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Abstract. We derive the transition structure of a Markovian lumping
of Kingman’s n-coalescent [1, 2]. Lumping a Markov chain is meant in
the sense of [3, def. 6.3.1]. The lumped Markov process, referred as the
unlabeled n-coalescent, is a continuous-time Markov chain on the set
of all integer partitions of the sample size n. We derive the backward-
transition, forward-transition, state-specific, and sequence-specific prob-
abilities of this chain. We show that the likelihood of any given site-
frequency-spectrum (SFS), a commonly used statistics in genome scans,
from a locus free of intra-locus recombination, can be directly obtained
by integrating conditional realizations of the unlabeled n-coalescent. We
develop a controlled Markov chain for importance sampling such inte-
grals from an augmented unlabeled n-coalescent forward in time. We
apply the methods to population-genetic data to conduct demographic
inference at the empirical resolution of the site-frequency-spectra. We
also extend a family of classical hypothesis tests of standard neutral-
ity at a non-recombining locus based on any statistics of the SFS to
a more powerful version that conditions on the topological information
contained in the SFS. We formalize a graph of coalescent experiments
to set a decision-theoretic stage for population genetic inference across
different empirical resolutions.

keywords. partially ordered n-coalescent experiments graph;
controlled Markov chain for importance sampling



1 Introduction

Models in population genetics are highly structured stochastic processes [4]. In-
ference is typically conducted with data that is modeled as a partial observation
of one realization of such a process. Likelihood methods are inferentially de-
sirable when they are based on a family of population genetic models for the
probability of an observation at the finest empirical resolution available to the
experimenter. One typically observes DNA sequences of length m with a com-
mon ancestral history from n individuals who are currently present in an extant
population and uses this information to infer some aspect of the population’s
history. Unfortunately, it is computationally prohibitive to evaluate the likeli-
hood P (uo|φ) of the data uo ∈ Um

n that was observed at the finest available
empirical resolution, given a parameter φ ∈ ΦΦ , that is indexing a biologically
motivated family of models. The sample space of the multiply aligned homolo-
gous DNA sequences Um

n := {A, C, G, T}n×m is doubly indexed by n, the number
of sampled individuals, and m, the number of sequenced homologous sites. In
an ideal world, the optimal inference procedure would be based on the mini-
mally sufficient statistic and implemented in a computing environment free of
engineering constraints. Unfortunately, minimally sufficient statistics of data at
the currently finest resolution of Um

n are unknown beyond the simplest models
of mutation with small values of n [5–8]. Computationally-intensive inference,
based on an observed uo ∈ Um

n , with realistically large n and m, is currently
infeasible for recombining loci and prohibitive for non-recombining loci.

An alternative inference strategy that is computationally feasible involves a
relatively low-dimensional statistic R(uo) = ro of the observed multiple sequence
alignment or MSA data uo ∈ Um

n . In this approach, one attempts to approximate
the likelihood P (uo|φ) or the posterior distribution P (φ|uo), on the basis of a
summary ro = R(uo) of the observed data uo, where R(u) = r : Um

n → Rm
n

is a statistic with Rm
n as its sample space. Since R is typically not a sufficient

statistic for φ, i.e. P (φ|r) �= P (φ|u), such methods have been termed as approxi-
mate likelihood computations (ALC) [9] in a frequentist setting or as approximate
Bayesian computations (ABC) [10, 11] in a Bayesian setting as described in the
companion article [12]. Any formal notion of approximate sufficiency for pop-
ulation genetic data uo ∈ Um

n must account for the fact that the likelihood
P (uo|φ) =

∑∫
ct∈Cn Tn

P (uo|ct, φ)P (ct|φ) is defined by the n-coalescent prior
mixture over elements in a partially observed genealogical space CnTn (described
in §3.2). This space is both discrete, to account for the sequence of coalescence
events, and continuous, to account for the number of generations between such
events in units of rescaled time.

The rest of the paper is organized as follows. The basic form of population
genetic data and statistics of interest to this paper are briefly introduced in §2.
The statistical experiments with n-coalescents, including the underlying proba-
bility models, are introduced in §3. Brief applications in parameter estimation
and testing are done in §4.



2 Data and Statistics

The data u is the DNA multiple sequence alignment or MSA obtained from a
sample of n individuals in a population at m homologous sites. This is assumed
to be the finest empirical resolution available to our experimenter. In this paper,
we are interested in the posterior distribution over the parameter space ΦΦ on
the basis of the observed site frequency spectrum or SFS xo. At a finer resolution
we can conduct inference on the basis of the observed binary incidence matrix
or BIM vo that is sufficient for Watterson’s infinitely-many-sites model of muta-
tion [13] using existing importance sampling methods for models that are more
sophisticated than those considered here (e.g. [14–19]). In this study we are not
interested in inference at the resolution of BIM and focus instead on SFS. Next,
we formalize the BIM and SFS statistics.

We can obtain the site frequency spectrum x of a given multiply-aligned DNA
sequence data u from a standard encoding of u into a binary incidence matrix or
BIM v. We describe this encoding next. Let the nucleotide state of the sample’s
most recent common ancestral sequence be encoded as 0 at all m sites. Let the
derived state at one or more of the samples at a given site be encoded as 1 if it
arose from a mutation event in that site’s ancestral history. Such bi-allelic sites
are common in population genetic data and a site with both an ancestral state
and a derived state is called a single nucleotide polymorphism (SNP). Such data
is typically modeled, as described in §3, using the infinitely-many-sites model
of mutation over the n-coalescent model of sample genealogy [1, 2]. The binary
states at each of the m homologous sites in n sampled individuals is denoted
by the BIM v ∈ Vm

n := {0, 1}n×m. Let v′ denote the transpose of the binary
incidence matrix v and let 11A(a) be the indicator function of some set A (i.e.,
If a ∈ A, then 11A(a) = 1, else 11A(a) = 0). Let the site sum spectrum or SSS w
corresponding to v and the corresponding site frequency spectrum or SFS x be

W (v) = w := v′ · (1, 1, . . . , 1) : Vm
n → Wm

n := {0, 1, 2, . . . , n − 1}m ,

X(v) = x := (x1, . . . , x(n−1)) ∈ Xm
n := {x ∈ Z

n−1
+ :

n−1∑
i=1

xi ≤ m} .

One can obtain the SFS x from a BIM v via SSS w as follows:

X(v) := X ′(W (v)) = x : Vm
n → Xm

n ,

X ′(w) :=

 m∑
j=1

11{1}(wj),
m∑

j=1

11{2}(wj), . . . ,
m∑

j=1

11{n−1}(wj)

 = x : Wm
n → Xm

n .

Fig. 1 depicts the BIM v, SSS w and SFS x on the right for a sample of four
individuals with the genealogical and mutational history on the left. In [12] we
show how to obtain various classical statistics of interest from SFS. Next, we
describe the basic probability models over Vm

n and Xm
n .
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Fig. 1. At most one mutation per site under the infinitely-many-sites model are super-
imposed as a homogeneous Poisson process upon the realization of identical coalescent
trees at nine homologous SITES labeled {1, 2, . . . , 9} that constitute a non-recombining
locus from four INDividuals labeled {1, 2, 3, 4}.

3 An n-Coalescent Experiments Graph

We give the statistical formalities needed to graphically frame our n-coalescent
statistical experiments: X01 := (Xm

n , σ(Xm
n ),P ΦΦ ) is pursued in this article while

X011 := (Ym
n , σ(Ym

n ),P ΦΦ ) and the product of X012 := (Zm
n , σ(Zm

n ),P ΦΦ ) and
X013 := (Sm

n , σ(Sm
n ),P ΦΦ ) are pursued in the companion article [12]. Recall

that a statistical experiment (Xm
n , σ(Xm

n ),P ΦΦ ) is the ordered triple consist-
ing of (1) the sample space Xm

n , (2) a sigma-algebra over the sample space
σ(Xm

n ) and (3) an identifiable ΦΦ -indexed family of probability measures P ΦΦ ,
i.e. ΦΦ � φ �→ Pφ ∈ P ΦΦ , over the sample space, such that, Pφ := P (x|φ) ∈ P ΦΦ

for each φ ∈ ΦΦ . Our samples spaces Vm
n and Xm

n are finite and therefore Pφ‘s
are dominated by the counting measure. Our continuous parameter space in
this study is two-dimensional, i.e. ΦΦ := ( ΦΦ 1, ΦΦ 2) ⊂ R2

+. The first parameter
φ1 is the per-locus mutation rate scaled by the effective population size and
is often denoted by θ in population genetics literature. The second parameter
φ2 is the growth rate of our population whose size is growing exponentially
from the past. For Bayesian decisions, we allow our parameter to be a random
vector Φ := (Φ1, Φ2) with a Lebesgue-dominated density P (φ) and realizations
φ := (φ1, φ2). This prior density P (φ) is taken to be a uniform density over a
compact rectangle to allow simple interpretations from Bayesian, frequentist and
information-theoretic schools of inference.

