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1 INTRODUCTION 2

Abstract

In this paper, we formulate six different resolutions of a continuous-time
approximation of the Wright-Fisher sample genealogical process. We derive
Markov chains for the six different approximations in the spirit of J.F.C. King-
man. These Markov chains are essential for inference methods. Two of the
resolutions are the well-known n-coalescent and the lineage death process due
to Kingman. Two other resolutions were mentioned by Kingman and Tajima,
but never explicitly formalized. Another two resolutions are novel, and embed
the genealogical objects of Kingman and Tajima into a general framework via
the theory of lumped Markov chains. We show that any sample genealogical
Markov chain is amenable to Kingman’s n-coalescent approximation if it has
the lineage death chain as its lumped Markov chain. We formulate a lumped
n-coalescents graph that embodies multiple n-coalescent resolutions of the un-
derlying sample genealogical process and leads to computationally efficient
inference.

1 Introduction

Kingman’s n-coalescent [15, 14] is a process of central importance in mathematical
population genetics. The n-coalescent is a continuous-time Markov chain formulation
for a limiting approximation of the genealogical history of a labeled sample of size
n from a Wright-Fisher population [7, 32] of a large and constant size N . The state
space of the n-coalescent is Cn, the set of all set partitions of the label set L =
{1, 2, . . . , n}. At time zero, the n integer labels in L are all in separate “blocks.”
As time t advances into the past, each transition that allows two blocks merging
into a single block happens at rate one, until the process reaches a terminal state
in which all integer labels are together. If one considers just the discrete skeleton or
the embedded jump chain of this Markov chain, then at each time step one picks
two blocks of the partition at random and merges them together, until there is just
a single block after n− 1 time steps.

In this paper, we consider six variants or genealogical resolutions of this coalescent
process. They are briefly introduced below.

• The vintaged and labeled n-coalescent {B↑(t)} of § 3.1 is the same as the process
described above except that, at all times, each block of the partition has an
associated number called the vintage, which records the time step or coalescent
epoch in which the block was created. Its state space Bn is an augmentation of
Cn with coalescent vintage tags. This is the Kingman-Tajima n-coalescent.
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• The unvintaged and labeled n-coalescent {C↑(t)} of § 3.2 is obtained from
{B↑(t)} by dropping the vintage. This is the standard Kingman’s n-coalescent.
Every sequence of states in Cn that is visited by this process is an element
of Cn, the set of n-coalescent sequences or c-sequences. A c-sequence induces
a ranked, rooted, binary tree with leaves labeled by L as defined in 2.1 and
depicted in Figure 3.

• The vintaged and sized n-coalescent {D↑(t)} of § 3.3 is obtained from {B↑(t)}
by keeping track only of the vintage and the size of each block of the partition,
and dropping the integer labels 1, 2, . . . , n. Its state space Dn is an ordered
integer partition.

• The vintaged and shaped n-coalescent {G↑(t)} of § 3.4 is obtained from {D↑(t)}
by keeping track only of the vintages of the blocks at each time step, and
throwing away the sizes of the blocks. The state space Gn is contained in
the vertices of the hypercube {0, 1}n−1. The sequence of states visited by this
process gives Tajima’s evolutionary relationships [28, Figures 1-4], which resolve
genealogical histories up to ranked, rooted, binary tree shapes as defined in 2.1
and depicted in Figure 3. This is Tajima’s n-coalescent.

• The unvintaged and sized n-coalescent {F ↑(t)} of § 3.5 is obtained from {C↑(t)}
by just keeping track of how many blocks there are of each size. This process is
also known as the label-killed n-coalescent [15, (5.2)] or unlabeled n-coalescent
[23] or family-size process [13, 30, p. 136-137] on Fn, the integer partitions of
n.

• The pure death process {H↑(t)} of § 2.2.2 is obtained from any of the other five
processes above by just keeping track of the number of blocks or the number
of ancestral sample lineages in Hn = {n, n− 1, . . . , 1}.

Using the theory of lumped Markov chains [12, § 6.3, p. 123], we formalise a unified
multi-resolution coalescent as the lumped n-coalescents graph (Definition 4.1). It is a
partially ordered graph whose nodes represent the six coalescents described above and
whose edges describe Markov lumpings. We show that a Markov chain {B↑(t)} on Bn
called (i) the vintaged and labeled n-coalescent or the Kingman-Tajima n-coalescent,
can be lumped into (ii) Kingman’s labeled n-coalescent or the unvintaged and labeled
n-coalescent {C↑(t)} on Cn, (iii) the unvintaged and sized n-coalescent on Fn and
(iv) the vintaged and shaped n-coalescent on Gn. The latter two Markov lumpings
are mediated via another Markov chain called (v) the vintaged and sized n-coalescent
on Dn. Finally, all these Markov chains are built from the coarsest resolution of
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(vi) the pure death process on Hn that gives the number of ancestral lineages of our
sample. Figure 1 depicts the six state spaces and the Markov lumpings between them.
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Figure 1: State spaces Bn,Cn,Dn,Fn,Gn,Hn and the lumpings between them.

