently realistic
scale of one thousand human genomes, is computationally prohibitive. Popular computa-
tional alternatives today include ABC and ALC methods that conduct heuristic inference at
coarser empirical resolutions. We show that by an appropriate controlled lumped coalescent
Markov chain we can indeed conduct exact inference at intermediate empirical resolutions
of GA,M, such as, experiments about the SFS.

The decision problem of computationally efficient and asymptotically consistent pa-
rameter estimation, for instance, on the basis of statistics at a given node in the experiments
graph requires an integration over a sufficient equivalence class in CnTn, the hidden space
of n-coalescent trees. By further unifying our n-coalescent models in the hidden space via
the theory of lumped n-coalescent Markov chains we can obtain a lumped n-coalescent
graph that underpins the unified multi-resolution n-coalescent of [40]. Through this lumped
n-coalescent graph, the companion structure in the hidden space of our n-coalescent experi-
ments graph GA,M, it is also possible to take decisions that fully exploit the partially ordered
filtrations that are indexed by sub-graphs of GA,M.

4 Applications

We next provide brief applications in testing and estimation under the simplest settings.
These simplest models are already highly combinatorially structured and pose inferential
challenges. Also, they are natural null models that form the basis for various classical tests in
population genomics. In our applications, we are purposely using information from exactly
one locus, as opposed to taking the product experiment over k loci that are assumed to have
infinite recombination between them with zero intra-locus recombination. The reason for our
single locus design is to shed light on the algebraic statistical structure of the hidden space,
particularly when it is ignored, during genome-scans for “unusual” loci. It is straightforward
to extend our methods to k independent loci.
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4.1 Topologically-conditioned Tests of Standard Neutrality

A large number of statistical tests on population-genetic data focus on summary statistics in
lieu of the full data matrix, and estimate a (one- or two-tailed) p-value for that statistic under
a model of interest. In the case of Tajima’s D, a statistic of the SFS, simulations may be
used to calculate P(D≤ d), where d is the observed value of D for a particular locus, under
the standard neutral null model. The simulation procedure involves two steps. First, coales-
cent trees in CnTn are drawn randomly from the null model, with no respect to topological
information contained in the full data matrix. Further, the observed number of mutations
are placed onto each realized coalescent tree ct [24]. In the empirical literature, there are
a number of publications applying this procedure in order to discover “unusual” loci (re-
viewed in [49]) that deviate from the null hypothesis of standard neutrality, i.e., a locus free
of intra-locus recombination that is neutrally evolving in a large Wright-Fisher population
of constant size under the IMS mutation model. Such topologically-unconditioned genome
scans may be improved greatly at little additional computational cost. This can be achieved
by conditioning on the partial topological information contained in X"(x) = x" correspond-
ing to the SFS x and employing Alg. 2 to obtain topologically-conditioned null distributions
of test statistics that are functions of the SFS.

Fig. 8 Topological unfolding of SFS and Tajima’s D. See text for description.

Figure 8 illustrates the problem of ignoring the topological information in x", when
it is readily available, even when n = 4. Notice that 12 out of the 18 c-sequences in C4
have unbalanced trees that map to f ! and the remaining 6 c-sequences have balanced trees
that map to f∧. Recall that Kingman’s labeled n-coalescent assigns the uniform distribution
over Cn, while P( f ) for any f ∈Fn is far from uniformly distributed under the Kingman’s
unlabeled n-coalescent and easily obtained from Equation (2.8) or (2.11). Thus, P(c) = 1/18
for each c∈Cn while P( f !) = 2/3 and P( f∧) = 1/3. Five SFS simulations upon f ! and f∧
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are shown as the left and right columns of bar charts, respectively, on the lower right corner
of Fig. 8. The remaining simulated SFS are plotted in the simplexes with a fixed number
of segregating sites s = ∑n−1

i=1 xi contained in X 105
4 , the sample space of SFS with four

sampled individuals at 105 sites. Observe how every SFS simulated under f∧ has x3 = 0 and
therefore x"

3 = 0, as opposed to those SFS simulated under f !. Crucially, if we do not know
the hidden f ∈ { f !, f∧} that the observed SFS x was realized upon, then the observation
that x3 > 0 implies that x"

3 = 1, and this allows us to unambiguously eliminate f∧ from
the hidden space of f -sequences we need to integrate over or conditionally simulate from.
This set of x"-specific hidden f -sequences is exactly #!n(x") that we can access with
the proposal Markov chain {F$x"(k)}k∈[n]+ and its importance-reweighed variants. Thus,
by means of Alg. 2 that invokes {F$x"(k)}k∈[n]+ and further reweighing by P( f ) we can
generate the topologically conditioned null distribution of any statistic that is a function of
SFS, including the classical linear combinations of Sect. 3.4 as well as various classical and
non-classical tree shape statistics [40].

