
Submitted to:
X. Zheng and N. Zhong (Eds.)
Computability and Complexity in Analysis (CCA 2010)

c© T. Steinke & R. Sainudiin
This work is licensed under the
Creative Commons Attribution License.

A Rigorous Extension of the Schönhage-Strassen Integer
Multiplication Algorithm Using Complex Interval Arithmetic

Thomas Steinke
Department of Mathematics and Statistics

University of Canterbury
Christchurch, New Zealand

tas74@student.canterbury.ac.nz

Raazesh Sainudiin
Department of Mathematics and Statistics

University of Canterbury
Christchurch, New Zealand

r.sainudiin@math.canterbury.ac.nz

Multiplication of n-digit integers by long multiplication requires O(n2) operations and can be time-
consuming. In 1970 A. Schönhage and V. Strassen published an algorithm capable of performing the
task with only O(n log(n)) arithmetic operations over C; naturally, finite-precision approximations
to C are used and rounding errors need to be accounted for. Overall, using variable-precision fixed-
point numbers, this results in an O(n(log(n))2+ε)-time algorithm. However, to make this algorithm
more efficient and practical we need to make use of hardware-based floating-point numbers. How do
we deal with rounding errors? and how do we determine the limits of the fixed-precision hardware?
Our solution is to use interval arithmetic to guarantee the correctness of results and determine the
hardware’s limits. We examine the feasibility of this approach and are able to report that 75,000-digit
base-256 integers can be handled using double-precision containment sets. This clearly demonstrates
that our approach has practical potential; however, at this stage, our implementation does not yet
compete with commercial ones, but we are able to demonstrate the feasibility of this technique.

1 Introduction

Multiplication of very large integers is a crucial subroutine of many algorithms such as the RSA cryp-
tosystem [7]. Consequently, much effort has gone into finding fast and reliable multiplication algorithms;
[4] discusses several methods. The asymptotically-fastest known algorithm [1] requires n log(n)2O(log∗(n))

steps, where log∗ is the iterated logarithm — defined as the number of times one has to repeatedly take
the logarithm before the number is less than 1. However, being asymptotically-faster does not translate to
being faster in practice. We shall concern ourselves with the practicalities of the subject; we will analyse
our algorithm’s performance on a finite range of numbers.

The algorithm we are studying here is based on the first of two asymptotically fast multiplication
algorithms by A. Schönhage and V. Strassen [8]. These algorithms are based on the convolution theorem
and the fast Fourier transform. The first algorithm (the one we are studying) performs the discrete Fourier
transform over C using finite-precision approximations. The second algorithm uses the same ideas as the
first, but it works over the finite ring Z22n+1 rather than the uncountable fieldC. We wish to point out that
“the Schönhage-Strassen algorithm” usually refers to the second algorithm. However, in this document
we use it to refer to the first C-based algorithm.

From the theoretical viewpoint, the second algorithm is much nicer than the first. The second al-
gorithm does not require the use of finite-precision approximations to C. Also, the second algorithm
requires O(n log(n) log(log(n))) steps to multiply two n-bit numbers, making it asymptotically-faster
than the first algorithm. However, the second algorithm is much more complicated than the first, and it
is outperformed by asymptotically-slower algorithms, such as long multiplication, for small-to-medium
input sizes. In practice, both of the Schönhage-Strassen algorithms are rarely used.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

150 Integer Multiplication Using Interval Arithmetic

The first Schönhage-Strassen Algorithm is more elegant, if the finite-precision approximations are
ignored. More importantly, it is faster in practice. Previous studies [2] have shown that the first algorithm
can be faster than even highly-optimised implementations of the second. However, the first algorithm’s
reliance on finite-precision approximations, despite exact answers being required, leads to it being dis-
counted.

The saving grace of the Schönhage-Strassen algorithm is that at the end of the computation an integral
result will be obtained. So the finite-precision approximations are rounded to integers. Thus, as long as
rounding errors are sufficiently small for the rounding to be correct, an exact answer will be obtained.
Shönhage and Strassen showed that fixed-point numbers with a variable precision of O(log(n)) bits
would be sufficient to achieve this.

For the Schönhage-Strassen algorithm to be practical, we need to make use of hardware-based
floating-point numbers; software-based variable-precision numbers are simply too slow. However, we
need to be able to manage the rounding errors. At the very least, we must be able to detect when the
error is too large and more precision is needed. The usual approach to this is to prove some kind of
worst-case error bound (for an example, see [6]). Then we can be sure that, for sufficiently small inputs,
the algorithm will give correct results. However, worst-case bounds are rarely tight. We propose the use
of dynamic error bounds using existing techniques from computer-aided proofs.

