
20

Applications of Interval Methods to Phylogenetics
Raazesh Sainudiin

Ruriko Yoshida

When statistical inference is conducted in a maximum likelihood (ML) frame-
work as discussed in Chapter 1, we are interested in the global maximum of the
likelihood function over the parameter space. In practice we settle for a local
optimization algorithm to numerically approximate the global solution since
explicit analytical solutions for the maximum likelihood estimates (MLEs) are
typically difficult to obtain for unrooted trees with three or more leaves. See
Chapter 18 and the references therein for algebraic approaches to solving such
ML problems. In this chapter we will take a rigorous numerical approach to
this phylogenetic problem via interval methods. We accomplish this by first
constructing an interval extension of the recursive formulation for the likeli-
hood function of a Markov model of DNA evolution on unrooted phylogenetic
trees with a fixed topology. Then we use an adaptation of a widely applied
global optimization algorithm using interval analysis for the phylogenetic con-
text to rigorously enclose the ML value as well as the MLEs. The MLEs are
the set of branch lengths of the phylogenetic tree. The method is applied to
enclose the most likely 2 and 3 taxa trees under the Jukes-Cantor model of
DNA evolution. The method is general and can provide rigorous estimates
when coupled with standard phylogenetic algorithms. Solutions obtained with
such methods are equivalent to computer-aided proofs unlike solutions obtained
with conventional numerical methods.

Statistical inference procedures that obtain MLEs through conventional nu-
merical methods may suffer from several major sources of errors. To fully
appreciate the sources of errors we need some understanding of a number
screen. Computers can only support a finite set of numbers, usually rep-
resented as fixed-length binary floating point quantities of the form, x =
±m · 2e = ±0.m · 2e, where m = (m1m2 . . . mp) is the signed mantissa (m1 =
1, mi ∈ {0, 1},∀i, 1 < i ≤ p) with base 2, p is the precision, and e is the
exponent (e ≤ e ≤ e) [IEEE Task P754, 1985]. Thus, the smallest and largest
machine-representable numbers in absolute value are x = 0.10 . . . 0 ·2e and x =
0.11 . . . 1 · 2e, respectively. Therefore, the binary floating-point system of most
machines R = R(2, p, e, e) is said to form a screen of the real numbers in the
interval [−x,+x] with 0 uniquely represented by 0.00 . . . 0·2e. When numerical
inference procedures rely on inexact computer arithmetic with a number screen

343

344 R. Sainudiin and R. Yoshida

they may suffer from at least five types of errors: roundoff error, the difference
between computed and exact result [Cuyt et al., 2001, Loh and Walster, 2002];
truncation error, from having to truncate an infinite sequence of operations;
conversion error, inability to machine-represent decimals with infinite binary
expansion; and ill-posed statistical experiment, presence of unknown noniden-
tifiable subspaces.

The verified global optimization method [Hansen, 1980] sketched below rig-
orously encloses the global maximum of the likelihood function through interval
analysis [Moore, 1967]. Such interval methods evaluate the likelihood function
over a continuum of points including those that are not machine-representable
and account for all sources of errors described earlier. In this chapter we will
see that interval methods, in contrast to heuristic local search methods, can
enclose the global optimum with guaranteed accuracy by exhaustive search
within any compact set of the parameter space. We begin with a brief intro-
duction to analysis in the space of all compact real intervals, our basic platform
for rigorous numerics.

20.1 Brief introduction to interval analysis

Lowercase letters denote real numbers, e.g., x ∈ R. Uppercase letters represent
compact real intervals, e.g., X = [x, x] = [inf(X), sup(X)]. Any compact
interval X belongs to the set of all compact real intervals IR := {[a, b] : a ≤
b, a, b ∈ R}. The diameter and the midpoint of X are d(X) := x − x and
m(X) := (x + x)/2, respectively. The smallest and largest absolute value of
an interval X are the real numbers given by 〈X〉 := min{|x| : x ∈ X} =
min{|x|, |x|}, if 0 /∈ X, and 0 otherwise, and |X| := max{|x| : x ∈ X} =
max{|x|, |x|}, respectively. The absolute value of an interval X is |X|[] :=
{|x| : x ∈ X} = [〈X〉, |X|]. The relative diameter of an interval X, denoted
by drel, is the diameter d(X) itself if 0 ∈ X and d(X)/〈X〉 otherwise. An
interval X with zero diameter is called a thin interval with x = x = x and
thus R ⊂ IR. The hull of two intervals is X∪Y := [min{x, y},min{x, y}].
By the notation X ! Y , it is meant that X is strictly contained in Y , i.e.,
x > y and x < y. No notational distinction is made between a real number
x ∈ R, or a real vector x = (xi, . . . , xn)T ∈ Rn and between a real interval
X and a real interval vector or box X = (X1, . . . ,Xn)T ∈ IRn, i.e., Xi =
[xi, xi] = [inf(Xi), sup(Xi)] ∈ IR, where i = 1, . . . , n. The diameter, relative
diameter, midpoint, and hull operations for boxes are defined componentwise
to yield vectors. The maximum over the components is taken to obtain the
maximal diameter and the maximal relative diameter, d∞(X) = maxi d(Xi)
and drel,∞(X) = maxi drel(Xi), respectively, for a box X. Also IR under
the metric h, given by h(X,Y) := max{|x − y|, |x − y|}, is a complete metric
space. Convergence of a sequence of intervals {X(i)} to an interval X under the
metric h is equivalent to the sequence h(X(i),X) approaching 0 as i approaches
∞, which in turn is equivalent to both x(i) → x and x(i) → x. Continuity
and differentiability of a function F : IRn → IRk are defined in the usual

Applications of Interval Methods to Phylogenetics 345

way. Let ◦ denote a binary operation. An interval arithmetic (IA) operation
X ◦ Y := {x ◦ y : x ∈ X, y ∈ Y } thus yields the set containing the result of
the operation performed on every real pair (x, y) ∈ (X,Y). Although there
are uncountably many real operations to consider during an interval operation,
the properties of continuity, monotonicity, and compactness imply that:

X + Y = [x + y, x + y], X · Y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}],
X − Y = [x − y, x − y], X/Y = X · [1/y, 1/y], 0 /∈ Y.