Here we focus on specific algebraic representations of these six Markov chains
and derive their backward-transition, sequence-specific, state-specific and forward-
transition probabilities. These derivations are novel for all but Kingman’s labeled
n-coalescent and the pure death process [15, 14]. Our motivation for this study is
two-fold. The first is historical and the second is statistical as outlined in the next
two subsections, respectively.

1.1 Historical Motivation

Kingman and Tajima independently described the genealogical or evolutionary rela-
tionship of a sample of size n from a Wright-Fisher population in the early 1980s.
The relation between the genealogical objects described by Kingman and Tajima has
not been characterised before. We make the first formalization that relates the two
distinct sample genealogical descriptions of Kingman and Tajima via the theory of
lumped Markov chains. The vintaged and shaped n-coalescent {G↑(t)} or Tajima’s
n-coalescent is the first Markov description of Tajima’s evolutionary relationship in
the spirit of Kingman’s n-coalescent. {G↑(t)} requires temporal information about
the extant sample lineages. Such temporal information is not required for Kingman’s



1 INTRODUCTION 5

n-coalescent {C↑(t)}. The other resolutions of the sample genealogy studied in this
paper make the Markov lumping relations among the n-coalescents, that are natu-
rally spanned by the n-coalescents of Kingman and Tajima, explicit.

Phylogenetics and population genetics, despite being sub-fields of mathematical
genetics, are studied by research communities that do not entirely overlap. This is
partly driven by methodological preferences between inter-species and intra-species
approaches to the study of genetic inter-relatedness. This paper attempts to use
definitions and notions that are consistent across phylogenetic and population genetic
literature. We show how different resolutions of coalescent sequences are in bijection
with different kinds of phylogenetic trees. We show that various classical phylogenetic
tree shape statistics can be directly obtained from coarser coalescent resolutions. We
express the probability of obtaining coalescent sequences at the coarser resolutions in
terms of phylogenetic tree shape statistics. We also show in this paper that classical
phylogenetic tree shape statistics, such as, Colless’ index [6], Sackin’s index [28, 21],
number of cherries [18], Sequential Aldous shape statistics [2] and runs statistics
[8], can be obtained efficiently from Markov lumpings of the Kingman-Tajima n-
coalescent.

1.2 Statistical Motivation

The n-coalescents provide the basic probability models underlying statistical experi-
ments of interest in population genetics. They arise as prior mixtures over CnTn, the
partially observed genealogical space of binary coalescent trees with branch-lengths:

CnTn := Cn ⊗ Tn := {ct := (cntn,
cn−1tn−1, . . . ,

c2t2) : c ∈ Cn, t ∈ Tn} ,

that one needs to integrate over, in order to obtain the likelihood of a parameter
φ ∈ ΦΦ on the basis of some observed data xobs:

P (xobs|φ) =
∑∫

ct ∈ CnTn

P (xobs|ct, φ)P (ct|φ) ∂ (ct) ,

where ∂ (ct) is the dominating measure on CnTn (given as a product of counting
measure on discrete-valued trees in Cn and Lebesgue measure on the continuous-
valued coalescent times in Rn−1

+ =: Tn) and P (ct|φ) is an n-coalescent induced,
possibly φ-specific, prior density over CnTn. The integration space is depicted for
n = 3 in Figure 2.

Computational feasibility of “full-likelihood” methods that conduct Monte Carlo
integration over CnTn, the partially observed genealogical space of binary coalescent
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Figure 2: Realizations of 3-coalescent trees in the space of such trees is plotted on
the three rectangles as colored points in middle panel. The lines on the rectangles
are the contours of the independent exponentially distributed epoch times for each
c-sequence. Each of the three coalescent trees, with two branch lengths (t3, t2), rep-
resenting a realization in the corresponding rectangle and the transition probability
diagram of the embedded discrete time Markov chain {C↑(k)}k∈{3,2,1} on C3 are
shown counter clock-wise in the four corner panels, respectively. See Proposition 3.7
for details.
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trees with branch-lengths, in order to compute the likelihood P (xobs|φ) via impor-
tance samplers [9, 10, 3, 27, 26, 11] for instance, scales poorly with the resolution and
size of modern population genomic data. Typical data sets contain DNA sequences of
large homologous tracks of the genome for thousands of individuals in a population.