The power of classical Tajima’s D test with that of its topologically conditioned version
is compared in Table 1. The significance level α is set at 5% for the standard neutral null
hypothesis H0 and eight alternative hypotheses, namely, H1, . . . ,H8, were explored by in-
creasing the recombination rate and/or the growth rate with parameters as shown in Table 1.
Here, mφ1 is the scaled per-locus mutation rate, φ2 is the exponential growth rate and ρ is
the scaled per-locus recombination rate. The x"-conditional tests based on Tajima’s D are
more powerful than the unconditional classical tests since a larger proportion of the 104 loci
simulated under the alternative models are rejected. All simulations were conducted using
standard coalescent methods [25].

Table 1 104 loci were simulated under each hypothesised model H0,H1, . . .H8 and tested for the extremeness
of the observed Tajima’s D statistic with and without conditioning on the observed x" in an attempt to reject
the null hypothesis H0 at significance level α = 5%.

Model: parameters Proportion of loci rejected by null distribution of test statistics
Hi : (mφ1,φ2,ρ) PH0 (D≥ d) PH0 (D≥ d|x") PH0 (D≤ d) PH0 (D≤ d|x")

H0 : (100,0,0) 0.0495 0.0501 0.0499 0.0501
H1 : (100,0,10) 0.0074 0.8640 0.0061 0.0017
H2 : (100,0,100) 0.0000 0.9999 0.0000 0.0000
H3 : (100,10,0) 0.0000 0.0019 0.0326 0.1759
H4 : (100,10,10) 0.0001 0.2023 0.0135 0.0797
H5 : (100,10,100) 0.0000 0.5559 0.0006 0.0180
H6 : (100,100,0) 0.0000 0.0000 0.1696 0.6882
H7 : (100,100,10) 0.0000 0.0002 0.1580 0.6668
H8 : (100,100,100) 0.0000 0.0020 0.1321 0.6617

4.2 Exactly Approximate Likelihoods and Posteriors

In computational population genetics, an approximate likelihood or an approximate pos-
terior merely refers to the exact likelihood or the exact posterior based on some statistic
R(v) = r : V m

n → Rm
n . R is called a summary statistic to emphasise the fact that it may

not be sufficient. Approximating the likelihood of the observed statistic ro is often a com-
putationally feasible alternative to evaluating the likelihood of the observed data vo. Here,
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approximate is meant in the hopeful sense that R may not be a sufficient statistic, i.e., in
the Bayesian sense that P(φ |v) #= P(φ |r = R(v)), but perhaps approximately sufficient, i.e.,
P(φ |v) # P(φ |r) under some reasonable criterion. The exact evaluation of the approximate
posterior P(φ |r) involves the exact evaluation of the likelihood P(r|φ) with standard errors.
For an arbitrary statistic R, such exact evaluations may not be trivial. However, one may re-
sort to the following simulation-based inferential methods termed approximate Bayesian or
likelihood computations in order to approximately evaluate P(φ |r) or P(r|φ), respectively.

4.2.1 ABC

In approximate Bayesian computation or ABC [3], one typically simulates data v ∈ V m
n

with a φ -indexed family of measures, such as the Kingman’s n-coalescent superimposed by
Watterson’s infinitely-many-sites mutations, after drawing a φ according to its prior distri-
bution P(φ), then summarizes it to r = R(v) ∈ Rm

n and finally accepts φ if m(r,ro) ≤ ε ,
where the map m : Rm

n ×Rm
n → R+ is usually a metric on Rm

n and ε is some non-negative
acceptance-radius. Algorithm 3 details one of the simplest ABC schemes. Approximate
likelihood computation or ALC [52] is similar to ABC, except one typically conducts the
simulations over a finite uniform grid of G points in the parameter space ΦΦ denoted by
ΦΦ G = {φ (1),φ (2), . . . ,φ (G)}. In a simple ALC, one distributes the computational resources
evenly over the G parameters in ΦΦ G and approximates the likelihood at φ (i) by the propor-
tion of times the summary r of a data v simulated under φ (i) was accepted on the basis of
m(r,ro) ≤ ε . As the grid size and the number of simulations increase, the likelihood esti-
mates based on ALC are indistinguishable from the posterior estimate based on ABC under
a uniform prior on the appropriate hyper-cuboid containing ΦΦ G.