Dynamic error detection allows us to move beyond worst-case bounds. For example, using standard
single-precision floating-point numbers, our naı̈ve implementation of the Schönhage-Strassen algorithm
sometimes gave an incorrect result when we tried multiplying two 120-digit base-256 numbers, but it
usually gave correct results. Note that by a ‘naı̈ve implementation’ we simply mean a modificiation of the
Schönhage-Strassen algorithm that uses fixed-precison floating-point arithmetic and does not guarantee
correctness. A worst-case bound would not allow us to use the algorithm in this case, despite it usually
being correct. Dynamic error detection, however, would allow us to try the algorithm, and, in the rare
instances where errors occur, it would inform us that we need to use more precision.

We will use complex interval containment sets for all complex arithmetic operations. This means
that at the end of the computation, where we would ordinarily round to the nearest integer, we simply
choose the unique integer in the containment set. If the containment set contains multiple integers, then
we report an error. This rigorous extension of the Schönhage-Strassen algorithm therefore constitutes a
computer-aided proof of the desired product. When an error is detected, we must increase the precision
being used or we must use a different algorithm.

For those unfamiliar with the Schönhage-Strassen algorithm or with interval arithmetic, we describe
these in section 2. Then, in section 3, we show the empirical results of our study. Section 4, our
conclusion, briefly discusses the implications of our results.

2 The Algorithm

For the sake of completeness we explain the Schönhage-Strassen algorithm, as it is presented in [8].
We also explain how we have modified the algorithm using interval arithmetic in subsection 2.5. Those
already familiar with the material may skip all or part of this section.

We make the convention that a positive integer x is represented in base b (usually b = 2k for some
k ∈ N) as a vector x ∈ Zn

b := {0,1,2, . . . ,b−1}n; the value of x is

x=
n−1

∑
i=0

xibi.

T. Steinke & R. Sainudiin 151

2.1 Basic Multiplication Algorithm

The above definition immediately leads to a formula for multiplication. Let x and y be positive integers
with representations x ∈ Zn

b and y ∈ Zm
b . Then

xy =

(

n−1

∑
i=0

xibi
)(

m−1

∑
j=0

y jb j
)

=
n+m−2

∑
i=0

min{n−1,i}

∑
j=max{0,i−m+1}

x jyi− jbi =
n+m−1

∑
i=0

zibi.

Of course, we cannot simply set zi =∑
min{n−1,i}
j=max{0,i−m+1} x jyi− j; this may violate the constraint that 0≤ zi ≤

b− 1 for every i. We must ‘carry’ the ‘overflow’. This leads to the long multiplication algorithm (see
[4]).

The Long Multiplication Algorithm
1. Input: x ∈ Zn

b and y ∈ Zm
b

2. Output: z ∈ Z
n+m
b # z= xy

3. Set c= 0. # c = carry

4. For i= 0 up to n+m−1 do {
5. Set s= 0. # s = sum

6. For j =max{0, i−m+1} up to min{n−1, i} do {
7. Set s= s+ x jyi− j.

8. }.
9. Set zi = (s+ c) mod b.
10. Set c= %(s+ c)/b&.
11. }.
12. # c= 0 at the end.

This algorithm requiresO(mn) steps (for a fixed b). Close inspection of the long multiplication algorithm
might suggest that O(mn log(min{m,n})) steps are required as the sum s can become very large. How-
ever, adding a bounded number (x jyi−1 < b2) to an unbounded number (s) is, on average, a constant-time
operation.

2.2 The Discrete Fourier Transform

The basis of the Schönhage-Strassen algorithm is the discrete Fourier transform and the convolution
theorem. The discrete Fourier transform is a map from Cn to Cn. In this section we will define the
discrete Fourier transform and we will show how it and its inverse can be calculated with O(n log(n))
complex additions and multiplications. See [4] for further details.
Definition 1 (Discrete Fourier Transform). Let x ∈Cn and let ω := e

2πi
n . Then define the discrete Fourier

transform x̂ ∈ Cn of x by

x̂i :=
n−1

∑
j=0

x jω i j (0≤ i≤ n−1).

There is nothing special about our choice of ω ; the consequences of the following lemma are all that
we need ω to satisfy. Any other element of C with the same properties would suffice.
Lemma 2. Let n> 1 and ω = e

2πi
n . Then

ωn = 1 and ωk '= 1 for all 0< k < n

152 Integer Multiplication Using Interval Arithmetic

and, for all 0< k < n,
n−1

∑
i=0

ω ik = 0.