This definition of IA leads to the property of inclusion isotony which stipulates
that X ◦Y contains V ◦W provided V ⊆ X and W ⊆ Y . Note that continuous
functions of compact sets are necessarily inclusion isotonic. The identity ele-
ments of + and · are the thin intervals 0 and 1, respectively. Multiplicative and
additive inverses do not exist except when X is also thin. IA is commutative
and associative but not distributive. However, X · (Y +Z) ⊆ (X ·Y)+ (X ·Z).
For any real function f(x) : Rn → R and some box X ∈ IRn, let the image
of f over X be denoted by f(X) := {f(x) : x ∈ X}. Inclusion isotony also
holds for interval evaluations that are compositions of arithmetic expressions
and the elementary functions. When real constants, variables, and operations
in f are replaced by their interval counterparts, we obtain F (X) : IRn → R,
the natural interval extension of f . Guaranteed enclosures of the image of
f(X) are obtained by F (X) due to the inclusion property, which states that
if x ∈ X, then f(x) ∈ F (X). The natural interval extension F (X) often
overestimates the image f(X), but can be shown under mild conditions to lin-
early approach the image as the maximal diameter of the box X goes to zero,
i.e., h(F (X), f(X)) ≤ α · d∞(X) for some α ≥ 0. This implies that a parti-
tion of X into smaller boxes {X(1), . . . ,X(m)} gives better enclosures of f(X)
through the union

⋃m
i=1 F (X(i)). This is illustrated by the gray rectangles of a

given shade that enclose the image of the nonlinear function shown in Figure
20.1. The darker the shade of the image enclosure the finer the corresponding
partition on the domain [−10, 6].

-10 -7.5 -5 -2.5 0 2.5 5

-150

-100

-50

0

50

100

150

Fig. 20.1. Image enclosure of −
∑5

k=1 k x sin (k(x−3)
3) linearly tightens with mesh

346 R. Sainudiin and R. Yoshida

Some interval extensions of f are better at enclosing the true image than
others. Figure 20.2 exhibits three functions. These functions are equivalent as
real maps but their natural interval extensions yield successively tighter range
enclosures: F (1) ! F (2) ! F (3). Note that F (3) ⊂ F (2) since X2 ⊂ X ·X in IA.
If X appears only once in the expression and all parameters are thin intervals,
it was shown by [Moore, 1979] that the natural interval extension does indeed
yield a tight enclosure, i.e., F (X) = f(X). In general, we can obtain tighter
enclosures by minimizing the occurrence of X in the expression.

There is another way to improve the tightness of the image enclosure. Let
∇f(x) and ∇2f(x) denote the gradient and Hessian of f , respectively. Now
let ∇F (x) and ∇2F (x) represent their corresponding interval extensions. A
better enclosure of f(X) over all x ∈ X with a fixed center c = m(X) ∈ X is
possible for a differentiable f with the following centered form:

f(x) = f(c) + ∇f(b) · (x − c) ∈ f(c) + ∇f(X) · (x − c) ⊆ Fc(X),

for some b ∈ X and where Fc(X) := f(c) + ∇F (X) · (X − c). Fc(X) is the
interval extension of the centered form of f with center c = m(X) and decays
quadratically to f(X) as the maximal diameter of X approaches 0. Next we
introduce automatic differentiation (AD) to obtain gradients, Hessians, and
their enclosures for a twice-differentiable f .

F (1)

0.5

1.5

2.5

F (2)

F (1)(X) = 1
2−X + 1

2+X

F (2)(X) = 4
4−X·X

F (3)(X) = 4
4−X2

F (1)(X0) = [2435 , 8
3] ⊃ F (2)(X0) = [1619 , 16

7] ⊃ F (3)(X0) = [1, 16
7]

− 1
2

3
2

F (3)

Fig. 20.2. Extension-specific dependence of image enclosures

When it becomes too cumbersome or impossible to explicitly compute∇f(x)
and ∇2f(x) of a function f : Rn → R, we may employ a Hessian differ-
entiation arithmetic, also known as second-order AD [Rall, 1981]. This ap-
proach defines an arithmetic on a set of ordered triples. Consider a twice-
continuously differentiable function f : Rn → R with the gradient vector
∇f(x) := (∂f(x)/∂x1, . . . , ∂f(x)/∂xn)T ∈ Rn, and Hessian matrix ∇2f(x) :=
((∂2f(x)/∂xi∂xj))i,j={1,...,n} ∈ Rn×n. For every f , consider its correspond-
ing ordered triple (f(x),∇f(x), ∇2f(x)). The ordered triples correspond-
ing to a constant function, c(x) = c : Rn → R, and a component iden-
tifying function (or variable), Ij(x) = xj : Rn → R, are (c, 0, 0) and
(xj, e(j), 0), respectively, where e(j) is the j-th unit vector and the 0’s
are additive identities in their appropriate spaces. To perform an elemen-