Definition 1 (Sufficiency). A statistic Tα,β(zα) = zβ : Zα → Zβ is sufficient
for the experiment Xα = (Zα, σ(Zα),P ΦΦ ), provided:

P (Zα = zα|Tα,β(zα) = zβ , φ) = P (Zα = zα|Tα,β(zα) = zβ),
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Fig. 2. An n-coalescent experiments graph. An observed multiple sequence alignment
of the mother experiment and its offspring are shown on the left. The corresponding
formalities are shown on the right.

for any φ ∈ ΦΦ . This is the classical definition of sufficiency. Given a sufficient
statistic Tα,β for the experiment Xα and a prior density such that P (φ) �= 0 for
all φ ∈ ΦΦ , we get Bayes sufficiency in the Kolmogorov sense [20], in terms of
the following posterior identity:

P (φ|zα) = P (φ|Tα,β(zα) = zβ) .

Definition 2 (The Experiments Graph). Consider an A-indexed set of ex-
periments {Xα, α ∈ A}. Let, Tα,β : Zα → Zβ, for some α, β ∈ A with σ(Zα) ⊃
σ(Zβ) be a statistic (measurable map). Let M be a set of such maps as well
as the identity map. Then, the directed graph of experiments GA,M with nodes
{Xα, α ∈ A} and directed edges from a node Xα to a node Xβ, provided there
exists an Tα,β ∈ M, is the experiments graph. Consider the partial ordering 	X

induced on the experiments in {Xα, α ∈ A} by the maps in M, i.e., Xα 	X Xβ

if and only if there exists a composition of maps from M given by T ◦
α,β :=

Tα,ı ◦ Tı, ◦ · · · ◦ Tı′,′T′,β : Zα → Zβ, such that σ(Zα) ⊃ σ(Zβ). Then, by con-
struction, (1) the random variables {Xα, α ∈ A} that are adapted to this partially
ordered filtration, i.e., for each α ∈ A, Xα is σ(Xα)-measurable, such that (2)
E(|Xα|) < ∞ for all α ∈ A, form a martingale relative to P ΦΦ and the partially
ordered filtration on GA,M, i.e., E(Xα|σ(Xβ)) = Xβ, provided Xα 	X Xβ.

In an n-coalescent experiments graph GA,M on an A-indexed set of n-coalescent
experiments with a family of statistics M, as partly constructed in §3.2, for in-
stance, there are three distinct linearly ordered sequential asymptotics at every



experiment Xα, in addition to the partially-ordered filtration on GA,M. This
triple asymptotics is a peculiar aspect of the n-coalescent experiments. The first
one involves the sequential limit in the number of sampled individuals n ∈ N,
i.e., n → ∞. The second one involves the sequential limit in the number of sites
m ∈ N, i.e., m → ∞. The first two asymptotics only involve one non-recombining
locus of m DNA sites sampled from n individuals. The third limit results from a
product of single-locus experiments involving the number of sampled loci k ∈ N,
i.e., k → ∞. The product structure is justified under the assumption of infi-
nite recombination between the loci. Thus, asymptotic statistical properties of
estimators, for instance, have at least three pure senses of → ∞ and several
bi/tri-sequential mixed senses of (n, m, k) → (∞,∞,∞) with distinct asymp-
totic rates of convergence that are of decision-theoretic interest. See [21] and
references therein for treatments of the three asymptotics in the pure sense. In
the sequel, we are primarily interested in the relative information across different
n-coalescent experiments in our GA,M for one locus with fixed values of n and
m. We are not interested in asymptotic experiments, ‘shooting’ out of each node
of our experiments graph along the n → ∞, m → ∞, and/or k → ∞ axes, in
this paper and instead focus on the ‘small’ or fixed sample experiments in our
graph GA,M. There is only a finite collection of sequentially ordered filtrations,
corresponding to the unique paths through GA,M from the coarsest to the finest
empirical resolution. However, in a ‘scientific/technological limit’ one would ex-
pect GA,M itself to grow. It is worth noting that the experiment nodes at the
finest resolutions of GA,M were non-existent over two decades ago, the large val-
ues of n, m, and k one encounters today were non-existent half a decade ago and
empirical resolutions that are much finer than our finest resolution of gap-free
MSA are readily available today.

The two classes of ΦΦ -indexed probability models we consider here are King-
man’s labeled n-coalescent [1, 2] for the experiment (Vm

n , σ(Vm
n ),P ΦΦ ) with BIM

and Kingman’s unlabeled n-coalescent for the experiment (Xm
n , σ(Xm

n ),P ΦΦ )
with SFS [1, 5.2] (also see [22, p. 136-137] and [23]). As pointed out earlier,
inference methods for the BIM experiment (Vm

n , σ(Vm
n ),P ΦΦ ) using importance

samplers (e.g. [14–19]) are more developed than those for the SFS experiment
(Xm

n , σ(Xm
n ),P ΦΦ ). In the interest of computationally efficient inference from the

coarser resolution of SFS, we develop the probability models in §3.3–3.4 and the
associated inference methods in §3.5.

The labeled and unlabeled n-coalescents approximate the sample genealogy
of a non-recombining homologous locus from n labeled and unlabeled individu-
als, respectively. The n samples are randomly drawn from a large exponentially
growing Wright-Fisher population [24, 25]. The locus of interest in each sampled
individual consists of a DNA sequence of length m that has undergone selec-
tively neutral mutations under Watterson’s infinitely-many-sites model [13]. The
n-coalescents provide the basic probability models underlying our experiments of
interest as they provide a prior mixture over the partially observed genealogical
space of coalescent trees CnTn (described in §3.2). The other experiment nodes
in the experiments graph of Fig. 2 are included to decision-theoretically unify



various classical population genetic experiments. They include (Ḧm
n , σ(Ḧm

n ),P ΦΦ )
that is based on the haplotype frequency spectrum or HFS Ḧ [26, 27], and the
three liner sub-experiments of (Xm

n , σ(Xm
n ),P ΦΦ ) pursued in the companion ar-

ticle [12]: (i) (Ym
n , σ(Ym

n ),P ΦΦ ), (ii) (Zm
n , σ(Zm

n ),P ΦΦ ) and (iii) (Sm
n , σ(Sm

n ),P ΦΦ )
that are based on the folded site frequency spectrum or FSFS Y , the heterozy-
gosity Z, and the number of segregating sites S =

∑n−1
i=1 xi, respectively.

In this paper and its companion paper [12] we focus on specific experiments.
The decision problem of computationally efficient parameter estimation, for in-
stance, on the basis of statistics at a given node in the experiments graph requires
an integration over a sufficient equivalence class in CnTn, the hidden space of n-
coalescent trees. By further unifying our n-coalescent models in the hidden space
via the theory of lumped n-coalescent Markov chains [28, §2] we can obtain a
lumped n-coalescent graph [28, §4] that underpins the unified multi-resolution
n-coalescent of [28]. Through this lumped n-coalescent graph, the companion
structure in the hidden space of our n-coalescent experiments graph GA,M, it is
also possible to take decisions that fully exploit the partially ordered filtrations
that are indexed by sub-graphs of GA,M.

3.1 Number of Ancestral Lineages of a Wright-Fisher Sample

In the simple Wright-Fisher discrete generation model with a constant popula-
tion size N , i.e. the exponential growth rate φ2 = 0, the offspring “choose” their
parents uniformly and independently at random from the previous generation
due to the uniform multinomial sampling of N offspring from the N parents in
the previous generation. First, note that the following ratio can be approximated:

N[j]

Nj
:=

N

N

N − 1

N
· · · N − (j − 1)

N
= 1

„
1 − 1

N

«
· · ·
„

1 − j − 1

N

«
=

j−1Y
k=1

`
1 − kN−1´

= 1 − N−1
j−1X
k=1

k + O
`
N−2´ = 1 −

 
j

2

!
N−1 + O

`
N−2´ .

Let S
(j)
i denote the Stirling number of the second kind, i.e. S

(j)
i is the number

of set partitions of a set of size i into j blocks. Thus, the N -specific probability
of i extant sample lineages in the current generation becoming j extant lineages
in the previous generation is:

NPi,j =



S
(i)
i

`
N[i]N

−i
´

= 1
`
N[i]N

−i
´

= 1 − `i
2

´
N−1 + O

`
N−2

´
: if j = i

S
(i−1)
i

`
N[i−1]N

−i
´

=
`

i
2

´ “
N−1N[i−1]N

−(i−1)
”

=`
i
2

´
N−1

`
1 − N−1

`
i−1
2

´
+ O

`
N−2

´´
=
`

i
2

´
N−1 + O

`
N−2

´
: if j = i − 1

S
(i−�)
i

`
N[i−�]N

−i
´

= S
(i−�)
i

“
N−�N[i−1]N

−(i−�)
”

=

S
(i−�)
i N−�

`
1 − N−1

`
i−�
2

´
+ O

`
N−2

´´
= O

`
N−2

´
: if j = i − �,

0 : otherwise ,

(1)
where, 1 < � < i − 1.



In words, the probability that any specific pair of lineages, among the
(

i
2

)
many pairs of the currently extant i ancestors of the n sampled lineages, coalesces
in one generation is 1/N and that this pair remains distinct for more than g
generations is (1 − 1/N)g. Let Z− := {0,−1,−2, . . .} denote an ordered and
countably infinite discrete time index set. Next, we rescale time in this discrete
time Markov chain {NH↑(k)}k∈Z− over the state space Hn := {n, n − 1, . . . , 1}
with 1-step transition probabilities (1) termed the death chain of the number of
ancestral sample lineages within the Wright-Fisher population of constant size
N . Let the rescaled time t be g in units of N generations. Then, the probability
that a pair of lineages remain distinct for more than t units of the rescaled time
is: (1 − 1/N)�Nt� N→∞−→ e−t.