Note that the case where n = 1 is uninteresting, as ω = 1 and the discrete Fourier transform is the
identity mapping x̂= x.

Proof. Firstly,
ωn =

(

e
2πi
n

)n
= e2πi = 1.

We know that eθ = 1 if and only if θ = 2πim for some m ∈ Z. Thus, if ωk = 1, then k must be a multiple
of n, which eliminates the possibility that 0< k < n.

Fix k with 0< k < n and let sk := ∑n−1
i=0 ω

ik. Then

ωksk =
n−1

∑
i=0

ω(i+1)k =
n

∑
i=1

ω ik =
n−1

∑
i=1

ω ik +ωkn =
n−1

∑
i=1

ω ik+1=
n−1

∑
i=1

ω ik +ω0k =
n−1

∑
i=0

ω ik = sk.

So ωksk = sk. If sk '= 0, then we can divide by sk to get ωk = 1, which is impossible. So sk = 0.

Now we can prove that the discrete Fourier transform is a bijection.

Proposition 3 (Inverse Discrete Fourier Transform). Let x ∈ Cn and let ω = e 2πin . Define x̌ ∈ Cn by

x̌i :=
1
n

n−1

∑
j=0

x jω−i j (0≤ i≤ n−1).

Then this defines the inverse of the discrete Fourier transform — that is, if y= x̂, then y̌= x.

Proof. Fix x ∈ Cn, let y = x̂ and let z = y̌. We wish to show that z = x. If n = 1, then this is trivial, as
x = y = z, so we may assume that n > 1. First of all, it follows from Lemma 2 that, if l ∈ Z and n does
not divide l, then

n−1

∑
i=0

ω il = 0.

If, on the other hand, n divides l, then
n−1

∑
i=0

ω il = n.

Now, fixing i with 0≤ i≤ n−1, we have

zi =
1
n

n−1

∑
j=0

y jω−i j =
1
n

n−1

∑
j=0

(

n−1

∑
k=0

xkω jk

)

ω−i j =
1
n

n−1

∑
k=0

n−1

∑
j=0

xkω jkω−i j =
1
n

n−1

∑
k=0

xk
n−1

∑
j=0

ω j(k−i)

=
1
n

n−1

∑
k=0

xk
{

n, if n divides k− i
0, otherwise

}

=
n−1

∑
k=0

xk
{

1, if k− i= 0
0, otherwise

}

= xi.

T. Steinke & R. Sainudiin 153

Now we explain the fast Fourier transform; this is simply a fast algorithm for computing the discrete
Fourier transform and its inverse.

Let n be a power of 2 and x ∈ Cn be given. Now define xeven,xodd ∈ Cn/2 by

(xeven)i = x2i, (xodd)i = x2i+1,

for all i with 0≤ i≤ n/2−1.
Now the critical observation of the Cooley-Tukey fast Fourier transform algorithm is the following.

Fix i with 0≤ i≤ n−1 and let ω = e
2πi
n . Then we have

x̂i =
n−1

∑
j=0

x jω i j

=
n/2−1

∑
j=0

x2 jω2i j +
n/2−1

∑
j=0

x2 j+1ω2i j+i

=
n/2−1

∑
j=0

(xeven) j
(

ω2
)i j

+ω i
n/2−1

∑
j=0

(xodd) j
(

ω2
)i j

=
n/2−1

∑
j=0

(xeven) j
(

ω2
)(i mod n/2) j

+ω i
n/2−1

∑
j=0

(xodd) j
(

ω2
)(i mod n/2) j

= (x̂even)i mod n/2+ω i (x̂odd)i mod n/2 .

Note that
(

ω2
)n/2

= 1, so taking the modulus is justified. This observation leads to the following divide-
and-conquer algorithm.

The Cooley-Tukey Fast Fourier Transform
1. Input: n= 2k and x ∈ Cn

2. Output: x̂ ∈ Cn

3. function FFT(k, x) {
4. If k = 0, then x̂= x.
5. Partition x into xeven,xodd ∈ Cn/2.

6. Compute x̂even = FFT(k−1, xeven) by recursion.

7. Compute x̂odd = FFT(k−1, xodd) by recursion.

8. Compute ω = e
2πi
n .

9. For i= 0 up to n−1 do {
10. Set x̂i = (x̂even)i mod n/2+ω i (x̂odd)i mod n/2.

11. }.
12. }.