Applications of Interval Methods to Phylogenetics 347

tary operation ◦ ∈ {+,−, ·, /} on a pair of such triples to obtain another, as in
(h(x), ∇h(x), ∇2h(x)) := (f(x), ∇f(x), ∇2f(x))◦ (g(x), ∇g(x), ∇2g(x)),
or to compose the triples of two elementary functions we use the chain rule of
Newtonian calculus. The AD process may be extended from real functions to
interval-valued functions. By replacing the real x’s above by interval X’s and
performing all operations in the real IA with the interval extension F of f , we
can rigorously enclose the components of the triple (F (X), ∇F (X), ∇2F (X))
through an interval-extended Hessian differentiation arithmetic so that for
every x ∈ X ∈ IRn, f(x) ∈ F (X) ∈ IR, ∇f(x) ∈ ∇F (X) ∈ IRn, and
∇2f(x) ∈ ∇2F (X) ∈ IRn×n. We can now apply interval AD to find the
roots of nonlinear functions.

The interval version of Newton method computes an enclosure of the zero
x∗ of a continuously differentiable function f(x) in the interval X through the
following dynamical system in IR:

X(j+1) =

(

m(X(j)) − f(m(X(j)))
F ′(X(j))

)

∩ X(j), j = 0, 1, 2, . . .

In this system X(0) = X, F ′(X(j)) is the enclosure of f ′(x) over X(j), and
m(X(j)) is the mid-point of X(j). The interval Newton method will never
diverge provided that 0 /∈ F ′(X(0)), or equivalently that a unique zero of f lies
in X(0). The interval Newton method was derived by [Moore, 1967]. If there
is only one root x∗ of a continuously differentiable f in a compact X(0), then
the sequence of compact sets X(0) ⊇ X(1) ⊇ X(2) . . . can be shown to converge
quadratically to x∗ [Alefeld and Herzberger, 1983]. We can derive the above
dynamical system in IR via the mean value theorem. Let f(x) be continuously
differentiable and f ′(x) 1= 0 for all x ∈ X such that x∗ is the only zero of f
in X. Then, by the mean value theorem, there exists c ∈ (x, x∗) such that
f(x) − f(x∗) = f ′(c)(x − x∗) for every x. Since f ′(c) 1= 0 by assumption, and
since f(x∗) = 0, it follows that:

x∗ = x − f(x)
f ′(c)

∈ x − f(x)
F ′(X)

=: N(X), ∀x ∈ X.

N(X) is called the Newton operator and it contains x∗. Since our root of
interest lies in X, x∗ ∈ N(X) ∩ X. Note that the above dynamical system
in IR is obtained by replacing x with m(X) and X with X(j) in the previous
expression. The usual Newton method lends itself to an intuitive geometric
interpretation: in the jth iteration, think of shining a beam of light onto the
domain from the point (x(j), f(x(j))) along the tangent to f(x) at x(j). The
intersection of this beam (white line in Figure 20.3) with the domain provides
x(j+1), which is where the next iteration is resumed. In the interval Newton
method, then, we shine a set of beams from the point (x(j), f(x(j))) along the
directions of all the tangents to f(x) on the entire interval X. The intersection
of these beams (gray floodlight of Figure 20.3) with the domain is N(X(j)).
The iteration is resumed with the new interval X(j+1) = N(X(j))∩X(j). Next
we extend the interval Newton method in order to allow F ′(X) to contain 0.

348 R. Sainudiin and R. Yoshida

f(x)

m(X(j)) = x(j)

X(j)

x(j+1)

N(X(j))

X(j+1)

Fig. 20.3. Geometric interpretation of the interval Newton method

By including the points +∞ and −∞ to R, it becomes possible to define ex-
tended interval arithmetic (EIA) on IR∗ := IR∪{(−∞, x] : x ∈ R}∪{[x,+∞) :
x ∈ R} ∪ (−∞,+∞), the set of intervals with end points in the complete lat-
tice R∗ := R∪ {+∞} ∪ {−∞}, with respect to the ordering relation ≤. Let []
denote the empty interval. Division by intervals containing 0 becomes possible
with the following rules:

X/Y :=

(−∞,+∞) if 0 ∈ X, or Y = [0, 0]
[] if 0 /∈ X, and Y = [0, 0]
[x/y,+∞) if x ≤ 0, and y = 0
[x/y,+∞) if 0 ≤ x, and 0 = y < y

(−∞, x/y] if x ≤ 0, and 0 = y < y

(−∞, x/y] if 0 ≤ x, and y < y = 0
(−∞, x/y] ∪ [x/y,+∞) if x ≤ 0, and [0, 0] ! Y

(−∞, x/y] ∪ [x/y,+∞) if 0 ≤ x, and [0, 0] ! Y.

When X is a thin interval with x = x = x and Y has +∞ or −∞ as one of its
bounds, then extended interval subtraction is also necessary for the extended
interval Newton algorithm, and is defined as follows:

[x, x] − Y :=

(−∞,+∞) if Y = (−∞,+∞)
(−∞, x − y] if Y = (y,+∞)
[x − y,+∞) if Y = (−∞, y].