Given the massive scale of current genomic data, computational biologists are us-
ing “summary statistics” of the available data to reduce the computational burden of
the inference procedure and make it “likelihood-free” on the basis of simulations from
the finest genealogical resolutions [31, 19, 5, 17, 25, 4, 16]). However, these “approx-
imate likelihood/Bayesian” computations do not take advantage of the appropriate
and sufficient Markov lumpings of the hidden genealogy space for the “summary
statistics” being used.

Markov lumping can be powerful in inference if the observed statistic of interest
T (xobs) only depends on the original chain through the lumping. This can reduce
large summations over excessively fine state spaces as noted in [12, p. 124]. The
reduction in state space can also be helpful in dynamic programming during inte-
grations over some appropriate Markov lumping of the hidden genealogy space. The
Markov lumpings of the Kingman-Tajima n-coalescent developed here can facilitate
a computationally efficient and statistically sufficient approach to population-genetic
inference based on various families of population-genetic statistics as done in [23] and
[22].

Briefly, in [23], the sufficiency of the unvintaged and sized n-coalescent for the
likelihood of a popular statistic called the site frequency spectrum or SFS is ex-
ploited. Computationally efficient inference based on SFS as well as its linear combi-
nations [22], including, the number of segregating sites [1], pair-wise heterozygosity,
and Tajima’s D [29], is possible due to the invariance of the sampling distribution of
SFS up to the equivalence class induced in the hidden space Cn by the sequence of
states visited by {F ↑(t)}, the unvintaged and sized n-coalescent. This Markov lump-
ing F : Cn → Fn allows us to efficiently integrate over f -sequences or sequential
realisations of {F ↑(t)} in Fn to compute the likelihood of the SFS, as opposed to the
more conventional approach of integrating over (in importance sampling) or simulat-
ing from (in approximate Bayesian/likelihood computations) the unnecessarily finer
resolution of c-sequences in Cn. Importance sampling using a controlled Markov chain
is developed in [23] from the forward-transition probabilities of the unvintaged and
sized n-coalescent in order to produce f -sequences that are conditioned on the data.
Similar inferential methods based on statistics that depend on the other lumped
coalescents can be obtained from the coalescent probabilities developed here.

Thus, we formally describe lumped Markov processes at more resolutions of the
hidden genealogy space. These descriptions, especially at the coarser resolutions, are
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a prerequisite for subsequent computationally efficient inference in the spirit of [23]
on the basis of other appropriate genetic statistics, including the sequential Aldous
shape statistics, Colless’ index, Sackin’s index, number of cherries and runs statis-
tics. Moreover, several non-classical statistics can be obtained from the genealogical
resolutions studied here.

The backward-transition, sequence-specific, state-specific and forward-transition
probabilities at each of our coalescent resolutions described in this paper consti-
tute the applied probabilistic core of computationally efficient Monte Carlo algo-
rithms for statistical inference in population genetics that can exploit the Markov
lumping relations among the different coalescent resolutions. Several such algo-
rithms are implemented in lce: a C++ class library for lumped coalescent

experiments that is publicly available from http://www.math.canterbury.ac.nz/

~r.sainudiin/codes/lce/.

1.3 Outline

The rest of this paper is organized as follows. In § 2, we review the conditions under
which a lumped process is Markov, describe the basic population genetic model and
the n-coalescent approximation of any sample genealogical Markov chain. In § 3 we
introduce and discuss six n-coalescent resolutions of the genealogical space. Examples
and applications are given in § 4.

2 Preliminaries

Let N := {1, 2, 3, . . .} denote the set of natural numbers. Let Z+ := {0, 1, 2, . . .}
and Z− := {0,−1,−2, . . .} denote the set of non-negative and non-positive integers,
respectively. For any set A, let |A| denote its cardinality or the number of elements
in it. Let [n : n′]− := {n, n− 1, . . . , n′+ 1, n′} denote the linearly ordered descending
index set from n to n′ ≤ n, where n, n′ ∈ Z and let [n]− := [n : 1]− = {n, n −
1, . . . , 2, 1}. Similarly, let [n′ : n]+ := {n′, n′ + 1, . . . , n − 1, n} denote the linearly
ordered ascending index set from n′ to n ≥ n′, where n, n′ ∈ Z and let [n]+ := [1 :
n]+ = {1, 2, . . . , n− 1, n}.

The n-coalescent resolutions (with exception of the unvintaged and sized n-
coalescent and the lineage death process) induce trees on n leaves. We will formally
define the trees we will observe throughout this paper.