The transition probabilities Pi,j(t) of the pure death process {H↑(t)}t∈R+ , in
the rescaled time t over the state space Hn, is a limiting continuous time Markov
chain approximation of the �Nt-step transition probabilities NPi,j(�Nt) of
the discrete time death chain with 1-step transition probabilities (1), as the
population size N tends to infinity:

NPi,j(�Nt) N→∞−→ Pi,j(t) = exp (Qt), where, qi,i−1 =
(

i

2

)
, qi,i = −

(
i

2

)
,

qi,j = 0 for all other (i, j) ∈ Hn × Hn but with 1 as an absorbing state. The
matrix Q is called the instantaneous rate matrix of the death process Markov
chain {H↑(t)}t∈R+ and its (i, j)-th entry is qi,j . Thus, the i-th epoch-time ran-
dom variable Ti during which time there are i distinct ancestral lineages of our
sample is approximately exponentially distributed with rate parameter

(
i
2

)
and

is independent of other epoch-times. In other words, for large N , the random
vector T = (T2, T3, . . . , Tn) of epoch-times, corresponding to the transition times
of the pure death process {H↑(t)}t∈R+ on the state space Hn, has the product

exponential density
⊗n

i=2

(
i
2

)
e−(i

2)ti over its support Tn := R
n−1
+ . Note that the

initial state of {H↑(t)}t∈R+ is n, the final absorbing state is 1 and the embed-
ded jump chain {H↑(k)}k∈[n]− of this death process, termed the embedded death
chain, deterministically marches from n to 1 in decrements of 1 over Hn, where,
[n]− := {n, n− 1, . . . , 2, 1} denotes an ordered discrete time index set.

3.2 Kingman’s Labeled n-Coalescent

Next, we model the sample genealogy at a finer resolution than the number of
ancestral lineages of our Wright-Fisher sample of size n. If we assign distinct
labels to our n samples and want to trace the ancestral history of these sample-
labeled lineages then Kingman’s labeled n-coalescent lends a helping hand. Let
Cn be the set of all set partitions of the label set L = {1, 2, . . . , n} of our n

samples. Denote by C
(i)
n the set of all set partitions with i blocks, i.e., Cn =⋃n

i=1 C
(i)
n . Let ci := (ci,1, ci,2, . . . , ci,i) ∈ C

(i)
n denote the i elements of ci in

canonical order and let |ci′ | denote the number of elements in ci′ ∈ C
(|ci′ |)
n ∈ Cn.

The labeled n-coalescent partial ordering
...≺c on Cn is based on the immediate



precedence relation ≺c:

ci′ ≺c ci ⇐⇒ ci′ = ci \ ci,j \ ci,k ∪ (ci,j ∪ ci,k), j �= k, j, k ∈ {1, 2, . . . , |ci|}.
In words, ci′ ≺c ci, read as ci′ immediately precedes ci, means that ci′ can be
obtained from ci by coalescing any distinct pair of elements in ci. Thus, ci′ ≺c ci

implies |ci′ | = |ci| − 1.
Consider the discrete time Markov chain {C↑(k)}k∈[n]− on Cn with initial

state C↑(n) = cn = {{1}, {2}, . . . , {n}} and final absorbing state C↑(1) = c1 =
{{1, 2, . . . , n}}, with the following transition probabilities [2, (2.2)]:

P (ci′ |ci) =

{(
i
2

)−1
: if ci′ ≺c ci, ci ∈ C

(i)
n

0 : otherwise .
(2)

Now, let c := (cn, cn−1, . . . , c1) be a c-sequence or coalescent sequence obtained
from the sequence of states visited by a realization of the chain, and denote the
space of such c-sequences by

Cn := { c := (cn, cn−1, . . . , c1) : ci ∈ C
(i)
n , ci−1 ≺c ci} .

The probability that ci ∈ C
(i)
n is visited by the chain [2, (2.3)] is:

P (ci) =
(n − i)! i! (i − 1)!

n! (n − 1)!

i∏
j=1

|ci,j |! , (3)

and the probability of a c-sequence is uniformly distributed over Cn with

P (c) =
2∏

i=n

P (ci−1|ci) =
2n−1

n! (n − 1)!
=

1
|Cn| . (4)

Kingman’s labeled n-coalescent [1, 2] is a continuous-time Markov chain {C↑(t)}t∈R+

on Cn with rate matrix Q. The entries q(ci′ |ci), ci, ci′ ∈ Cn of Q, specifying the
transition rate from state ci to ci′ , are [1, (2.10)]:

q(ci′ |ci) =


−(i

2

)
: if ci = ci′ , ci ∈ C

(i)
n

1 : if ci′ ≺c ci

0 : otherwise .

(5)

The above instantaneous transition rates for the continuous time Markov chain
{C↑(t)}t∈R+ are obtained by coupling the independent death process {H↑(t)}t∈R+

of §3.1 over Hn with the discrete time Markov chain {C↑(k)}k∈[n]− on Cn. This
continuous time Markov chain approximates the appropriate N -specific discrete
time Markov chain over Cn that is modeling the ancestral genealogical history
of a sample of size n labeled by L and taken at random from the Wright-Fisher
population of constant size N . This asymptotic approximation, as the popula-
tion size N → ∞, can be seen using arguments similar to those in §3.1. See [2,
(§1–2)] for this construction.



t2

{{1, 2}, {3}}

time

c(r)
t

321

{{1, 2, 3}}

{{1}, {2}, {3}}
t3

t2

{{2, 3}, {1}}

c(g)
t

132

{{1, 2, 3}}

{{1}, {2}, {3}}
t3

0

2

4

0

1

0

2

4

C3T3 := C3 ⊗ T3 = C3 ⊗ (0,∞)2

t3

t2
c(r) :=

({{1}, {2}, {3}},
{{1, 2}, {3}},
{{1, 2, 3}})

c(b) :=
({{1}, {2}, {3}},
{{1, 3}, {2}},

{{1, 2, 3}})

t3

t3
c(g) :=
({{1}, {2}, {3}},

{{1, 2, 3}})
{{2, 3}, {1}},

{{
1}

,{
2}

,{
3}}

�
�

�
� ��

13

�
�

�
� ��13

�
13

{{
1
,2}

,{
3}} �

�
�

� ��
1

{{
1
,3}

,{
2}}

�1

{{
2
,3}

,{
1}}

�
�

�
� ��

1

{{
1
,2

,3}}

t2

{{1, 3}, {2}}

c(b)
t

231

{{1, 2, 3}}

{{1}, {2}, {3}}
t3

Fig. 3. Realizations of 3-coalescent trees in the space of such trees is plotted on the
three rectangles as colored points in middle panel. The lines on the rectangles are the
contours of the independent exponentially distributed epoch times for each c-sequence.
Each of the three coalescent trees, with two branch lengths (t3, t2), representing a
realization in the corresponding rectangle and the transition probability diagram of
the the Markov chain {C↑(k)}k∈{3,2,1} on C3 are shown counter clock-wise in the four
corner panels, respectively.

Let the space of ranked, rooted, binary, phylogenetic trees with leaves or
samples labeled by L = {1, 2, . . . , n} [29, §2.3] further endowed with branch
or lineage lengths under a molecular clock — i.e. the lineage length obtained
by summing the epoch-times from each sample (labeled leaf) to the root node
or the most recent common ancestor (MRCA) is the same — be constructively
defined by the n-coalescent as:

CnTn := Cn ⊗ Tn := {ct := (cntn, cn−1tn−1, . . . ,
c2t2) : c ∈ Cn, t ∈ Tn := R

n−1
+ }.

CnTn is called the n-coalescent tree space. An n-coalescent tree ct ∈ CnTn de-
scribes the ancestral history of the sampled individuals. Fig. 3 depicts the n-
coalescent tree space C3T3 for the sample label set L = {1, 2, 3} with sample size
n = 3.

3.3 Kingman’s Unlabeled n-Coalescent

The unlabeled n-coalescent is mentioned as a lumped Markov chain of the labeled
n-coalescent and termed the ‘label-killed’ process by Kingman [1, 5.2]. Tavaré
[22, p. 136-137] terms it the ‘family-size process’ along the nomenclature of a
more general birth-death-immigration process [23]. The transition probabilities



of this Markov process, in either temporal direction, are not explicitly developed
in [1] or [22]. They are developed here along with the state and sequence-specific
probabilities.

Consider the coalescent epoch at which there are i lineages. Let fi,j denote
the number of lineages subtending j leaves, i.e. the frequency of lineages that are
ancestral to j samples, at this epoch. Let us summarize these frequencies from
the i lineages as j varies over its support by fi := (fi,1, fi,2, . . . , fi,n). Then the
space of fi’s is defined by,

F
(i)
n :=

fi := (fi,1, fi,2, . . . , fi,n) ∈ Z
n
+ :

n∑
j=1

jfi,j = n,
n∑

j=1

fi,j = i

 .