The extended interval Newton method uses the EIA described above and
is a variant of the method based on [Hansen and Sengupta, 1981] with Ratz’s
modifications [Ratz, 1992] as implemented in [Hammer et al., 1995]. It can be
used to enclose the roots of a continuously differentiable f : Rn → Rn in a
given box X ∈ IRn. Let Jf (x) := ((∂fi(x)/∂xj))i,j={1,...,n} ∈ Rn×n denote
the Jacobian matrix of f at x. Let JF (X) ⊃ Jf (X) denote the Jacobian

Applications of Interval Methods to Phylogenetics 349

of the interval extension of f . The Jacobian can be computed via AD by
computing the gradient of each component fi of f . By the mean value theorem,
f(m(X))−f(x∗) = Jf (w)·(m(X)−x∗), for some x∗ ∈ X,w = (w1, w2, . . . , wn),
where wi ∈ X,∀i ∈ {1, 2, . . . , n}. Setting f(x∗) = 0 yields the relation x∗ ∈
N (X)∩X, where N (X) := m(X)− (JF (X))−1 ·F (m(X)), for all x ∈ X such
that JF (x) is invertible. An iteration scheme X(j+1) := N (X(j)) ∩ X(j) for
j = 0, 1, . . . , and X(0) := X will enclose the zeros of f contained in X. We
may relax the requirement that every matrix in JF (X) be invertible by using
the inverse of the midpoint of JF (X), i.e., (m(JF (X)))−1 =: p ∈ Rn×n, as
a matrix preconditioner. The extended interval Gauss-Seidel iteration, which
is also applicable to singular systems [Neumaier, 1990], is used to solve the
preconditioned interval linear equation

p · F (m(X)) = p · JF (X) · (m(X) − x∗)
a = G · (c − x∗),

where a ∈ A := p · F (m(X)), G := p · JF (X), and c := m(X). Thus the
solution set S := {x ∈ X : g · (c − x) = a,∀g ∈ G} of the interval linear
equation a = G · (c − x) has the componentwise solution set Si = {xi ∈ Xi :∑n

j=1 (gi,j · (cj − xj)) = ai,∀g ∈ G}, ∀i ∈ {1, . . . , n}. Now set Y = X, and
solve the ith equation for the ith variable iteratively for each i as follows:

yi = ci − 1
gi,i

(
ai +

∑n
j=1,j '=i(gi,j · (yj − cj))

)

∈
(
ci − 1

Gi,i

(
Ai +

∑n
j=1,j '=i(Gi,j · (Yj − cj))

))
∩ Yi.

Then NGS(X), the set resulting from one extended interval Newton Gauss-
Seidel step such that S ⊆ NGS(X) ⊆ X, contains interval vector(s) Y obtained
by this iteration. Thus the roots of f are enclosed by the discrete dynamical
system X(j) = NGS(X(j)) in IRn. Every 0 of f that lies in X also lies in
NGS(X). If NGS(X) = [], the empty interval, then f has no solution in X. If
NGS(X) ! X, then f has a unique solution in X [Hansen, 1992]. When Gii ⊃
0, the method is applicable with EIA that allows for division by 0. In such
cases, we may obtain up to two disjoint compact intervals for Yi subsequent
to EIA and intersection with the previous compact interval Xi. In such cases,
the iteration is applied to each resulting sub-interval.

All the interval arithmetic demonstrated up to this point involved real inter-
vals. However, R, the set of floating-point numbers available on a computing
machine, is finite. A machine interval is a real interval with bounds in R,
the set of floating-point numbers described in the introduction. We can per-
form IA on IR = {{X ∈ IR : x, x ∈ R}, the set of all machine intervals,
in a computer. In spite of the finiteness of IR, the strength of IA lies in a
machine interval X being able to enclose a segment of the entire continuum of
reals between its machine-representable boundaries. Operations with real in-
tervals can be tightly enclosed by the rounding directed operations, provided by
the IEEE arithmetic standard, with the smallest machine intervals containing
them [Hammer et al., 1995, Kulisch et al., 2001].

350 R. Sainudiin and R. Yoshida

20.2 Enclosing the likelihood of a compact set of trees
Let D denote a homologous set of distinct DNA sequences of length v from
n taxa. We are interested in the branch lengths of the most likely tree under
a particular topology. Let b denote the number of branches and s denote the
number of nodes of a tree with topology τ . Thus, for a given unrooted topology
τ with n leaves and b branches, the unknown parameter θ = (θ1, . . . , θb) is the
real vector of branch lengths in the positive orthant (θq ∈ R+). An explicit
model of DNA evolution is needed to construct the likelihood function which
gives the probability of observing data D as a function of the parameter θ. The
simplest such continuous time Markov chain model (JC69) on the state space
Σ is due to Jukes and Cantor [Jukes and Cantor, 1969]. We may compute
%(k)(θ), the log-likelihood at site k ∈ {1, . . . , v} through, the following post-
order traversal [Felsenstein, 1981]:

(i) Associate with each node q ∈ {1, . . . , s} with m descendants, a partial
likelihood vector, lq := (lAq , lCq , lGq , lTq) ∈ R4, and let the length of the
branch leading to its ancestor be θq.

(ii) For a leaf node q with nucleotide i, set liq = 1 and ljq = 0 for all j 1= i.
For any internal node q, set lq := (1, 1, 1, 1).

(iii) For an internal node q with descendants s1, s2, . . . , sm,

liq =
∑

j1,...,jm∈Σ

{ lj1s1
· Pi,j1(θs1) · lj2s2

· Pi,j2(θs2) . . . ljm
sm

· Pi,jm(θsm) }.

(iv) Compute lq for each sub-terminal node q, then those of their ancestors
recursively to finally compute lr for the root node r to obtain the log-
likelihood for site k, %(k)(θ) = lr = log

∑
i∈Σ (πi · lir).