Definition 2.1. We define the following trees as in [24, § 2.4]. A ranked, labeled tree
on n leaves is a rooted binary tree with unique leaf labels from the label set L. The

http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/
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Figure 3: Example for a ranked, labeled tree with leaf label set L = {1, 2, 3, 4, 5}, a
labeled tree with L = {1, 2, 3, 4, 5}, a ranked tree shape and a tree shape (from left
to right).

interior vertices have a total order < assigned, such that the root is the minimum in
this order, and for any interior vertex v which is on the path from an interior vertex
w to a leaf, we have w < v. We assign to the root of the tree the rank 1, to the
second smallest element in this total order the rank 2, etc.

A labeled tree on n leaves is a ranked, labeled tree where the total order with the
ranks are omitted.

A ranked tree shape on n leaves is a ranked, labeled tree where the leaf labels are
omitted.

A tree shape on n leaves is a labeled tree where the leaf labels are omitted. For
examples see Figure 3.

2.1 The lumped chain

In the following we define a lumped chain of a Markov chain as in [12, § 6.3, p. 123].
Assume we are given a discrete time Markov chain {S(n)}n∈Z+ on a finite state space
S = {s1, s2, . . . , s|S|}. Suppose that for an initial distribution π, the values

{P (sj|si) := P (S(n+ 1) = sj|S(n) = si)}i,j∈[|S|]

are the time-homogeneous 1-step transition probabilities for our Markov chain.
Let the map

M : S→M = {m1,m2, . . . ,m|M|}
induce a partition of S into |M| non-empty elements via its inverse M−1. We denote
this M -partition or M -lumping of S by

SM := {M−1(m1),M
−1(m2), . . . ,M

−1(m|M|)}.

Next, we define the lumped chain {SM (n)}n∈Z+ on SM from the original Markov
chain {S(n)}n∈Z+ on S. The state visited by the k-th step in the lumped chain is
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the set that contains the state visited by the k-th step in the original chain, i.e. with
mi := M (si′),

S(k) = si′ ∈ S =⇒ SM 3 SM (k) = M−1(M (si′)) = M−1(mi) ⊃ si′ .

At the first level we assign, for the lumped chain,

Pπ
(
S(0) ∈M−1(mi)

)
.

The probability of the sequence (M−1(mk), . . . ,M−1(mi),M−1(mj)) of n states
visited by the lumped chain is defined to be:

Pπ
(
S(n− 1) ∈M−1(mj), S(n− 2) ∈M−1(mi), . . . , S(0) ∈M−1(mk)

)
.

The lumped chain can replace a Markov chain on a vast state space with a chain on
fewer states. Such coarser M -lumpings when statistically sufficient for the considered
problem can be advantageous, especially when the lumped chain is also Markov.

The proof of the next proposition is given in [12, Thm. 6.3.2, p. 124]. As this
proposition is frequently applied throughout the paper, we give a proof using our
terminology.

Proposition 2.2. A necessary and sufficient condition for the lumped chain
{SM (k)}k∈Z+ to be a Markov chain on SM and not depending on the initial dis-
tribution π is:

For every pair of sets M−1(mi) and M−1(mj) in SM , the probability of moving
from a state si′ ∈M−1(mi) to the set M−1(mj),

P (M−1(mj)|si′) :=
∑

sj′∈M−1(mj)

P (sj′|si′),

is identical for every si′ ∈M−1(mi), and thus depends on si′ only through M−1(mi).
We refer to these common probabilities by

P (M−1(mj)|M−1(mi)) = P (mj|mi),

and use them to define transition probabilities between sets of states M−1(mi),
M−1(mj) for the lumped Markov chain {SM (k)}k∈Z+ on SM or equivalently the tran-
sition probabilities P (mj|mi) between states mi, mj for a Markov chain {M(k)}k∈Z+

over M.
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Proof. As the transition probability of the lumped chain does not depend on the
initial distribution π, we have,

Pπ
(
S(1) ∈M−1(mj) | S(0) ∈M−1(mi)

)
being the same for all π. In particular, this also holds for π having a 1 in the i′-th
component, for state si′ ∈M−1(mi), i.e. when the initial state in the original chain
is si′ . We denote this probability by

pij := Pi′
(
S(1) ∈M−1(mj)

)
= P

(
M−1(mj)|si′

)
for every si′ ∈M−1(mi). So the condition given in the proposition is necessary.