Algorithm 3 A Simple ABC/ALC Algorithm
1: input:

1. a samplable distribution P(v|φ) over V m
n indexed by φ ∈ ΦΦ

2. a samplable prior P(φ)
3. observed data vo ∈ V (v)m

n and summaries ro = R(vo) ∈Rm
n

4. tolerance ε ≥ 0
5. a map m : Rm

n ×Rm
n → R+

6. a large positive integer MAXTRIALS ∈ N
2: output: a sample U ∼ P(φ |rε (ro)) # P(φ |ro) # P(φ |vo) or {},

where, rε (ro) := {r : m(r,ro)≤ ε}.
3: initialize: TRIALS← 0, SUCCESS← false, U ← {}
4: repeat
5: φ ← P(φ) {DRAW from Prior}
6: v← P(v|φ) {SIMULATE data}
7: r ← R(v) {SUMMARIZE data}
8: if m(r,ro)≤ ε then {COMPARE summaries and ACCEPT/REJECT parameter}
9: U ← φ , SUCCESS← true

10: end if
11: TRIALS← TRIALS+1
12: until TRIALS≥ MAXTRIALS or SUCCESS← true
13: return: U

Statistical justification of ALC and ABC methods rely on the summary statistic R being
close to the typically unknown sufficient statistic and thereby producing reasonably approx-
imate likelihood and posterior. However, as R gets closer to the sufficient statistic one has to
make the acceptance-radius ε unreasonably large to increase the acceptance rate of the pro-
posed φ . For instance, current ALC and ABC methods have unacceptably low acceptance
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rates for a reasonably small ε if r is taken as the SFS. But when ε is too large we gain little
information from the simulations.

Let us examine the ‘ε-dilemma’ under the ABC framework in detail. Analogous argu-
ments also apply for the ALC framework. In ABC, samples are drawn from an ε-specific
approximation of P(φ |ro). Since, rε(ro) := {r : m(r,ro)≤ ε}, we are making the following
posterior approximation of the ultimately desired P(φ |vo) :

P(φ |vo) #
{

P(φ |ro) = P(φ |{v : R(v) = R(vo) = ro}) if: ε = 0
P(φ |rε(ro)) = P(φ |{v : m(R(v),R(vo))≤ ε}) if: ε > 0.

The assumed approximate sufficiency of the statistic R, i.e., P(φ |vo) # P(φ |ro), terms the
posterior P(φ |ro) approximate. Furthermore, the non-zero acceptance-radius ε , for reasons
of computational efficiency, yields the further ε-specific approximate posterior P(φ |rε(ro)).
In the extremal case, the approximate posterior P(φ |r∞(ro)) equals the prior P(φ), and we
have gained no information from the experiment. Furthermore, there is no guarantee that a
computationally desirable metric m is also statistically desirable, i.e., produce reasonably
approximate posterior samples.

Considerable effort is expended in fighting this ‘ε-dilemma’ by say (1) smoothing the
m(r,ro)’s [3] or (2) making use of local Monte Carlo samplers [35] or (3) finding the right
sequence of ε’s under the appropriate metric m [44] in order to obtain the optimal trade-off
between efficiency and accuracy (see [4] for a recent review of ABC methods). It is difficult
to ensure that such sophisticated battles against the ‘ε-dilemma’ that arise in the simulation-
based inferential approaches of ABC and ALC do not confound the true posterior P(φ |ro)
or the true likelihood P(ro|φ). Thus, both ABC and ALC methods may benefit from exact
methods that can directly produce the likelihood P(ro|φ), for at least a class of summary
statistics. They may also benefit from a systematic treatment of the relative information in
different sets of summary statistics obtainable with exact methods.

4.2.2 ABCDE

For a large class of statistics, namely the SFS and its various linear combinations, our ap-
proach allows the acceptance radius ε to equal zero. This is achieved by Monte Carlo sim-
ulations of the controlled lumped coalescent Markov chain {F$x"(k)}k∈[n]+ of Alg. 2 and
further reweighing by P( f ) to evaluate P(x|φ) in Eq. (3.10) and P(r|φ) in Eq. (3.14). There-
fore our approach yields an exact evaluation of the desired approximate posterior P(φ |r)
and amounts to ABCDE or ABC done exactly.