Let the set of such frequencies over all epochs be Fn :=
⋃n

i=1 F
(i)
n . Note

that Fn contains the frequency of the cardinalities of sets belonging to every
element of Cn, the state space of Kingman’s labeled n-coalescent. Thus, Fn is
the frequency representation of the integer partitions of n, i.e. the solutions to
the Diophantine equation {(p1, p2, . . . , pn) ∈ Zn

+ :
∑n

i=1 ipi = n}, and F
(i)
n are

those integer partitions of n composed of i positive integers. Let us define an
f -sequence f as:

f := (fn, fn−1, . . . , f1) ∈ Fn :=
{
f : fi ∈ F

(i)
n , fi−1 ≺f fi, ∀i ∈ {2, . . . , n}

}
,

where, ≺f is the immediate precedence relation that induces the partial ordering...≺f on Fn. It is defined by denoting the j-th unit vector of length n by ej , as
follows:

fi′ ≺f fi ⇐⇒ fi′ = fi − ej − ek + ej+k . (6)

Thus, Fn is the space of f -sequences with n samples. One can see Fn as the
space of the frequencies of the cardinalities of c-sequences in Cn. Recall the c-
sequence c = (cn, cn−1, . . . , c1), where ci−1 ≺c ci, ci−1 ∈ Ci−1

n , ci ∈ Ci
n, and

ci := (ci,1, ci,2, . . . , ci,i) contains its canonically ordered i subsets. Then the cor-
responding f -sequence is given by the map F (c) = f : Cn → Fn, as follows:

F (c) := (F (cn), . . . , F (c1) ) , F (ci) :=

(
i∑

h=1

11{1}(|ci,h|), . . . ,
i∑

h=1

11{n}(|ci,h|)
)

.

(7)
Note that Fn indexes an equivalence class in Cn via F [−1](f), the inverse

map of (7). Having defined f -sequences and their associated spaces, we define
a discrete time Markov chain {F ↑(k)}k∈[n]− on Fn that is analogous to the
Markov chain {C↑(k)}k∈[n]− on Cn given by (2). This is the embedded discrete
time Markov chain of the unlabeled n-coalescent.

Proposition 1 (Backward Transition Probabilities of an f-sequence)
The probability of f := (fn, fn−1, . . . , f1) ∈ Fn under the n-coalescent is given
by the product:

P (f) =
2∏

i=n

P (fi−1|fi), (8)



such that P (fi−1|fi) are the backward transition probabilities of a Markov chain
{F ↑(k)}k∈[n]− on Fn, with fi ∈ F

(i)
n , fi−1 ∈ F

(i−1)
n :

P (fi−1|fi) =


fi,jfi,k

(
i
2

)−1
: if fi−1 = fi − ej − ek + ej+k, j �= k(

fi,j

2

)(
i
2

)−1
: if fi−1 = fi − ej − ek + ej+k, j = k

0 : otherwise

(9)

where, the initial state is fn = (n, 0, . . . , 0) and the final absorbing state is
f1 = (0, 0, . . . , 1).

Proof. Since (8) is merely a consequence of (9), we prove (9) next. When there
are i lineages in Kingman’s labeled n-coalescent, a coalescence event can reduce
the number of lineages to i − 1 by coalescing one of

(
i
2

)
many pairs. Hence, the

inverse
(

i
2

)−1
appears in the transition probabilities. Out of these pairs, there

are two kinds of pairs that need to be differentiated. The first type of coalescence
events involve pairs of edges that subtend the same number of leaves. Since fi,j

many edges subtend j leaves, there are
(
fi,j

2

)
many pairs that lead to this event

(case when j = k). The second type of coalescence events involve pairs of edges
that subtend different number of leaves. For any distinct j and k, fi,jfi,k many
pairs would lead to coalescence events between edges that subtend j and k leaves
(case when j �= k). Note that our condition that fi−1 = fi − ej − ek + ej+k for
each i ∈ {n, n−1, . . . , 3, 2} ensures that our f remains in Fn as we go backwards
in time from the n-th coalescent epoch with n samples to the first one with the
single ancestral lineage.

Proposition 2 (Probability of an fi)
The probability that the Markov chain {F ↑(k)}k∈[n]− visits a particular fi ∈ F

(i)
n

at the i-th epoch (given in [22, Equation (7.11)]) is:

P (fi) =
i!∏i

j=1 fi,j !

(
n − 1
i − 1

)−1

(10)

Proof. Recall that fi,j is the number of edges during the i-th coalescent epoch
(during which there are i lineages) that subtend j leaves, where, j ∈ {1, 2, . . . , n},
i.e.

∑n
j=1 fi,j = i and

∑n
j=1 jfi,j = n. Now, label the i edges in some arbitrary

manner. Let the number of the subtended leaves from the i labeled edges be
Λ := (Λ1, Λ2, . . . , Λi). Due to the n-coalescent, Λ is a random variable with
a uniform distribution on integer partitions of n, such that

∑i
j=1 Λi = n and

Λi ≥ 1. Thus, P (Λ) =
(
n−1
i−1

)−1
. Since there are i!/

∏i
j=1 fi,j ! many ways of

labeling the i edges, we get the P (fi) as stated.

Proposition 3 (Forward Transition Probabilities of an f-sequence)
The probability of f := (fn, fn−1, . . . , f1) ∈ Fn is given by the product:

P (f) =
n∏

i=2

P (fi|fi−i), (11)



such that P (fi|fi−1) are the forward transition probabilities of a Markov chain
{F ↓(k)}k∈[n]+ on Fn with the ordered time index set [n]+ := {1, 2, . . . , n}:

P (fi|fi−1) =



2fi−1,j+k(n − i + 1)−1 : if fi = fi−1 + ej + ek − ej+k, j �= k,

j + k > 1, fi ∈ F
(i)
n , fi−1 ∈ F

(i−1)
n

fi−1,j+k(n − i + 1)−1 : if fi = fi−1 + ej + ek − ej+k, j = k,

j + k > 1, fi ∈ F
(i)
n , fi−1 ∈ F

(i−1)
n

0 : otherwise
(12)

with initial state f1 = (0, 0, . . . , 1) and final absorbing state fn = (n, 0, . . . , 0).

Note that we canonically write a sequential realization (f1, f2, . . . , fn) of
{F ↑(k)}k∈[n]+ in reverse order as the f -sequence f = (fn, fn−1, . . . , f1).

Proof. Since (11) is merely a consequence of (12), we prove (12) next. An appli-
cation of the definition of conditional probability twice, followed by Proposition
2 yields:

P (fi|fi−1) = P (fi−1|fi)P (fi)/P (fi−1)

= P (fi−1|fi)
i!∏i

h=1 fi,h!

(
n − 1
i − 1

)−1

/
(i − 1)!∏i−1
h=1 fi−1,h!

(
n − 1
i − 2

)−1

= P (fi−1|fi)
∏i−1

h=1 fi−1,h!∏i
h=1 fi,h!

i(i − 1)
n − (i − 1)

Next we substitute P (fi−1|fi) of Proposition 1 for the first case: fi = fi−1 +
ej + ek − ej+k, j �= k, j + k > 1, i.e. the coordinates of fi and fi−1 are such that
fi,j = fi−1,j + 1, fi,k = fi−1,k + 1, fi,j+k = fi−1,j+k − 1, and fi,h = fi−1,h, ∀h ∈
{1, 2, . . . , n} \ {j, k, j + k}.

P (fi|fi−1) = fi,jfi,k

(
i

2

)−1∏i−1
h=1 fi−1,h!∏i

h=1 fi,h!

i(i − 1)
n − (i − 1)

= fi,jfi,k
fi−1,j!fi−1,k!fi−1,j+k!

fi,j !fi,k!fi,j+k!
2

n − (i − 1)

= fi,jfi,k
(fi,j − 1)!(fi,k − 1)!(fi,j+k + 1)!

fi,j !fi,k!fi,j+k!
2

n − (i − 1)

=
2(fi,j+k + 1)
n − (i − 1)

= 2fi−1,j+k(n − i + 1)−1

A similar substitution of P (fi−1|fi) of Proposition 1 for the second case: fi =
fi−1 + ej + ek − ej+k, j = k, j + k > 1, i.e., fi,j = fi−1,j + 2, fi,2j = fi−1,2j − 1



and fi,h = fi−1,h, ∀h ∈ {1, 2, . . . , n} \ {j, 2j}.

P (fi|fi−1) =
(

fi,j

2

)(
i

2

)−1∏i−1
h=1 fi−1,h!∏i

h=1 fi,h!

i(i − 1)
n − (i − 1)

=
fi,j(fi,j − 1)
n − (i − 1)

fi−1,j !fi−1,2j !
fi,j !fi,2j !

=
fi,j(fi,j − 1)
n − (i − 1)

(fi,j − 2)!(fi,2j + 1)!
fi,j !fi,2j !

=
(fi,2j + 1)
n − (i − 1)

= fi−1,2j(n − i + 1)−1 = fi−1,j+k(n − i + 1)−1
.

This concludes the proof.