To prove that it is sufficient, we must show that, if the condition is satisfied, the
probability

Pπ
(
S(n− 1) ∈M−1(mj) | S(n− 2) ∈M−1(mi), . . . , S(0) ∈M−1(mk)

)
(1)

only depends on M−1(mi) and M−1(mj). We rewrite the probability (1) in the form

Pπ′
(
S(1) ∈M−1(mj)

)
where π′ is a vector with non-zero components only on the states contained in
M−1(mi). The vector π′ depends on π and the first n − 1 outcomes. However,
if Pi′ (S(1) ∈M−1(mj)) = pij for all si′ ∈ M−1(mi), then it is also clear that
Pπ′ (S(1) ∈M−1(mj)) = pij. Thus the probability in (1) only depends on M−1(mi)
and M−1(mj).

Remark 2.3. The continuous-time Markov chains we encounter in this paper are
constructed by composing independent and exponentially distributed waiting times
with the discrete-time embedded Markov chain. We are primarily concerned with
the lumped chains of the discrete-time Markov chains, since the independent waiting
times can be composed with the lumped discrete-time Markov chains to obtain their
continuous-time versions as we will see in § 2.2.3.

2.2 The Standard Neutral Wright-Fisher Model

In the Wright-Fisher model [7, 32] of selectively neutral reproduction within a finite
population of constant size N , there are discrete, non-overlapping generations labeled
by integers . . . ,−k,−k+1,−k+2, . . . ,−2,−1, 0,+1,+2, . . . as we go forward in time.
The current generation is labeled 0. Each individual in generation −k+1 is the child
of exactly one individual in the previous generation −k and the number of offspring
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born to the 1st, 2nd, . . . , ith, . . . , N th individual of generation −k is the symmetric
multinomial random vector V := (V1, V2, . . . , VN), such that:{∑N

j=1 Vj = N,

P (V1 = v1, V2 = v2, . . . , VN = vN) = N !
v1!v2!···vN !

(
1
N

)N
.

(2)

This reproduction scheme is independently and identically enforced in each gen-
eration to obtain the standard neutral Wright-Fisher model as we go forward in time.
This model has a simple structure as we go back in time. The forward-time offspring
distribution of (2) is equivalent to the scheme where each individual in generation
−k + 1 chooses its parent uniformly at random from among the N individuals in
the previous generation −k. This simple scheme as we go back in time is at the
foundation of the n-coalescent approximation to the Wright-Fisher model.

We can choose to track the sample genealogy (see Fig. 4), i.e. the sub-genealogy of
our sample of size n with label set L = {1, 2, . . . , n}, within the population genealogy
of a Wright-Fisher population of constant size N , at some resolution of interest over
an appropriate time-scale. In § 2.2.1 we simply track the number of lineages that are
ancestral to our sample in the time-scale of the discrete Wright-Fisher model. The
sample genealogical description of § 2.2.1 is the coarsest resolution and contrasts with
the finest studied resolution of the sample genealogy in § 3.1. The finest resolution
is depicted in Figure 4 for a small example.

2.2.1 Number of Ancestral Lineages of a Wright-Fisher Sample

In the simple Wright-Fisher discrete generation model with a constant population size
N the offspring “choose” their parents uniformly and independently at random from
the previous generation due to the symmetric multinomial sampling of N offspring
from the N parents in the previous generation.

Let S
(j)
i denote the Stirling number of the second kind, i.e. S

(j)
i is the number of

set partitions of a set of size i into j blocks. Let N[j] := N(N − 1) · · · (N − (j − i))
and note that the following ratio can be approximated:

N[j]

N j
=

N(N − 1) · · · (N − (j − i))
N j

=
N

N

N − 1
N

· · · N − (j − 1)
N

= 1
(

1− 1
N

)
· · ·
(

1− j − 1
N

)
=

j−1∏
k=1

(
1− kN−1

)
= 1−N−1

j−1∑
k=1

k + O
(
N−2

)
= 1−

(
j

2

)
N−1 + O

(
N−2

)
.
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Figure 4: Genealogy of a sample of size n = 3 with label set L = {1, 2, 3} within a
Wright-Fisher population of constant size N = 5. The vintage tags 〈i〉 in the labeled
lineages are assigned as follows. The n sampled individuals at generation 0 have
vintage tag 〈n〉 assigned. Now, going back in time, the first coalescent event has
vintage tag 〈n−1〉 assigned, the next coalescent event has 〈n−2〉 assigned, and so on.
Finally, the most recent common ancestor of the sample on n individuals has vintage
tag 〈1〉 assigned (see § 3.1).
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Thus, the N -specific probability of i extant sample lineages in the current gener-
ation becoming j extant lineages in the previous generation is:

NPi,j =



S
(i)
i

(
N[i]N

−i) = 1
(
N[i]N

−i) =

1−
(
i
2

)
N−1 +O (N−2) if j = i,

S
(i−1)
i

(
N[i−1]N

−i) =
(
i
2

) (
N−1N[i−1]N

−(i−1)
)

=(
i
2

)
N−1

(
1−N−1

(
i−1
2

)
+O (N−2)

)
=(

i
2

)
N−1 +O (N−2) if j = i− 1,

S
(i−`)
i

(
N[i−`]N

−i) = S
(i−`)
i

(
N−`N[i−`]N

−(i−`)) =

S
(i−`)
i N−`

(
1−N−1

(
i−`
2

)
+O (N−2)

)
= O (N−2) if j = i− `,

0 otherwise .