Assuming independence across sites we obtain %(θ) =
∑v

k=1 %(k)(θ), the nat-
ural logarithm of the likelihood function for the data D, by multiplying the
site-specific likelihoods. The problem of finding the global maximum of this
likelihood function is equivalent to finding the global minimum of l(θ) := −%(θ).
Replacing every constant c by its corresponding constant triple (C, 0, 0), every
variable θj by its triple (Θj, e(j), 0), and every real operation or elementary
function by its counterpart in interval-extended Hessian differentiation arith-
metic in the above post-order traversal yields a rigorous enclosure of the nega-
tive log-likelihood triple (L(Θ),∇L(Θ),∇2L(Θ)) of the negative log-likelihood
function l(θ) over Θ.

20.3 Global Optimization
20.3.1 Branch-and-bound

The most basic strategy in global optimization through enclosure methods is
to employ rigorous branch-and-bound techniques. Such techniques recursively
partition (branch) the original compact space of interest into compact sub-
spaces and discard (bound) those subspaces that are guaranteed to not contain
the global optimizer(s). For the real scalar-valued multi-dimensional objective

Applications of Interval Methods to Phylogenetics 351

function l(θ), the interval branch-and-bound technique can be applied to its
natural interval extension L(Θ) to obtain an interval enclosure L∗ of the global
minimum value l∗ as well as the set of minimizer(s) to a specified accuracy ε.
Note that this set of minimizer(s) of L(θ) is the set of maximizer(s) of the
likelihood function for the observed data D. The strength of such methods
arises from the algorithmic ability to discard large sub-boxes from the original
search region,

Θ(0) = (Θ(0)
1 , . . . ,Θ(0)

b) := ([θ (0)
1 , θ (0)

1], . . . , [θ (0)
b , θ (0)

b]) ⊂ IRb,

that are not candidates for global minimizer(s). Four tests that help discard
sub-regions are described below. Let L denote a list of ordered pairs of the
form (Θ(i),LΘ(i)), where Θ(i) ⊆ Θ(0), and LΘ(i) := min (L(Θ(i))) is a lower
bound for the image of the negative log-likelihood function l over Θ(i). Let l̃ be
an upper bound for l∗ and ∇L(Θ(i))k denote the k-th interval of the gradient
box ∇L(Θ(i)). If no information is available for l̃, then l̃ = ∞.

20.3.1.1 Midpoint cutoff test
The basic idea of the midpoint cutoff test is to discard sub-boxes of the search
space Θ(0) with the lower bound for their image enclosures above l̃, the current
best estimate of an upper bound for l∗. Figure 20.4 shows a multi-modal l as
a function of a scalar θ over Θ(0) = ∪16

i=1Θ
(i). For this illustrative example, l̃ is

set as the upper bound of the image enclosure of l over the smallest machine
interval containing the midpoint of Θ(15), the interval with the smallest lower
bound of its image enclosure. The shaded rectangles show the image enclosures
over intervals that lie strictly above l̃. In this example the midpoint cutoff test
would discard all other intervals except Θ(1), Θ(2), and Θ(4). Given a list L

and candidate upper bound l̃, the midpoint cutoff test works as follows:

• Given a list L and l̃.
• Choose an element j of L, such that j = argminLΘ(i) , since Θ(j) is likely to

contain a minimizer.
• Find its midpoint c = m(Θ(j)) and let C be the smallest machine interval

containing c.
• Compute a possibly improved l̃ = min {l̃ ,L C} , where L C := max(L(C)).
• Discard any i-th element of L for which LΘ(i) > l̃ ≥ l∗.

20.3.1.2 Monotonicity test
For a continuously differentiable function l(θ), the monotonicity test determines
whether l(θ) is strictly monotone over an entire sub-box Θ(i) ⊂ Θ(0). If l is
strictly monotone over Θ(i), then a global minimizer cannot lie in the interior
of Θ(i). Therefore, Θ(i) can only contain a global minimizer as a boundary
point if this point also lies in the boundary of Θ(0). Figure 20.5 illustrates
the monotonicity test for the one-dimensional case. In this example the search
space of interest, Θ(0) = [θ(0), θ

(0)] = ∪8
i=1Θ(i), can be reduced considerably. In

the interior of Θ(0), we may delete Θ(2), Θ(5), and Θ(7), since l(θ) is monotone

352 R. Sainudiin and R. Yoshida

Θ(16)

l(θ)

θ

l̃

Θ(4)Θ(3)Θ(2)Θ(1) Θ(15)

Fig. 20.4. Midpoint cutoff test

over them as indicated by the enclosure of the derivative l′(θ) being bounded
away from 0. Since l(θ) is monotonically decreasing over Θ(1) we may also
deleted it, since we are only interested in minimization. Θ(8) may be pruned
to its right boundary point θ(8) = θ

(8) = θ
(0) due to the strictly decreasing

nature of l(θ) over it. Thus the monotonicity test has pruned Θ(0) to the
smaller candidate set { θ

(0)
,Θ(3),Θ(4),Θ(6) } for a global minimizer.

θ

θ(0)θ(0)

Θ(7) Θ(8)Θ(1) Θ(2) Θ(3) Θ(4) Θ(5) Θ(6)

l(θ)

l′(θ)

Fig. 20.5. Monotonicity test

• Given Θ(0), Θ(i), and ∇L(Θ(i)).
• Iterate for k = 1, . . . , b

– If 0 ∈ ∇L(Θ(i))k, then leave Θ(i)
k unchanged, as it may contain a stationary

point of l.
– Otherwise, 0 /∈ ∇L(Θ(i))k. This implies that Θ(i) can be pruned, since

l∗ /∈ Θ(i) except possibly at the boundary points, as follows:
(i) if min (∇L(Θ(i))k) > 0 and θ (0)

k = θ (i)
k , then Θ(i)

k = [θ (i)
k , θ (i)

k],

Applications of Interval Methods to Phylogenetics 353

(ii) Else if max(∇L(Θ(i))k) < 0 and θ (0)
k = θ (i)

k , then Θ(i)
k = [θ (i)

k , θ (i)
k].