Kingman’s unlabeled n-coalescent or the unvintaged and sized n-coalescent
in the descriptive nomenclature of [28] is the continuous time Markov chain
{F ↑(t)}t∈R+ on Fn whose rate matrix Q = q(fi′ |fi) for any two states fi, fi′ ∈ Fn

is:

q(fi′ |fi) =

8>>><>>>:
−i(i − 1)/2 : if F

(i)
n � fi = fi′ ,

fi,jfi,k : if F
(i−1)
n � fi′ = fi − ej − ek + ej+k, j �= k, fi ∈ F

(i)
n ,

(fi,j)(fi,j − 1)/2 : if F
(i−1)
n � fi′ = fi − ej − ek + ej+k, j = k, fi ∈ F

(i)
n ,

0 : otherwise

(13)

The initial state is fn = (n, 0, 0, . . . , 0) and the final absorbing state is f1 =
(0, 0, . . . , 1). The above rates for the continuous time Markov chain {F ↑(t)}t∈R+

on Fn are obtained by coupling the independent death process {H↑(t)}t∈R+ of
§3.1 over Hn with the discrete time Markov chain {F ↑(k)}k∈[n]− on Cn.

Let {NF ↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of
n unlabeled samples taken at random from the present generation of a Wright-
Fisher population of constant size N over the state space Fn analogous to the
death chain {NH↑(k)}k∈Z− . The next Proposition (proved in [28, Prop. 3.28]
using the theory of lumped Markov chains) states how {F ↑(t)}t∈R+ approximates
{NF ↑(k)}k∈Z− on Fn.

Proposition 4 (Kingman’s Unlabeled n-coalescent)
The �Nt-step transition probabilities, NPfi,fi′ (�Nt), of the chain {NF ↑(k)}k∈Z− ,
converge to the transition probabilities of the continuous-time Markov chain
{F ↑(t)}t∈R+ with rate matrix Q of (13), i.e.

NPfi,fi′ (�Nt) N→∞−→ Pfi,fi′ (t) = exp (Qt) .

Proof. See [28, proof of Prop. 3.28].

Remark 1 (Markovian lumping from Cn to Fn via F ). Our lumping of King-
man’s labeled n-coalescent over Cn to Kingman’s unlabeled n-coalescent over
Fn, via the mapping F , is Markov as pointed out by Kingman [1, (5.1),(5.2)]



using the arguments in [30, Sec. IIId]. See [28, §2.1] for an introduction to lumped
processes and [28, proof of Prop. 3.29] for a proof that {F ↑(t)}t∈R+ is a Markov
lumping of {C↑(t)}t∈R+ .

Next we provide some concrete examples of c-sequences and their lumping
into f -sequences for small n. When there are 2 samples there is one c-sequence
c = ( { {1}, {2} }, { {1, 2} } ) and one f -sequence f = F (c) = ( (2, 0), (0, 1) ).

Example 5 (3 Samples) When there are 3 samples we have three c-sequences:
c(r), c(b) and c(g) (see Fig. 3) and all of them map to the only f -sequence f :

f = ( (3, 0, 0), (1, 1, 0), (0, 0, 1) )
= F (c(r)) := F ( ( { {1}, {2}, {3} }, { {1, 2}, {3} }, { {1, 2, 3} } ) )
= F (c(b)) := F ( ( { {1}, {2}, {3} }, { {1, 3}, {2} }, { {1, 2, 3} } ) )
= F (c(g)) := F ( ( { {1}, {2}, {3} }, { {2, 3}, {1} }, { {1, 2, 3} } ) )

Example 6 (4 Samples) When there are 3 samples we have two f -sequences
and eighteen c-sequences. We denote the f -sequences by f� and f∧. We can
apply Equation (7) to C4 and find that 12 c-sequences map to f� and 6 map to
f∧. They are depicted in Fig. 4.

f� =

0
BB@

0 0 0 1
1 0 1 0
2 1 0 0
4 0 0 0

1
CCA

((•,3 •),1 (•,2 •))
↘

f∧ =

0
BB@

0 0 0 1
0 2 0 0
2 1 0 0
4 0 0 0

1
CCA

(((•,3 •),2 •),1 •)
↙

0001

0200 1010

2100

4000

Fig. 4. The two f -sequences f∧ and f� corresponding to the balanced (left panel) and
unbalanced unlabeled genealogies of four samples (right panel) and the Hasse diagram
of the state transition diagrams of {F ↑(k)}k∈[n]− and {F ↓(k)}k∈[n]+ on F4 (middle
panel).

Kemeney & Snell [3, p. 124] observe the following about a lumped process: “It
is also often the case in applications that we are only interested in questions which
relate to this coarser analysis of the possibilities. Thus it is important to be able
to determine whether the new process can be treated by Markov chain methods.”
It is exactly this observation about a lumped Markov process we exploit in the
sequel where we show that it suffices to analyze the unlabeled n-coalescent to
prescribe measures over Xm

n , the sample space of SFS. By lumping the states
we are doing far fewer summations during the integration of probabilities over
the hidden space of f -sequences, as opposed to c-sequences, when evaluating the



likelihood of the observed SFS. The extent of this lumping as |Fn|/|Cn|, the ratio
of the number of integer partitions of n and the n-th Bell number for a range of
sample sizes is tabulated below.

n = |Hn| 4 10 30 60 90 120
|Cn| 15 1.2 × 105 8.5 × 1023 9.8 × 1059 1.4 × 10101 5.1 × 10145

|Fn| 5 42 5.6 × 103 9.7 × 105 5.7 × 107 1.8 × 109

|Fn|/|Cn| 0.33 3.6 × 10−4 6.6 × 10−21 9.9 × 10−55 4.0 × 10−94 3.6 × 10−137
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Fig. 5. Hasse diagrams of the state transition diagrams of the backward and forward
Markov chains, {F ↑(k)}k∈[n]− and {F ↓(k)}k∈[n]+ , respectively, on Fn for n = 5, 6, 7 on
top row with labeled states and n = 8, 9, 10 in bottom row.

In the Hasse diagram of Fn, the states f1, . . . , fn in Fn form the nodes or
vertices and there is an edge between fi and fj if fi ≺f fj , i.e. fi immediately pre-
cedes fj. Each Hasse diagram of Fn embodies two directed and weighted graphs
of the state transition diagrams of {F ↑(k)}k∈[n]− and {F ↓(k)}k∈[n]+ . These two
state transition graphs are temporally oriented, directed and edge-weighted by
the one-step transition probabilities of {F ↑(k)}k∈[n]− and {F ↓(k)}k∈[n]+ . This
structure is used during inference based on SFS data.

Standard graph algorithms may be readily used on the state transition graphs
of the unlabeled n-coalescent (see Fig. 5 for small values of n). For instance,
Dijkstra’s search can be used to compute the f -sequence with the smallest or
largest probability under {F ↑(k)}k∈[n]− or {F ↓(k)}k∈[n]+ or dynamic programs
of stochastic network flow algorithms may be adapted for importance sampling.
Using the Boost Graph Library [31] it is possible to solve such problems for



larger values of n. When the nodes in each F
(i)
n are in reverse-lexicographic order

(as done in Fig. 5), the least probable and the most probable f -sequences tend
to hover the left and right edges of the graphs in Fig. 5, respectively (See [28,
Prop. 3.31]), as n gets large.

3.4 Exponentially Growing Population

Thus far, we have focused on stochastic processes whose realizations yield labeled
and unlabeled sample genealogies of a Wright-Fisher population of constant size
N . Consider a demographic model of steady exponential growth forward in time:

N(t) = N(0) exp(φ2t),

where N(0) is the current population size. One can apply a deterministic time-
change to the epoch times of the constant population model to obtain the epoch
times of the growing population [22]:

P

0@Tk > t

˛̨̨̨
˛̨ nX
j=k+1

Tj = tk+1:n

1A = exp

 
−
 

k

2

!
φ2

−1 exp(φ2tk+1:n) (exp(φ2t) − 1)

!
.

3.5 Inference under the Unlabeled n-Coalescent

Now, we introduce the infinitely-many-sites model [13] of mutations that are
super-imposed on the labeled and unlabeled n-coalescent sample genealogies
in order to prescribe the φ-indexed measures on our sample spaces Vm

n and
Xm

n , respectively. Recall that a coalescent tree ct realized under the n-coalescent
describes the labeled ancestral history of the sampled individuals as a binary
tree. Fig. 1 shows a coalescent tree for a sample of four individuals. In neutral
models considered here under parameter φ = (φ1, φ2) ∈ ΦΦ , mutations are super-
imposed upon the coalescent trees at each site according to a homogeneous
Poisson process at rate φ1l•, where φ1 := 4Neµm, l• is the total size of the tree,
Ne is the effective population size, µ is the mutation rate per generation per site.
Under the infinitely-many-sites mutation model [13] we further stipulate that at
most one mutation is allowed per site. The only parameter in the simplest n-
coalescent model with mutations just described is the scaled per-locus mutation
rate φ1 for the locus of m sites where we have assumed the same mutation rate
µ at all m sites. The population’s exponential growth rate is φ2. For a given
coalescent tree ct ∈ CnTn, let the map:

L(ct) = l := (l1, l2, . . . , ln−1) : CnTn → Ln := R
n−1
+ (14)

compress the tree ct into the n−1 lineage lengths that lead to singleton, double-
ton, . . . , and “(n− 1)-ton” mutations, respectively, i.e. li is the length of all the
lineages in ct that subtend i samples or leaves. For example in Fig. 1, (i) the bold
lineage of the tree with label set L = {1, 2, 3, 4} upon which the mutations at



sites 3 and 6 occur, lead to singleton mutations, (ii) the bold-dashed lineage upon
which the mutation at site 7 occurs leads to doubleton mutations and (iii) the
thin-dashed lineage upon which mutations at sites 2 and 9 occur lead to tripleton
mutations. Thus, l1, l2 and l3 are the lengths of these three types of lineages,
respectively. Finally, l• :=

∑n−1
i=1 li ∈ R+ is the total length of all the lineages

of the tree ct that are ancestral to the sample since the most recent common
ancestor across all the sites. Now, let l̄i := li/l• be the relative length of lineages
that subtend i leaves across the sites. Now, define l̄ := (l̄1, l̄2, . . . , l̄n−1) ∈ �n−2,
the (n − 2)-unit-simplex containing all l̄ ∈ R

n−1
+ such that

∑n−1
i=1 l̄i = 1. Then,

if L(ct) = l, the following conditional probability of x is given by the Poisson-
Multinomial distribution:

P (x|φ, ct) = P (x|φ, l) = e−φ1l•(φ1l•)
s

n−1∏
i=1

l̄xi

i /

n−1∏
i=1

xi! , (15)

where, s =
∑n−1

i=1 xi is the number of segregating sites. The distribution on CnTn

is given by the φ2-indexed n-coalescent approximation of the sample genealogy
in an exponentially growing Wright-Fisher model. This distribution on CnTn in
turn determines the distribution of the random vector L on Ln.