It is easy to show that this algorithm requires O(n log(n)) complex additions and multiplications. With
very little modification we are also able to obtain a fast algorithm for computing the inverse discrete
Fourier transform.

Note that, to compute ω , we can use the recurrence

ω1 = 1, ω2 = −1, ω4 = i, ω2n =
1+ωn
|1+ωn|

(n≥ 3),

154 Integer Multiplication Using Interval Arithmetic

where ωn = e 2πin . Other efficient methods of computing ω are also available.

2.3 The Convolution Theorem

We start by defining the convolution. Let a,b ∈ Cn. We can interpret a and b as the coefficients of two
polynomials — that is,

fa(z) = a0+a1z+ · · ·+an−1zn−1.

The convolution of a and b—denoted by a∗b— is, for our purposes, the vector of coefficients obtained
by multiplying the polynomials fa and fb. Thus we have fa∗b(z) = fa(z) fb(z) for all z ∈ C. Note that
we can add ‘padding zeroes’ to the end of the coefficient vectors without changing the corresponding
polynomial.

The convolution theorem relates convolutions to Fourier transforms. We only use a restricted form.
Theorem 4 (Convolution Theorem). Let a,b ∈ Cn and c := a∗b ∈ Cm, where m= 2n−1. Pad a and b
by setting

a′ = (a0,a1, · · · ,an−1,0, · · · ,0),b′ = (b0,b1, · · · ,bn−1,0, · · · ,0) ∈ C
m.

Then, for every i with 0≤ i≤ m−1,
ĉi = â′ib̂′i.

Proof. By definition, if ω = e
2πi
m and 0≤ i≤ m−1, then

ĉi = fc(ω i) = fa(ω i) fb(ω i) = fa′(ω i) fb′(ω i) = â′ib̂′i.

The convolution theorem gives us a fast method of computing convolutions and, thus, of multiplying
polynomials. Given a,b ∈ Cn, we can calculate c= a∗b using only O(n log(n)) arithmetic operations as
follows.

The Fast Convolution Algorithm
1. Input: a,b ∈ Cn

2. Output: c= a∗b ∈ Cm

3. Set k = *log2(2n−1)+ and m= 2k.
4. # Pad a and b so they are in Cn.

5. Set a′ = (a0,a1, · · · ,an−1,0, · · · ,0),b′ = (b0,b1, · · · ,bn−1,0, · · · ,0) ∈ Cm.

6. Compute â′ = FFT(k,a′) and b̂′ = FFT(k,b′).
7. For 0≤ i≤ m−1, set ĉi = â′ib̂′i.
8. Compute c= FFT−1(k, ĉ).

2.4 The Schönhage-Strassen Algorithm

The Schönhage-Strassen algorithm multiplies two integers by convolving them and then performing
carrys. Let two base-b integer representations be x and y. We consider the digits as the coefficients of
two polynomials. Then x= fx(b), y= fy(b) and

xy= fx(b) fy(b) = fx∗y(b).

T. Steinke & R. Sainudiin 155

So, to compute xy, we can first compute x∗ y in O(n log(n)) steps and then we can evaluate fx∗y(b). The
evaluation of fx∗y(b) to yield an integer representation z is simply the process of performing carrys.

The Schönhage-Strassen Algorithm
1. Input: x ∈ Zn

b and y ∈ Zn
b

2. Output: z ∈ Z2nb # z= xy
3. Compute x∗ y using the fast convolution Algorithm.

4. Set c= 0. #carry

5. For i= 0 up to 2n−2 do {
6. Set zi = ((x∗ y)i+ c) mod b.
7. Set c= %((x∗ y)i+ c)/b&.
8. }.
9. Set z2n−1 = c.

Clearly the Schönhage-Strassen algorithm performs the multiplication using O(n log(n)) complex arith-
metic operations.

When finite-precision complex arithmetic is done, rounding errors are introduced. However, this can
be countered: We know that x∗y must be a vector of integers. As long as the rounding errors introduced
are sufficiently small, we can round to the nearest integer and obtain the correct result. Schönhage and
Strassen [8] proved that O(log(bn))-bit floating point numbers give sufficient precision.

2.5 Interval Arithmetic

Our rigorous extension of the algorithm uses containment sets. By replacing all complex numbers with
complex containment sets, we can modify the Schönhage-Strassen algorithm to find a containment set
of x ∗ y; if the containment set only contains one integer-valued vector, then we can be certain that this
is the correct value. We have used rectangular containment sets of machine-representable floating-point
intervals with directed rounding to guarantee the desired integer product. A brief overview of the needed
interval analysis [5] is given next.