(iii) Else, delete the i-th element of L and stop the iteration.

20.3.1.3 Concavity test
Given Θ(i) ! Θ(0), and the diagonal elements (∇2L(Θ(i)))kk of ∇2L(Θ(i)),
note that if min ((∇2L(Θ(i)))kk) < 0 for some k, then ∇2L(Θ(i)) cannot be
positive semidefinite, and therefore l(θ) cannot be convex over Θ(i) and thus
cannot contain a minimum in its interior. In the one-dimensional example
shown in Figure 20.5, an application of the concavity test to the candidate
set { θ(0),Θ(4),Θ(6) } for a global minimizer returned by the monotonicity test
would result in the deletion of Θ(6) due to the concavity of l(θ) over it.

• Given Θ(i) ! Θ(0) and ∇2L(Θ(i))
• If min ((∇2L(Θ(i)))kk) < 0 for any k ∈ {1, . . . , b}, then delete the i-th

element of L.

20.3.1.4 Interval Newton test
Given Θ(i) ! Θ(0), and ∇L(Θ(i)), we attempt to solve the system, ∇L(θ) = 0
in terms of θ ∈ Θ(i).

• Apply one extended interval Newton Gauss-Seidel step to the linear interval
equation a = G · (c − θ), where a := p · L(m(Θ(i))), G := p · ∇2L(Θ(i)),
c := m(Θ(i)), and p := (m(∇2F (X)))−1, in order to obtain N ′

GS(Θ(i)).
• One of the following can happen,

(i) If N ′
GS(Θ(i)) is empty, then discard Θ(i).

(ii) If N ′
GS(Θ(i)) ! Θ(i), then replace Θ(i) by the contraction N ′

GS(Θ(i))∩
Θ(i).

(iii) If 0 ∈ Gjj, and the extended interval division splits Θ(i)
j into a non-

empty union of Θ(i),1
j and Θ(i),2

j , then the iteration is continued on

Θ(i),1
j , while Θ(i),2

j , if non-empty, is stored in L for future processing.
Thus, one extended interval Newton Gauss-Seidel step can add at
most b + 1 sub-boxes to L.

20.3.2 Verification

Given a collection of sub-boxes {Θ(1), . . . ,Θ(n) }, each of width ≤ ε, that could
not be discarded by the tests in Section 20.3.1, one can attempt to verify the
existence and uniqueness of a local minimizer within each sub-box θ(i) by
checking whether the conditions of the following two theorems are satisfied.
For proof of these two theorems see [Hansen, 1992] and [Ratz, 1992].

(i) If N ′
GS(Θ(i)) ! Θ(i), then there exists a unique stationary point of L,

i.e., a unique zero of ∇L exists in Θ(i).
(ii) If (I + 1

κ ·(∇
2L(Θ(i)))) ·Z ! Z, where (∇2L(Θ(i)))d,∞ ≤ κ ∈ R for some

Z ∈ IRn then the spectral radius ρ(s) < 1 for all s ∈ (I− 1
κ ·(∇

2L(Θ(i))))
and all symmetric matrices in ∇2L(Θ(i)) are positive definite.

354 R. Sainudiin and R. Yoshida

If the conditions of the above two theorems are satisfied by some Θ(i), then a
unique stationary point exists in Θ(i) and this stationary point is a local min-
imizer. Therefore, if exactly one candidate sub-box for minimizer(s) remains
after pruning the search box Θ(0) with the tests in Section 20.3.1, and if this
sub-box satisfies the above two conditions for the existence of a unique local
minimizer within it, then we have rigorously enclosed the global minimizer in
the search interval. On the other hand, if there are two or more sub-boxes
in our candidate list for minimizer(s) that satisfy the above two conditions,
then we may conclude that each sub-box contains a candidate for a global
minimizer which may not necessarily be unique (as in the case of disconnected
sub-boxes each of which contains a candidate). Observe that failure to verify
the uniqueness of a local minimizer in a sub-box can occur if it contains more
than one point, or even a continuum of points, that are stationary.

20.3.3 Algorithm

• Initialization:
Step 1 Let the search region be a single box Θ(0) or a collection of not nec-

essarily connected, but pairwise disjoint boxes, Θ(i), i ∈ {1, . . . , r}.
Step 2 Initialize the list L which may just contain one element (Θ(0),LΘ(0))

or several elements

{ (Θ(1),LΘ(1)), (Θ(2),LΘ(2)), . . . , (Θ(r),LΘ(r)) }.

Step 3 Let ε be a specified tolerance.
Step 4 Let maxL be the maximal length allowed for list L.
Step 5 Set the noninformative lower bound for l∗, i.e., l̃ = ∞

• Iteration:
Step1 Perform the following operations:

Step 1.1 Improve l̃ = min{l̃,max(L(m(Θ(j))))},
j = argmin{LΘ(i)}.

Step 1.2 Perform the midpoint cutoff test on L.
Step 1.3 Set L∗ = [LΘ(j) , l̃].