Since x is a summary of the data v one could try to apply the ABC/ALC al-
gorithm [12, Alg. 1] to obtain P (φ|xo), the posterior conditional on the observed
xo. A direct application of ABC/ALC algorithm however, under any non-trivial
metric on Xm

n to specify m, will be highly inefficient. Moreover, for large n, a
simulated labeled n-coalescent tree ct with l = L(ct) will satisfy P (xo|φ, l) = 0
with high probability, if one were to simulate ct directly from a parameter φ2

and superimpose mutations upon it according to the parameter φ1 after having
drawn φ := (φ1, φ2) according to the prior density P (φ).

We remedy this problem of inferring φ based on the observed SFS xo via a
naive ABC/ALC Algorithm [12, Alg. 1] by taking the observations of Kemeney
& Snell [3, p. 124] into consideration and employing the appropriate lumped
Markov process to efficiently obtain P (φ|xo). Using the unlabeled n-coalescent
we can directly prescribe the φ-indexed family of measures over Xm

n and obtain
the sampling distribution over Xm

n , i.e. the probability of an SFS x ∈ Xm
n when

conditioned on the parameter φ and an f -sequence f ∈ Fn. Recall P (x|φ, ct) =
P (x|φ, l), l = L(ct), as in (15). We show that l is determined by the f -sequence
f = F (c) of the c-sequence c and the epoch-times t in the coalescent tree ct.
First, we introduce a matrix form f of f . Any f -sequence f = (fn, fn−1, . . . , f1),
that is a sequential realization under {F ↑(k)}k∈[n]− or a reverse-ordered sequen-
tial realization under {F ↓(k)}k∈[n]+ , can also be written as an (n− 1)× (n− 1)
matrix F(f) = f as follows:

F : Fn → Z
(n−1)×(n−1)
+ , F(f) = f :=


f2,1 f2,2 · · · f2,n−1

...
...

. . .
...

fn−1,1 fn−1,2 · · · fn−1,n−1

fn,1 fn,2 · · · fn,n−1

 . (16)



Thus, the matrix form of f = (fn, fn−1, . . . , f1) or the f -matrix is the (n −
1) × (n − 1) matrix f whose (i − 1)-th row is (fi,1, fi,2, . . . , fi,n−1), where, i =
2, 3, . . . , n.

Proposition 7 (Probability of SFS given f-sequence and epoch-times)
Let ct ∈ CnT be a given coalescent tree, c be its c-sequence, f = F (c) be its
f -sequence, f = F(f) be its f -matrix and t = (t2, t3, . . . , tn) ∈ (0,∞)n−1 be its
epoch times as a column vector and its transpose tT be the corresponding row
vector. Then, L(ct) = l of (14) is given by the following matrix multiplication:

l = tTf =

(
n∑

i=2

tifi,1,

n−1∑
i=2

tifi,2, . . .

2∑
i=2

tifi,n−1

)
(17)

More succinctly, lj =
∑n+1−j

i=2 tifi,j for j = 1, 2, . . . , n − 1. And the probability
of an SFS x given a vector of epoch-times t ∈ (0,∞)n−1 and any coalescent tree
ct ∈ F−1(f)t := {ct : c ∈ F−1(f)} is:

P (x|φ, ct) = P (x|φ, l)) = P
(
x|φ, tTf

)
= e−φ1l•(φ1l•)

s
n−1∏
i=1

l̄xi

i /
n−1∏
i=1

xi! , (18)

where, s =
∑n−1

i=1 xi is the number of segregating sites.

Proof. The proof of (17) is merely a consequence of the encoding of f as the
matrix f and (18) follows from (17) and (15).

The computation of l from t and f requires at most n2−2n+1 multiplications and
summations over R. Exploiting the predictable sparseness of f is more efficient
especially for large n. Thus, given the parameter φ = (φ1, φ2) and a sample size
n, we can efficiently draw SFS samples from Xm

n via Algorithm 1.

Algorithm 1 SFS Sampler under Kingman’s unlabeled n-coalescent
1: input:

1. scaled mutation rate φ1 of the locus
2. sample size n

2: output: an SFS sample x from the standard neutral n-coalescent
3: generate an f -sequence f either under {F ↑(k)}k∈[n]− or {F ↓(k)}k∈[n]+

4: draw t ∼ T = (T2, T3, . . . , Tn) ∼Nn
i=2

`
i
2

´
e−(i

2)ti , or as desired
5: l = tT · f , where f = F(f)
6: draw x from Poisson-Multinomial distribution e−φ1l•(φ1l•)

sQn−1
i=1 l̄xi

i /
Qn−1

i=1 xi!
7: return: x

Note that the only restriction on t is that it be a positive real vector. Thus,
any indexed family of measures over (0,∞)n−1, including nonparametric ones,



may be used in the computation of l = tT · f , provided the c-sequence c and its
f -sequence f = F (c) are drawn from the labeled n-coalescent and the corre-
sponding unlabeled n-coalescent, respectively, in an exchangeable manner that
is independent of the epoch-times t. Furthermore, one may use Algorithm 1 to
adapt Algorithm 1 in [12] and conduct approximate Likelihood or Bayesian com-
putations on the basis of summaries that are further compressions of the directly
simulable site frequency spectrum as done in [12] via Markov bases.

Next we study one f -sequence in detail as it is an interesting extreme case
that will resurface in the sequel. Let the f -sequence f� ∈ Fn denote that of the
fully unbalanced tree. Its probability based on (8) and (9) are:

f� := ( f�
1 , f�

2 , . . . , f�
n ), where, f�

i = (i − 1) e1 + e(n−i+1), (19)

P (f�) =
2∏

i=n

P (f�
i−1|f�

i ) =
2∏

i=n−1

(i − 1)1
i(i − 1)/2

=
2n−2

(n − 1)!
. (20)

The number of c-sequences corresponding to it is |F−1(f�)| = n!/2.
The posterior distribution P (φ|x) ∝ P (x|φ)P (φ) over ΦΦ is the object of

inferential interest. For an efficient inference based on SFS x, we first investigate
the topological information about the tree ct that the SFS x was realized upon.
We are only interested in this information provided by the drawn x and thus
can only resolve the topology of ct up to equivalence classes of F−1(f), where
f is the f -sequence corresponding to the c-sequence of ct. For samples of size
n ≤ 3 there is only one f -sequence in Fn. For samples with n ≥ 4, consider
the following mapping of the SFS x ∈ Xm

n into vertices of the unit hyper-cube
{0, 1}n−1, a binary encoding of 2{1,2,...,n−1}, the power set of {1, 2, . . . , n − 1}:
X�(x) = x� := (x�

1 , . . . , x�
n−1) := ( 11N(x1), . . . , 11N(xn−1) ) : Xm

n → {0, 1}n−1 .

If x�
h = 1 then there is at least one mutation in the h-th entry of the SFS

x, i.e. xh > 0. Thus, X�(x) = x� encodes the indices of x with at least one
mutation. Next, consider the following two sets of f -sequences

�n(x�) :=
⋃

{h:x�
h =1}

{f ∈ Fn :
n∑

i=1

fi,h = 0}, ��n(x�) := Fn \ �n(x�) . (21)

The set of f -sequences �n(x�) and its complement ��n(x�) play a fundamental
role in inference from an SFS x and its X� = x�. Note that when an SFS x
has none of the xi’s equaling 0, then its x� = (1, 1, . . . , 1) and ��n(x�) only
contains the f -sequence corresponding to the completely unbalanced tree f�

given by (19). At the other extreme, when an SFS x has all its xi’s equaling 0
with x� = (0, 0, . . . , 0), we are unable to discriminate among f -sequences since
��n(x�) = Fn. Thus,

��n(0, 0, . . . , 0) = Fn and ��n(1, 1, . . . , 1) = {f�} . (22)

Therefore, the size of ��n(x�) can range from 1 to |Fn|, depending on x�. More
generally, we have the following Proposition.