(3)

where 1 < ` < i−1. Let Z− := {0,−1,−2, . . .} be the ordered and countably infinite
discrete time index set. The discrete time Markov chain {NH↑(k)}k∈Z− over the
state space Hn := {n, n− 1, . . . , 1} with 1-step transition probabilities (3) is termed
the death chain of the number of ancestral sample lineages within the Wright-Fisher
population of constant size N . The initial state and the final absorbing state of this
chain are n and 1, respectively.

2.2.2 Death process of the number of lineages

Let us first obtain a coalescent approximation of {NH↑(k)}k∈Z− , the death chain
of the number of ancestral sample lineages within the Wright-Fisher population
of constant size N from § 2.2.1. This is the coarsest of the six coalescent resolu-
tions we study here and forms the foundation for a continuous time approxima-
tion of any discrete time sample genealogical Markov chain {NA↑(k)}k∈Z− that has

{NA↑H (k)}k∈Z− = {NH↑(k)}k∈Z− as its lumped chain via the lumping H : An → Hn

that reports the number of ancestral lineages of our sample (see § 2.2.3).
Let us rescale time in the discrete time Markov chain {NH↑(k)}k∈Z− over the

state space Hn := {n, n − 1, . . . , 1} with 1-step transition probabilities (3). Let the
rescaled time t be g in units of N generations, i.e. g = bNtc. In words, the probability
that any specific pair of lineages, among the

(
i
2

)
many pairs of the currently extant i
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ancestors of the n sampled lineages, coalesces in one generation is 1/N and that this
pair remains distinct for more than g generations is (1−1/N)g. Then, the probability
that a pair of lineages remain distinct for more than t units of the rescaled time is:

(1 − 1/N)bNtc
N→∞−→ e−t. The bNtc-step transition probabilities, NPi,j(bNtc), of the

discrete time death chain {NH↑(bNtc)}bNtc∈Z− converge to the transition probabili-
ties Pi,j(t) of the pure death process {H↑(t)}t∈R+ , in the rescaled time t, over the state
space Hn, as the population size N tends to infinity. The instantaneous transition
rates for this pure death or epoch-time process is [14, (1.9)]:

NPi,j(bNtc)
N→∞−→ Pi,j(t) = exp (Qt), where

qi,j = q(j|i) =


−
(
i
2

)
if j = i(

i
2

)
if j = i− 1

0 otherwise

. (4)

The matrix Q is called the instantaneous rate matrix of the death process Markov
chain {H(t)}t∈R+ and its (i, j)-th entry is qi,j = q(j|i). Thus, the i-th holding time
or epoch-time random variable Ti during which time there are i distinct ancestral
lineages of our sample is approximately exponentially distributed with rate parameter(
i
2

)
and is independent of other epoch-times. In other words, for large N , the random

vector T = (T2, T3, . . . , Tn) of epoch-times, corresponding to the epoch times of the
pure death process {H↑(t)}t∈R+ on the state space Hn, has the product exponential

density
⊗n

i=2

(
i
2

)
e−(i

2)ti over its support Tn := Rn−1
+ . Note that the initial state of

{H↑(t)}t∈R+ is n and the final absorbing state is 1.
Let [n]− := {n, n− 1, . . . , 2, 1} denote the ordered discrete time index set of the

jump chain. The embedded discrete time jump chain {H↑(k)}k∈[n]− of this death
process, termed the embedded death chain, moves from state i to state i − 1 with
probability 1, as follows:

n
1−→ n-1

1−→ · · · 1−→ i+1
1−→ i

1−→ i-1
1−→ · · · 1−→ 2

1−→ 1 .