Let x,x be real numbers with x ≤ x. Let [x,x] = {x ∈ R : x ≤ x ≤ x} be a closed and bounded real
interval and let the set of all such intervals be IR = {[x,x] : x ≤ x ; x,x ∈ R}. Note that R ⊂ IR since
we allow thin or punctual intervals with x = x. If ! is one of the arithmetic operators +, −, ·, /, we
define arithmetic over operands in IR by [a,a]! [b,b] := {a!b : a ∈ [a,a],b ∈ [b,b]}, with the exception
that [a,a]/[b,b] is undefined if 0 ∈ [b,b]. Due to continuity and monotonicity of the operations and
compactness of the operands, arithmetic over IR is given by real arithmetic operations with the bounds:

[a,a]+ [b,b] = [a+b,a+b]
[a,a]− [b,b] = [a−b,a−b]
[a,a] · [b,b] = [min{ab,ab,ab,ab},max{ab,ab,ab,ab}]
[a,a]/[b,b] = [a,a] · [1/b,1/b], if 0 /∈ [b,b] .

In addition to the above elementary operations over elements in IR, our algorithm requires us to contain
the range of the square root function over elements in IR∩ [0,∞). Once again, due to the monotonicity
of the square root function over non-negative reals it suffices to work with the real image of the bounds

156 Integer Multiplication Using Interval Arithmetic

√

[x,x] = [
√x,

√
x], if 0≤ x. To complete the requirements for our rigorous extension of the Schönhage-

Strassen algorithm we need to extend addition, multiplication and division by a non-zero integer to
elements in

IC :=
{

[z,z] := [z1,z1]+ i[z2,z2] : [z1,z1], [z2,z2] ∈ IR
}

.

Interval arithmetic over IR naturally extends to IC, the set of rectangular complex intervals. Addition
and subtraction over [z,z], [w,w] ∈ IC given by

[z,z]± [w,w] = ([z1,z1]± [w1,w1])+ i([z2,z2]± [w2,w2])

are sharp but not multiplication or division due to rectangular wrapping effects. Complex interval multi-
plication and division of a complex interval by a non-negative integer can be contained with real interval
multiplications given by

[z,z] · [w,w] = ([z1,z1] · [w1,w1]− [z2,z2] · [w2,w2])+ i([z1,z1] · [w2,w2]+ [z2,z2] · [w1,w1]).

See [3] for details about how C-XSC manipulates rectangular containment sets over IR and IC.

3 Results

We have implemented the Schönhage-Strassen algorithm, our containment-set version with rectangu-
lar complex intervals and long multiplication in C++ using the C-XSC library [3]. Our implementation
is available at http://www.math.canterbury.ac.nz/~r.sainudiin/codes/capa/multiply/ 1.
Results show that, using base 256, our version of the algorithm is usually able to guarantee correct
answers for up to 75,000-digit numbers.

The following graph compares the speed of long multiplication (labelled ‘Long multiplication’), the
conventional Schönhage-Strassen algorithm with different underlying data types (the implementation
using the C-XSC complex data type is the line labelled ‘complex naı̈ve SS’ and the one using our own
implementation of complex numbers based on the C++ double data type is labelled ‘double naı̈ve SS’)
and our containment-set version (‘cinterval extended SS’) on uniformly-random n-digit base-256 inputs.
All tests were performed on a 2.2 GHz 64-bit AMD Athlon 3500+ Processor running Ubuntu 9.04 using
C-XSC version 2.2.4 and gcc version 4.3.1. Times were recorded using the C++ clock() function — that
is to say, CPU time was recorded. Note that only the ‘Long multiplication’ and ‘cinterval extended SS’
implementations are guaranteed to produce correct results. The ‘double naı̈ve SS’ and ‘complex naı̈ve
SS’ implementations may have produced erroneous results, as the implementations do not necessarily
provide sufficient precision; these are still shown for comparison. Note also that by ‘naı̈ve’ we mean
that these implementations use fixed-precision floating-point arithmetic, whereas the ‘real’ Schönhage-
Strassen algorithm uses variable-precision, which is much slower.