4.2.3 Parameter Estimation in an Exponentially Growing Population

We estimate the locus-specific scaled mutation rate mφ ∗1 and the exponential growth rate φ ∗2
based on the observed SFS at one non-recombining locus of length m from n samples. The
performance of our estimator is assessed over 1,000 data sets that were simulated under
the standard neutral model with mφ ∗1 = 10.0 and φ ∗2 = 0.0 (for human data mφ ∗1 = 10.0
implies a locus of length 10kbp, i.e., m = 104) [25]. Our choices of φ ∗1 and m are biologically
motivated by a previous study on human SNP density [42]. Our point estimate (m̂φ1, φ̂2)
of (mφ ∗1 ,φ ∗2 ) based on the SFS x is the maximum aposteriori estimate obtained from a
histogram estimate of the posterior P(φ |x). The histogram is based on a uniform grid of
101×101 parameter points φ = (φ1,φ2) over our rectangular uniform prior density ((100−
1/10000)100)−111{[0.0001,100],[0,100]}(φ1,φ2).
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Table 2 Performance of our estimator of mφ∗1 and φ∗2 based on SFS (see text).

n performance of m̂φ1 performance of φ̂2 performance of (m̂φ1, φ̂2)√
se bs C99%

√
se bs C99% C99% quartiles of ˘K

4 40 28 .545 41 26 .185 .828 {0.062,0.085,0.143}
5 35 22 .584 34 20 .236 .832 {0.073,0.102,0.167}
6 30 19 .602 32 18 .343 .824 {0.081,0.109,0.178}
7 27 16 .660 29 14 .410 .838 {0.089,0.126,0.209}
8 23 13 .687 25 11 .474 .852 {0.096,0.142,0.235}
9 20 11 .712 23 10 .554 .872 {0.102,0.155,0.263}
10 19 10 .711 25 11 .604 .858 {0.106,0.164,0.294}

Our performance measures can help make natural connections to the theory of approx-
imate sufficiency [6], as we not only measure the bias (bs), root-mean-squared-error (

√
se)

and the marginal and joint 99% empirical coverage (C99%) but also the data-specific vari-
ation in the concentration of the posterior distribution as summarized by the quartiles of

˘K , the Kullback-Leibler divergence between the posterior histogram estimate and the uni-
form prior that is rescaled by the prior’s entropy. Table 2 gives the maximum aposteri-
ori estimate of (mφ ∗1 ,φ ∗2 ) by a Monte Carlo sum over φ2-specific epoch-time vectors in
Tn := (0,∞)n−1 and every x"-specific hidden f -sequence in #!n(x") by means of Alg. 2
that invokes {F$x"(k)}k∈[n]+ .

We also obtained maximum aposteriori point estimate (m̂φ1, φ̂2) of (mφ ∗1 ,φ ∗2 ) = (10,0)
based on (s,z) and (s,z,x") of the SFS x. Our ABCDE estimators are equivalent to exactly
approximate Bayesian computations (with ε = 0) as we integrate exhaustively over all SFS
in R−1((s,z)′) when we compute P(φ |(s,z)) or P(φ |(s,z,x")). For the same set of simulated
data of Table 2 the joint empirical coverage significantly suffered at about 50% for the
estimator that only used (s,z). By using additional topological information, the estimator
based on (s,z,x") had a better coverage that improved with sample size (between 61% and
76%). We also restrict the sample size to exhaustively integrate over the fiber R−1(s,z′)
and avoid expositions on Monte Carlo samplers over R−1(s,z′) for brevity. Contrastingly,
the coverage was nearly perfect when the entire BIM was used to estimate the parameters
through an importance sampler [46].

When ABC is done exactly, it is clear that using a few coarse linear summaries of the
SFS, even after a topological conditioning by x", is not only computationally inefficient
but also provides significantly less information when compared to using the entire SFS.
Nonetheless, these computations over population genetic fibers shed algebraic insights and
provide exact benchmarks against which one can compare, correct and improve simulation-
intensive ABC/ALC algorithms in the current molecular population genetic literature that
ignore topological information up to sufficient equivalence classes in the hidden space of
genealogies.

Authors’ Contributions KT and RS posed the ABCDE problem. RS developed the con-
trolled lumped chain {F$x"(k)}k∈[n]+ based on discussions with PD, RG and GM. RS coded
all related modules of LCE-0.1 with support from KT. JH efficiently re-implemented Alg. 2.
RS developed the samplers over population genetic fibers based on discussions with JB,
MS and RY. RY and MS conducted the algebraic statistical computations in LattE and
Macaulay 2, respectively. RS wrote the first draft and incorporated comments made by the
coauthors.



Experiments with the site frequency spectrum 37

Acknowledgements RS was supported by an NSF/NIGMS grant DMS-02-01037 and a research fellowship
from the Royal Commission for the Exhibition of 1851 under the sponsorship of PD during the course of
this study. JH was supported by an Allan Wilson Summer Studentship. RY was supported by NIGMS grant
1R01GM086888. Comments from two anonymous referees greatly improved the manuscript. RS thanks Ce-
line Becquet for discussions on summary statistics of structured populations, Mike Steel for [29, Definition
6.3.1], Jesse Taylor for [32, 5.2], Joe Watkins for the articulation of Definition 2, Michael Nussbaum and
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