Proposition 8 (Likelihood of SFS)
For any t ∈ (0,∞)n−1 and any x ∈ Xm

n with x� = X�(x),

f ∈ �n(x�), l = tT ·F(f) =⇒
n−1∏
i=1

l̄xi

i = 0 , (23)

P (x|φ) =

∑
f∈��n(x�)

P (f)
(∫

t∈(0,∞)n−1

(
e−φ1l•(φ1l•)

s ∏n−1
i=1 l̄xi

i

)
P (t|φ)

)
∏n−1

i=1 xi!
.(24)

Proof. We first prove the implication in (23). Given any t ∈ (0,∞)n−1 and any
x ∈ Xm

n with x� = X�(x), let f ∈ �n(x�). First, suppose x�
h = 0 for every

h ∈ {1, 2, . . . , n − 1}, then �n(x�) = ∅ and we have nothing to prove. Now,
suppose there exists some h such that x�

h = 1, or equivalently xh > 0, then
by the constructive definition of �n(x�), we have that for any f ∈ �n(x�)∑n

i=1 fi,h = 0, which implies that fi,h = 0 for every i ∈ {1, 2, . . . , n} since
fi,j ≥ 0. Therefore, by applying this implication to the expression for lh in
Proposition 7, we have that lh =

∑n+1−h
i=2 tifi,h = 0 and finally the desired

equality that
∏n−1

i=1 l̄xi

i = 0 in (23) is a consequence of l̄xh

h = (lh/l•)
xh = 0xh = 0.

Next we prove (24). Repeated application of the definition of conditional
probability and the neutral structure of the n-coalescent model leads to the
following expression for P (x, φ) in P (x|φ) = P (x, φ)/P (φ).

P (x, φ) =
∑
c∈Cn

∫
t∈(0,∞)n−1

P (x, φ, t, c) =
∑

f∈Fn

∫
t∈(0,∞)n−1

P (x, φ, t, f)

=
∑

f∈Fn

∫
t∈(0,∞)n−1

P (x|φ, t, f)P (φ, t, f)

=
∑

f∈Fn

P (f)
∫

t∈(0,∞)n−1
P (x|φ, l = tT ·F(f))P (t|φ)P (φ)

since, by independence of f and (φ, t)

P (φ, t, f) = P (f |φ, t)P (φ, t) = P (f)P (φ, t) = P (f)P (t|φ)P (φ) .

Thus, by letting F(f) = f , the likelihood of the SFS x is:

P (x|φ) = P (x, φ)/P (φ) =
∑

f∈Fn

P (f)
∫

t∈(0,∞)n−1
P (x|φ, l = tT · f)P (t|φ) .

Substituting for P (x|φ, l = tT · f) from Proposition 7 and only summing over
f ∈ ��n(x�) with non-zero probability P (x|φ, l = tT · f), we get the discrete
sum weighted by integrals on Tn := (0,∞)n−1, the required equality in (24).

Next we devise an algorithm to estimate P (x|φ), the probability of an ob-
served SFS x given a parameter φ. This is accomplished by constructing a



Markov chain {F �x�
(k)}k∈[n]+ on the state space Fx�

n ⊂ Fn × {0, 1}n−1 such
that every sequence of states visited by this chain yields a probable f -sequences
f for the observed SFS x, i.e. f ∈ ��n(x�). Obtaining an optimal importance
sampler by using the sequential realizations of {F �x�

(k)}k∈[n]+ and its contin-
uous time variant as a proposal distribution in order to get the Monte Carlo
estimate of P (x|φ) is necessary and possible. However, this is a subsequent
problem in variance reduction of the Monte Carlo estimate for large values of n
that depends further on the precise nature of φ-indexed measures on CnTn. In
this paper, we focus on small n ∈ {4, 5, . . . , 10} and exhaustively sum over all
f ∈ ��n(x�) that are unique sequential realizations of {F �x�

(k)}k∈[n]+ . This
x�-indexed family of 2n−1 Markov chains {F �x�

(k)}k∈[n]+ over state spaces con-
tained in Fn × {0, 1}n−1 may also be thought of as a controlled Markov chain
(e.g. [32, §7.3]) over the state space Fn with control space {0, 1}n−1 that can
produce the desired f -sequences in ��n(x�).

Proposition 9 (A Proposal over ��n(x�))
For a given SFS x ∈ Xm

n and X�(x) = x� ∈ {0, 1}n−1, consider the discrete time
Markov chain {F �x�

(k)}k∈[n]+ over the state space of ordered pairs (fi′ , zi′) ∈
Fx�

n ⊂ Fn×{0, 1}n−1, with the initial state given by (f1, x
�) = ((0, 0, . . . , 1), x�),

the transition probabilities obtained by a controlled reweighing of the the tran-
sition probabilities of {F ↓(k)}k∈[n]+ over Fn as follows:

P ((fi′ , zi′)|(fi, zi)) =

{
P (fi′ |fi)/Σ(fi, zi) : if (fi, zi) ≺f,z (fi′ , zi′) ,

0 : otherwise ,
(25)

where,
Σ(fi, zi) =

∑
(j,k)∈Ξ(fi,zi)

P (fi − ej+k + ej + ek|fi),

Ξ(fi, zi) := {(j, k) : fi,j+k > 0, 1 ≤ j ≤ ĵ ≤ k ≤ j + k − 1},

ĵ := max{min{max{� : zi,� = 1}, j + k − 1}, �j + k

2
�},

(fi, zi) ≺f,z (fi′ , zi′) ⇐⇒
{

fi′ = fi + ej + ek − ej+k, (j, k) ∈ Ξ(fi, zi), and
zi′ = zi − 11{1}(zi,j) ej − 11{1}(zi,k) ek ,

and with (fn, (0, 0, . . . , 0)) = ((n, 0, . . . , 0), (0, 0, . . . , 0)) as the final absorbing
state.

Let Fx�
n be the set of sequential realizations of the first component of the

ordered pairs of states visited by {F �x�
(k)}k∈[n]+ , i.e.

Fx�
n := {f = (fn, fn−1, . . . , f1) : fi ∈ F

(i)
n , (fi, zi) ≺f,z (fi+1, zi+1), z1 = x�} .

Then Fx�
n = ��n(x�).



Proof. We will prove that Fx�
n = ��n(x�) for three cases after noting that the

ortho-normal basis vector ei in {0, 1}n−1 and Fn takes the appropriate dimen-
sion. The first two cases involve constructive proofs.

Case 1: Suppose x� = (0, 0, . . . , 0). Since ��n(x�) = Fn by (22), we need to
show that Fx�

n = Fn. Initially, at time step 1,

F �x�
(1) = (f1, z1) = (f1, x

�) = ((0, 0, . . . , 0, 1), (0, 0, . . . , 0))

Note that for any time step i, zi in the current state (fi, zi) remains at (0, 0, . . . , 0).
Thus, max{� : zi,� = 1} = max{∅} = −∞ and therefore,

ĵ := max{min{max{� : zi,� = 1}, j + k − 1}, �j + k

2
�} = �j + k

2
� , and

Ξ(fi, zi) := {(j, k) : fi,j+k > 0, 1 ≤ j ≤ �j + k

2
� ≤ k ≤ j + k − 1} .

Therefore, the first component of the chain can reach all states in Fn that are
immediately preceded by fi under ≺f making Σ(fi, zi) = 1. Thus, when x� =
(0, 0, . . . , 0) our fully uncontrolled Markov chain {F �x�

(k)}k∈[n]+ visits states
in Fn in a manner identical to the the Markov chain {F ↓(k)}k∈[n]+ over Fn.
Therefore, Fx�

n = Fn = ��n(x�) when x� = (0, 0, . . . , 0).
Case 2: Suppose x� = (1, 1, . . . , 1). Since ��n(x�) = {f�} by (22), we need

to show that Fx�
n = {f�}. Initially, at time step 1,

F �x�
(1) = (f1, z1) = (f1, x

�) = ((0, 0, . . . , 0, 1), (1, 1, . . . , 1, 1))

then fi,j+k > 0 =⇒ j+k = n, max{� : z1,� = 1} = max{1, 2, . . . , n − 1} = n−1,
ĵ = max{min{n − 1, n − 1}, �n

2 �} = n − 1 and

Ξ(f1, z1) = {(j, k) : fi,j+k > 0, 1 ≤ j ≤ n − 1 ≤ k ≤ n − 1} = {(1, n− 1)} .

Thus, the only state that is immediately preceded by (f1, z1) is our next state
(f2, z2) = (f1 − en + e1 + en−1, z1 − 11{1}(z1,1) e1 − 11{1}(zi,n−1) en−1) with prob-
ability 1 due to the equality of the numerator and denominator in (25):

(f1, z1) ≺f,z (f2, z2) = ((1, 0, . . . , 1, 0), (0, 1, . . . , 1, 0)) = F �x�
(2)

In general, at time step i, Ξ(fi, zi) = {(1, n− i)}, P ((fi+1, zi+1)|(fi, zi)) = 1 and

fi+1 = f1−
n∑

j=1

ej +
i∑

j=1

e1 +
i∑

j=1

en−j = en−i + ie1, zi+1 = x� − e1−
n∑

j=i

ej−1 .

By (19), fi+1 = en−i + ie1 = f�
i+1 and we get the desired f -sequence f� =

(f�
n , f�

n−1, . . . , f
�
1 ) in the forward direction as the only realization over Fn of

our fully controlled Markov chain {F �x�
(k)}k∈[n]+ . Therefore, Fx�

n = {f�} =
��n(x�) when x� = (1, 1, . . . , 1).