1Please also download the C-XSC library from http://www.math.uni-wuppertal.de/~xsc/.

http://www.math.uni-wuppertal.de/~xsc/
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/capa/multiply/
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/capa/multiply/
http://www.math.uni-wuppertal.de/~xsc/

T. Steinke & R. Sainudiin 157

The above graph shows that the Schönhage-Strassen algorithm is much more efficient than long mul-
tiplication for large inputs. However, our modified version of the algorithm is slower than the naı̈ve
Schönhage-Strassen algorithm. We believe that C-XSC is not well-optimised; for example, their punctual
complex data type (used in the ‘complex naı̈ve SS’ implementation) is much slower than our double-
based complex data type (used in the ‘double naı̈ve SS’ implementation), even though ostensibly they
are the same thing. We see that the C-XSC cinterval type (used in the ‘cinterval extended SS’ im-
plementation) is about three times as slow as the complex type. This leaves the possibility that a more
optimised implementation of containment sets would be able to compete with commercial algorithms.
Investigations such as [2] have shown that the Naı̈ve Schönhage-Strassen algorithm is able to compete
with commercial implementations.

Note that the “steps” seen in the graph can be explained by the fact that the algorithm will always
round the size up to the nearest power of two. Thus there are steps at the powers of two. The most
important feature of our results is the range of input sizes for which our algorithm successfully determines
the answer. Using only standard double-precision IEEE floating-point numbers, we are able to use the
algorithm to multiply 75,000-digit, or 600,000-bit, integers; this range is more than sufficient for most
applications, and at this point the second Schönhage-Strassen algorithm will become competitive.

4 Conclusion

Our investigation has demonstrated that the Schönhage-Strassen algorithm with containment sets is a
practical algorithm that could be used reliably for applications such as cryptography. Schöhage and
Strassen never showed that their algorithm had any practical value. However, as our implementation was
not optimised, this is more of a feasibility study than a finished product.

Note that the advantage of our algorithm over the original Schönhage-Strassen algorithm is that we
make use of hardware-based floating-point arithmetic, whereas the original is designed to make use of
much slower software-based arithmetic. Both the original algorithm and our adaptation always produce

158 Integer Multiplication Using Interval Arithmetic

correct results. However, we use a different approach to guaranteeing correctness. The naı̈ve algorithms
we mention are not guaranteed to be correct because they are modifications of the Schönhage-Strassen
algorithm which does not take measures to ensure correctness — they simply use fixed-precision floating-
point arithemtic and hope for the best; these are only useful for speed comparisons.

It remains to optimise our implementation of the algorithm to compete with commercial libraries.
This is dependent on a faster implementation of interval arithmetic. It may also be interesting to use
circular containment sets rather than rectangular containment sets. The advantage of circular containment
sets is that they easily deal with complex rotations — that is, multiplying by eiθ ; this is in fact the only
type of complex multiplication (other than division by an integer) that our algorithm performs.

References
[1] Martin Fürer (2007): Faster Integer Multiplication. In: 39th ACM STOC, San Diego, California, USA, pp.

57–66.
[2] Pierrick Gaudry, Alexander Kruppa & Paul Zimmermann (2007): A gmp-based implementation of schönhage-

strassen’s large integer multiplication algorithm. In: ISSAC ’07: Proceedings of the 2007 international sym-
posium on Symbolic and algebraic computation, ACM, New York, NY, USA, pp. 167–174.

[3] Hofschuster & Krämer (2004): C-XSC 2.0: A C++ library for extended scientific computing. In: R Alt,
A Frommer, RB Kearfott & W Luther, editors: Numerical software with result verification, Lecture notes in
computer science 2991, Springer-Verlag, pp. 15–35.

[4] Donald E. Knuth (1998): The Art of Computer Programming, 2. Addison-Wesley, 3 edition.
[5] Ramon E. Moore, R. Baker Kearfott & Michael J. Cloud (2009): Introduction to Interval Analysis. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA.
[6] Colin Percival (2003): Rapid multiplication modulo the sum and difference of highly composite numbers.

Math. Comput. 72(241), pp. 387–395.
[7] R.L. Rivest, A. Shamir & L. Adleman (1977): A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems. Communications of the ACM 21(2), pp. 120–126.
[8] A. Schönhage & V. Strassen (1971): Schnelle Multiplikation großer Zahlen (Fast Multiplication of Large

Numbers). Computing: Archiv für elektronisches Rechnen (Archives for electronic computing) 7, pp. 281–
292. (German).

	Introduction
	The Algorithm
	Basic Multiplication Algorithm
	The Discrete Fourier Transform
	The Convolution Theorem
	The Schönhage-Strassen Algorithm
	Interval Arithmetic

	Results
	Conclusion