We keep track of the discrete time in terms of the extant number of lineages for
convenience. The discrete time steps k ∈ [n]− := {n, n−1, . . . , 2, 1} of the embedded
chain {H↑(k)}k∈[n]− of the death process {H↑(t)}t∈R+ are referred to as coalescent
epochs or epochs as they mark the beginning of a lineage death or coalescence event.
Note however that the embedded discrete time jump chain of {NH↑(k)}k∈Z− denoted
by {NH↑(k)}k∈[n:n′]− can reach the absorbing state in merely n − n′ jumps where
1 ≤ n′ < n.
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2.2.3 Coalescent approximation of any sample genealogy Markov chain

If the desired Markov description of our sample genealogy within a Wright-Fisher
population, as we go back in time, at a possibly finer resolution than that of the death
chain {NH↑(k)}k∈Z− , is seen in an appropriate time-scale involving the population
size N , then it can be approximated in the large population limit by a simpler one
called the n-coalescent of the desired resolution. This is a natural extension of the
basic approximation idea in Kingman’s n-coalescent [15, 2.7–2.10].

Let {NA↑(k)}k∈Z− be any discrete time sample genealogical Markov chain that

has {NA↑H (k)}k∈Z− = {NH↑(k)}k∈Z− — the Wright-Fisher death chain over Hn :=
{n, n− 1, . . . , 1} with 1-step transition probabilities in (3) — as its lumped Markov
chain, via the lumping map H (ai) : An → Hn. We show that {NA↑(k)}k∈Z− can be
approximated by {A↑(t)}t∈R+ , the n-coalescent of the desired resolution.

Let An be the state space of {NA↑(k)}k∈Z− . Let ai′ ≺Na ai denote the immedi-
ate precedence relation between states ai′ , ai ∈ An in the one-step state transition
diagram of {NA↑(k)}k∈Z− , i.e.

An 3 ai′ ≺Na ai ∈ An ⇐⇒ P (NA↑(k − 1) = ai′ |NA↑(k) = ai) > 0,∀k ∈ Z− .

For some n′, such that 1 ≤ n′ < n, let a := (an, an−1, . . . , an′−1, an′) be a sequence of
distinct states visited by {NA↑(k)}k∈Z− , i.e.

NA↑(kn = 0) = an,
NA↑(kn−1) = an−1, . . . ,

NA↑(kn′−1) = an′−1,
NA↑(kn′) = an′ ,

kj ∈ Z− for every j ∈ [n : n′]− and the set of such a-sequences be An, i.e.,

An := {a : ai−1 ≺Na ai,∀i ∈ {n, n− 1, . . . , n′ − 2, n′ − 1}, 1 ≤ n′ < n} .

Thus, An contains all sequential realizations of the genealogy of our sample of size n
within the discrete time Wright-Fisher population of constant size N at the resolution
of a-sequences obtained by the sequence of distinct states visited by the jump chain
{NA↑(k)}k∈[n:n′]− embedded in {NA↑(k)}k∈Z− . Let NPai,ai′

:= NP (ai′ |ai) denote the
time-homogeneous transition probability from state ai to state ai′ in one time-step
or one Wright-Fisher generation as we go back in time. Let H (ai) = i and H (ai′) =
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i′ = i− `, i.e. there are i and i′ lineages in ai and ai′ , respectively. Then,

NPai,ai′
:= P

(
NA(k + 1) = ai′ | NA(k) = ai

)
= P

(
NA(k + 1) = ai′ ,

NA(k + 1) ∈H −1(H (ai′)) | NA(k) = ai
)

=
P
(
NA(k + 1) = ai′ ,

NA(k + 1) ∈H −1(i− `),NA(k) = ai
)

P (NA(k) = ai)

= P
(
NA(k + 1) = ai′ | NA(k + 1) ∈H −1(i′),NA(k) = ai

)
× P

(
NA(k + 1) ∈H −1(i′) | NA(k) = ai

)
=: NP

(
ai′ | ai′ ∈H −1(i′), ai

)
NP

(
H −1(i′) | ai

)
. (5)

Let the conditional transition probability of the jump chain {NA↑(k)}k∈[n:n′]− be

P (ai′ | ai) := NP
(
ai′ | ai′ ∈H −1(H (ai′)), ai

)
. (6)

If the lumped chain {NA↑H (k)}k∈Z− of {NA↑(k)}k∈Z− is the Markov chain
{NH↑(k)}k∈Z− then the last probability term in (5) simplifies:

P
(
NA(k + 1) ∈H −1(i′) | NA(k) = ai

)
=

∑
ai′∈H −1(i′)

P
(
NA(k + 1) = ai′ | NA(k) = ai

)
=: NP

(
H −1(i′) | ai

)
= NP

(
H −1(i′) | H −1(ai)

)
∵ ofProposition 2.2

= NP (i′ | i) = S
(i′)
i

(
N[i′]N

−i) ∵ of(3) (7)