Case 3: Now, suppose x� ∈ {0, 1}n−1. First, we will show that f ∈ Fx�
n

implies that f ∈ ��n(x�) or equivalently that f /∈ �n(x�). We will prove by
contradiction. Assume f ∈ Fx�

n . Suppose that f ∈ �n(x�). Then by (21), there
exists an h with x�

h = 1 such that
∑n

i=1 fi,h = 0. Since
∑n

i=1 f1,h > 0 and∑n
i=1 f2,h > 0 for every f ∈ Fn, with n > 2, h ∈ {3, 4, . . . , n − 1}. Recall that∑n
i=1 fi,h = 0 implies that there was never a split of any lineage that birthed a

child lineage subtending h leaves at any time step in the sequential realization of
f = (f1, f2, . . . , fn) over Fn by {F �x�

(k)}[n]+ . This contradicts our assumption
that f ∈ Fx�

n as it violates the constrained splitting imposed by Ξ(fi, zi) at the
time step i when max{� : zi,� = 1} = h in the definition of ĵ. So, our supposition
that f ∈ �n(x�) is false. Therefore, f ∈ Fx�

n =⇒ f ∈ ��n(x�). Next, we
will show f ∈ ��n(x�) implies that f ∈ Fx�

n . Assume that f ∈ ��n(x�), then∑n
i=1 fi,h > 0 for every h ∈ {h : x�

h = 1} by (21). This means that for each h with
x�

h = 1 there is at least one split in f that birthed a child lineage subtending h
leaves. Since this splitting condition satisfies the constraints imposed by Ξ(fi, zi)
at each time step i when max{� : zi,� = 1} = h, h ∈ {h : x�

h = 1}, in the
definition of ĵ, this f can be sequentially realized over Fn by {F �x�

(k)}[n]+ .
Therefore, f ∈ ��n(x�) =⇒ f ∈ Fx�

n .

Thus, given φ1 and an x�, we can efficiently propose SFS samples from Xm
n ,

such that the underlying f -sequence f ∈ ��n(x�), using Algorithm 2. Note
however that a further straightforward importance sampling step using (25) and
(11) is needed to obtain SFS samples that are distributed over Xm

n according to
the unlabeled n-coalescent over ��n(x�). The number of sites m do not appear
in either of the Algorithms in this article since φ1 is the mutation rate of the
entire locus.

Algorithm 2 SFS Proposal under an x�-controlled unlabeled n-coalescent
1: input:

1. scaled mutation rate φ1 of the locus
2. observed x� (note that sample size n = |x� | + 1)

2: output: an SFS sample x such that the underlying f -sequence f ∈ ��n(x�)

3: generate an f -sequence f under {F �x�
(k)}k∈[n]+

4: draw t ∼ T = (T2, T3, . . . , Tn) ∼Nn
i=2

`
i
2

´
e−(i

2)ti , or as desired
5: l = tT · f , where f = F(f)
6: draw x from Poisson-Multinomial distribution e−φ1l•(φ1l•)

sQn−1
i=1 l̄xi

i /
Qn−1

i=1 xi!
7: return: x



4 Applications

We briefly show how to apply Kingman’s unlabeled n-coalescent experiment and
the associated Markov processes of §3 to estimate parameters and obtain the null
distribution of test statistics based on simulated SFS data. A beta version of
LCE-0.1: A C++ class library for lumped coalescent experiments that
implements such algorithms is available from http://www.math.canterbury.
ac.nz/~r.sainudiin/codes/lce/ under the terms of the GNU General Public
License.

4.1 Topologically-conditioned Tests

A large number of statistical tests on population-genetic data focus on summary
statistics in lieu of the full data matrix, and estimate a (one- or two-tailed) p-
value for that statistic under a model of interest. In the case of Tajima’s D, a
statistic of the SFS [12, §3.3], simulations may be used to calculate Pr(D ≤ dobs),
where dobs is the observed value of D for a particular locus. The simulation pro-
cedure involves two steps. First, coalescent trees in CnTn are drawn randomly
from the null model, with no respect to topological information contained in the
full data matrix. Further, the observed number of mutations are placed onto each
realized coalescent tree ct [33]. In the empirical literature, there are a number
of publications applying this procedure in order to identify “unusual” loci (re-
viewed in [34]). Such genome scans may be improved greatly at little additional
computational cost by conditioning on the partial topological information con-
tained in X�(x) = x� corresponding to the SFS x at a locus that is assumed to
be free of intra-locus recombination and evolving neutrally under the standard
null hypothesis. Using Algorithm 2 we can obtain topologically-conditioned null
distributions of test statistics that are functions of the SFS.

Figure 6 illustrates the problem of ignoring the topological information in
x�, when it is readily available, even when n = 4. Notice that 12 out of the 18
c-sequences in C4 have unbalanced trees that map to f� and the remaining 6
c-sequences have balanced trees that map to f∧. Recall that Kingman’s labeled
n-coalescent assigns the uniform distribution over Cn, while P (f) for any f ∈ Fn

is far from uniformly distributed under the Kingman’s unlabeled n-coalescent
and easily obtained from (8) or (11). We can also obtain P (f) from higher-order
shape statistics of the f -sequence [28, Prop. 3.31]. Thus, P (c) = 1/18 for each
c ∈ Cn while P (f�) = 2/3 and P (f∧) = 1/3. Five SFS simulations upon f�

and f∧ are shown as the left and right columns of bar charts, respectively, on
the lower right corner of Figure 6. The remaining simulated SFS are plotted in
the simplexes with a fixed number of segregating sites s =

∑n−1
i=1 xi contained

in X 105

4 , the sample space of SFS with four sampled individuals at 105 sites.
Observe how every SFS simulated under f∧ has x3 = 0 =⇒ x�

3 = 0, as
opposed to those SFS simulated under f�. Crucially, if we do not know the
hidden f ∈ {f�, f∧} that the observed SFS x was realized upon, then the
observation that x3 > 0 =⇒ x�

3 = 1, and this allows us to unambiguously
eliminate f∧ from the hidden space of f -sequences we need to integrate over or
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Fig. 6. Topological Unfolding of SFS and Tajima’s D when n = 4

conditionally simulate from. This set of x�-specific hidden f -sequences is exactly
��n(x�) that we can access with the proposal Markov chain {F �x�

(k)}k∈[n]+

and its importance-reweighed variants. Thus, by means of Algorithm 2 that
invokes {F �x�

(k)}k∈[n]+ and further reweighing by P (f) we can generate the
null distribution of any statistic that is a function of SFS Such SFS statistics
include the classical linear combinations covered in the companion article [12]
as well as various classical and non-classical tree shape statistics [28, §4.3].

4.2 Parameter Estimation in an Exponentially Growing Population

We estimate the scaled mutation rate φ∗
1 and the exponential growth rate φ∗

2

based on the observed SFS at one non-recombining locus of length m from n
samples. The performance of our estimator is assessed over 1, 000 data sets that
were simulated under our model with the locus-specific scaled mutation rate
φ∗

1 = 10.0, constant population size with the growth rate φ∗
2 = 0.0 (for human

data φ∗
1 = 10.0 implies a locus of length 100kbp, i.e. m = 100, 000). Our choices of

φ∗
1 and m are biologically motivated by a previous study on human SNP density

[35]. We choose φ∗
2 = 0.0 for the standard n-coalescent null model. Our point esti-

mate (φ̂1, φ̂2) of (φ∗
1, φ

∗
2) based on the SFS x is the maximum aposteriori estimate

obtained from a histogram estimate of the posterior P (φ|x). The histogram is
based on a uniform grid of 101×101 parameter points φ = (φ1, φ2) over our rect-
angular uniform prior density ((100−1/10000)100)−111{[0.0001,100],[0,100]}(φ1, φ2).

There are several quantities one can use to gauge the efficiency of our esti-
mator Φ̂ at this point. Our performance measures based on 1000 replicates of



n cφ2
cφ1 (cφ1,cφ2)√

se bs C99%

√
se bs C99% C99% Qrt(K̆)

4 46 30 42 43 30 53 98 {0.061, 0.079, 0.13}

5 32 19 42 31 22 63 96 {0.074, 0.098, 0.16}

6 31 18 41 35 23 69 93 {0.082, 0.11, 0.17}

7 34 19 48 32 20 68 87 {0.090, 0.12, 0.21}

8 26 12 66 21 11 72 92 {0.098, 0.14, 0.26}

9 27 12 65 18 10 70 93 {0.097, 0.14, 0.21}

10 23 11 64 17 10 66 95 {0.091, 0.14, 0.30}

Table 1. Performance of our estimator of φ∗
1 and φ∗

2 based on SFS (see text).

SFS simulated under φ∗
1 = 10.0 and φ∗

2 = 0.0 can help make natural connections
to the theory of approximate sufficiency [36], as we not only measure the bias
(bs), root-mean-squared-error (

√
se) and the marginal and joint 99% empirical

coverage (C99%) but also the data-specific variation in the concentration of the
posterior distribution as summarized by the quartiles of K̆, the Kullback-Leibler
divergence between the posterior histogram estimate and the uniform prior that
is rescaled by the prior’s entropy. Table 1 gives the maximum aposteriori esti-
mates of φ = (φ1, φ2) by a Monte Carlo sum over φ-specific t‘s in Tn := (0,∞)n−1

that estimates (24).
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