Step 2 Bisect Θ(j) along its longest side k, i.e., d(Θ(j)
k) = d∞(Θ(j)), to

obtain sub-boxes Θ(jq), q ∈ {1, 2}.
Step 3 For each sub-box Θ(jq), evaluate (L(Θ(jq)),∇L(Θ(jq)),∇2L(Θ(jq))),

and do the following:
Step 3.1 Perform monotonicity test to possibly discard Θ(jq).
Step 3.2 Centered form cutoff test:

Improve the image enclosure of L(Θ(jq)) by replacing it with
its centered form Lc(Θ(jq)) :=

{L(m(Θ(jq))) + ∇L(Θ(jq)) · (Θ(jq) − m(Θ(jq)))} ∩L (Θ(jq)),

and then discarding Θ(jq), if l̃ < LΘ(jq) .
Step 3.3 Perform concavity test to possibly discard Θ(jq).

Applications of Interval Methods to Phylogenetics 355

Table 20.1. Machine interval MLEs of a log-likelihood function for a
phylogenetic tree on three taxa:

Chimpanzee (1), Gorilla (2), and Orangutan (3).

Θ(0) and Tree Θ∗ ⊃ θ∗ −L(Θ∗) ⊃ −l(θ∗)

[1.0 × 10−11, 10.0]⊗ 3 5.98162213842
0 × 10−2

τ1 = (1,2,3) 5.41674167942
0 × 10−2

1.32990896859
8 × 10−1 −2.1503180658565

6× 103

Step 3.4 Apply an extended interval Newton Gauss-Seidel step to
Θ(jq), in order to either entirely discard it or shrink it into v
sub-sub-boxes, where v is at most 2s − 2.

Step 3.5 For each one of these sub-sub-boxes Θ(jq,u), u ∈ {1, . . . , v}
Step 3.5.1 Perform monotonicity test to possibly discard

Θ(jq,u).
Step 3.5.2 Try to discard Θ(jq,u) by applying the centered

form cutoff test in Step 3.2 to it.
Step 3.5.3 Append (Θ(jq,u),LΘ(jq,u)) to L if Θ(jq,u) could

not be discarded by Step 3.5.1 and Step 3.5.2.

• Termination:

Step 1 Terminate iteration if drel,∞(Θ(j)) < ε, or drel,∞(L∗) < ε, or L is
empty, or Length(L) > maxL.

Step 2 Verify uniqueness of minimizer(s) in the final list L by applying
algorithm given in Section 20.3.2 to each of its elements.

20.4 Applications to phylogenetics

By way of example, we apply our enclosure method to identifying the global
maximum of the log-likelihood function for the JC69 model of DNA evolu-
tion on the three-taxa unrooted tree. The homologous sequences used were
taken from the mitochondrial DNA of the chimpanzee (Pan troglodytes), go-
rilla (Gorilla gorilla), and orangutan (Pongo pygmaeus) [Brown et al., 1982].
There is only one unrooted multifurcating topology for three species with all
three branches emanating from the root like a star. The data set for this
problem is summarized in [Sainudiin, 2004] by 29 data patterns. The suffi-
cient statistic for this data is (7, 100, 42, 46, 700). Details on obtaining this
sufficient statistics can be found in Chapter 18. The parameter space is three-
dimensional, corresponding to the three branch lengths of the 3-leaved star
tree τ1. The algorithm is given a large search box Θ(0). The results are
summarized in Table 20.1. The notation xb

a means the interval [xa, xb] (e.g.,
5.98162213842

0×10−2 = [5.98162213840×10−2 , 5.98162213842×10−2]). Figure
20.6 shows the the parameter space being rigorously pruned as the algorithm

356 R. Sainudiin and R. Yoshida

Table 20.2. Computational efficiency for four different 3 taxa trees.

True Tree Calls to L(Θ∗) CPU time

(1 : 0.01, 2 : 0.07, 3 : 0.07) 1272 [1032, 1663] 0.55 [0.45, 0.72]
(1 : 0.02, 2 : 0.19, 3 : 0.19) 3948 [2667, 6886] 1.75 [1.17, 3.05]
(1 : 0.03, 2 : 0.42, 3 : 0.42) 20789 [12749, 35220] 9.68 [5.94, 16.34]
(1 : 0.06, 2 : 0.84, 3 : 0.84) 245464 [111901, 376450] 144.62 [64.07, 232.94]

progresses. When there are four taxa, the phylogeny estimation problem is
more challenging as there are four distinct topologies to consider in addition
to the branch lengths. A similar method was used to solve the most likely phy-
logeny of four primates with data from their mitochondria [Sainudiin, 2004].

0

5

0

5

5

0

5

0

0

0.25

0

0.25

0.25

0

0 25

0

0.059
0.0605

0.0535

0.055

0.132

0.133

059

535

0.055

0.059
0.0605

0.0535

0.055

0.132

0.133

059

535

0.055

0
5

10

0

5
10

5

10

0
5

10

0

5

0
5

10

0

5
10

5

10

0
5

10

0

5

0
5

10

0

5
10

5

10

0
5

10

0

5

0

5

0

5

5

0

5

0

Fig. 20.6. Progress of the algorithm as it prunes [0.001, 10.0]⊗3.

The running time of the global optimization algorithm depends on where
the MLEs lie in the parameter space. For trees with smaller branch lengths,
the running time is faster, while larger trees have a much longer running time.
The Table 20.2 shows the mean and 95% confidence intervals of the number of
calls to the likelihood function L and the CPU time in seconds for each of four
trees with different weights. The results summarized in Table 20.2 are from
100 data sets, each of sequence length 1000, simulated under the JC69 model
upon each one of the four trees shown in the first column.

The enclosure of an MLE by means of interval methods is equivalent to a
proof of maximality. The method is robust in the presence of multiple local
maxima or nonidentifiable manifolds with the same ML value. For exam-
ple, when a time-reversible Markov chain, such as JC69, is superimposed on a
rooted tree, only the sum of the branch lengths emanating from the root is iden-
tifiable. Identifiability is a prerequisite for statistical consistency of estimators.
To demonstrate the ability of interval methods to enclose the nonidentifiable
ridge along θ1 + θ2 in the simplest case of a two-leaved tree, we formulated a

Applications of Interval Methods to Phylogenetics 357

nonidentifiable negative log-likelihood function l(θ1, θ2) with its global mini-
mizers along θ1 + θ2 = 3

4 log (45/17) = 0.730087 under a fictitious dataset for
which 280 out of 600 sites are polymorphic. Figure 20.7 shows the contours of

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ2

θ1

Fig. 20.7. The nonidentifiable subspace of minimizers θ1 + θ2 = 3
4 log (45/17) of

l(θ1, θ2) under the JC69 model evolving on a rooted two-leaved tree is enclosed by
a union of up to 30,000 rectangles. The larger gray, and smaller black rectangles have
tolerances of ε = 1.0 × 10−4 and ε = 1.0 × 10−6, respectively. The 10 pairs of colored
ovals are the initial and final points of 10 local quasi-Newton searches with random
initializations.

l(θ1, θ2) in gray scale and the solutions of the interval method (gray and black
rectangles) and those of 10 quasi-Newton searches with random initializations
(10 pairs of colored ovals). Observe that the basin of attraction for each point
on θ1 + θ2 = 0.730087 under a quasi-Newton local search algorithm is the line
running orthogonal to it.

Interval methods can be slow on currently available processors that are opti-
mized for floating-point arithmetic, especially when applied naively. Efficiency
can be gained by pre-enclosing the likelihood function over a fine mesh and
accessing them via hash tables. Interval methods can work efficiently when
algebraic techniques are first used to reduce the data into sufficient statistics.
Interval methods are particularly suited for solving a large dimensional problem
by amalgamating the solutions of several lower dimensional problems. For in-
stance, we can apply the rigorously enclosed MLEs to the generalized neighbor-
joining (GNJ) method discussed in Chapter 2. We call this the numeri-
cally rigorous generalized neighbor-joining method (NRGNJ). Using fastDNAml
which implements a gradient flow algorithm with floating-point arithmetic,
[Levy et al., 2004] computed dissimilarity maps that are needed for the GNJ
method. The NRGNJ method uses, instead, the rigorously enclosed MLEs.
We applied this method to find the NJ tree for 21 S-locus receptor kinase
(SRK) sequences [Sainudiin et al., 2005] involved in the self/nonself discrimi-

358 R. Sainudiin and R. Yoshida

nating self-incompatibility system of the mustard family [Nasrallah, 2002]. We

∆ NRGNJ fastDNAml DNAml(A) DNAml(B) TrExML

0 0 0 2 3608 0
2 0 0 1 471 0
4 171 6 3619 5614 0
6 5687 5 463 294 5
8 4134 3987 5636 13 71

10 8 5720 269 0 3634
12 0 272 10 0 652
14 0 10 0 0 5631
16 0 0 0 0 7

Table 20.3. Symmetric difference (∆) between 10, 000 trees sampled from the
likelihood function via MCMC and the trees reconstructed by 5 methods.

sampled 10, 000 trees from a Markov chain with stationary distribution pro-
portional to the likelihood function by means of a Markov chain Monte Carlo
(MCMC) algorithm implemented in PHYBAYES [Aris-Brosou, 2003]. We then
compared the tree topology of each tree generated by this MCMC method with
that of the reconstructed trees via the NRGNJ method, fastDNAml, DNAml
from PHYLIP package [Felsenstein, 2004], and TrExML [Wolf et al., 2000] un-
der their respective default settings with the JC69 model. We used treedist
[Felsenstein, 2004] to compare two tree topologies. If the symmetric differ-
ence ∆ between two topologies is 0, then the two topologies are identical.
Larger ∆’s are reflective of a larger distance between the two compared topolo-
gies. Table 20.3 summarizes the distance between a reconstructed tree and the
MCMC samples from the normalized likelihood function. For example, the
first two elements in the third row of Table 20.3 mean that 171 out of the
10, 000 MCMC sampled trees are at a symmetric difference of 4 (∆ = 4)
from the tree reconstructed via the NRGNJ method. DNAml was used in two
ways: DNAml(A) is a basic search with no global rearrangements, whereas
DNAml(B) applies a broader search with global rearrangements and 100 jum-
bled inputs. The fruits of the broader search are reflected by the accumulation
of MCMC sampled trees over small ∆ values from the DNAml(B) tree. Al-
though the NRGNJ tree is identical to the Saito and Nei NJ tree (with pairwise
distance) [Saitou and Nei, 1987] as well as the fastDNAml-based NJ tree with
3 leaves for this dataset, we now have the guarantee from the NRGNJ method
that the MLEs for each triplet was enclosed.

In conclusion, we have seen a general method to rigorously enclose the like-
lihood function over compact boxes of branch lengths. This approach to ML
estimation is equivalent to a computer-aided proof and is efficient when cou-
pled with algebraic techniques. We can also rigorously amalgamate small trees.
Interval methods can be naturally applied to other phylogenetic problems.