Combining (5) with (6), (7) and (3) we get

NPai,ai′
=



1 S
(i)
i

(
N[i]N

−i) =

1−
(
i
2

)
N−1 +O (N−2) if ai = ai′ and

H (ai) = H (ai′) = i,

P (ai′ | ai) S
(i−1)
i

(
N[i−1]N

−i) =

P (ai′ | ai)
(
i
2

)
N−1 +O (N−2) if ai′ ≺Na ai and

i = H (ai) = H (ai′) + 1,

P (ai′ | ai) S
(i−`)
i

(
N[i−`]N

−i) =

O (N−2) if ai′ ≺Na ai and

i = H (ai) = H (ai′) + `,

0 otherwise ,

(8)
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where 1 < ` < i−1. Let us define the more restrictive immediate precedence relation
on An 3 ai, ai′ :

ai′ ≺a ai ⇐⇒ ai′ ≺Na ai, i = H (ai) = H (ai′) + 1 .

The bNtc-step transition probabilities, NPai,ai′
(bNtc), of {NA↑(bNtc)}bNtc∈Z− con-

verge to the transition probabilities Pai,ai′
(t) of the n-coalescent {A↑(t)}t∈R+ , in the

rescaled time t, over the state space An, as the population size N tends to infinity. The
instantaneous transition rates for this continuous-time Markov chain, {A↑(t)}t∈R+ ,
generalizes [15, (2.10)] to the sample genealogical resolution of a-sequences in An.
More formally,

NPai,ai′
(bNtc) N→∞−→ Pai,ai′

(t) = exp (Qt), Q := {qai,ai′
}ai,ai′∈An , and

qai,ai′
= q(ai′ |ai) =


−
(
i
2

)
if ai′ = ai

P (ai′ | ai)
(
i
2

)
if ai′ ≺a ai, i = H (ai)

0 otherwise

. (9)

This establishes the following proposition.

Proposition 2.4. Let {NA↑(k)}k∈Z− be any discrete time sample genealogical

Markov chain that has {NA↑H (k)}k∈Z− = {NH↑(k)}k∈Z− — the Wright-Fisher death
chain over Hn := {n, n− 1, . . . , 1} with 1-step transition probabilities in (3) — as its
lumped Markov chain, via the lumping map H (ai) : An → Hn. Then {NA↑(k)}k∈Z−
can be approximated by {A↑(t)}t∈R+, the n-coalescent of the desired resolution, in the
sense of (9).

Remark 2.5. Further, the Markov chain {A↑(t)}t∈R+ has two independent com-
ponents: (I) the death chain over {H↑(t)}t∈R+ with waiting times

(
i
2

)
, and (II)

the simpler jump chain {A↑(k)}k∈[n]− that only looses one lineage at each jump
with transition probabilities P (ai′ | ai) (as opposed to complicated jump chain
{NA↑(k)}k∈[n:n′]− , embedded in {NA↑(k)}k∈Z−). Note that {A↑(k)}k∈[n]− is our re-
finement or delumping of the embedded death chain {H↑(k)}k∈[n]− .

3 Six coalescent resolutions

{H↑(k)}k∈[n]− , the embedded discrete time jump chain of the death chain introduced
and discussed in § 2.2.2, is the coarsest of our coalescent resolutions. In this Section,
we introduce n-coalescent approximations of five refined resolutions of the sample
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genealogy. One of them (§ 3.2) was completely developed as Markov processes by
Kingman. Another (§ 3.5) was pointed out by Kingman and yet another (§ 3.4) by
Tajima without a full Markov description. The remaining two (§ 3.1, § 3.3), including
the finest resolution of § 3.1, have not been studied before. Figure 1 depicts the six
state spaces and the Markov lumpings between them.

As derived in the previous section, we can decompose the coalescent process:
we have a continuous time process describing the time between a jump from k to
k − 1 lineages and we have an embedded jump process describing the state of the
genealogy at each jump at the given resolution. When the chain makes a jump we
have a resolution-specific coalescence event. In the following, we will describe this
embedded jump process at different resolutions.

3.1 Vintaged and labeled n-coalescent

We introduce the finest coalescent resolution in this study. At this resolution, in each
epoch, we keep track of the descendants of each existing lineage as well as the epoch
at which this lineage was created as we follow the genealogy of our sample back
through continuous time. We will see that this genealogical process, {B↑(t)}t∈R+ ,
called the vintaged and labeled n-coalescent, is a continuous time Markov chain and
that each each sequence of distinct states visited by {B↑(k)}k∈[n]− , the jump Markov
chain of {B↑(t)}t∈R+ , induces a unique ranked, labeled tree, i.e. there is a bijection
between the set of sequential realizations of the jump chain of the vintaged and
labeled n-coalescent and the set of ranked, labeled trees. Furthermore, this process
can be lumped to any other process we will introduce below.

Next we derive the state space, Bn, of {B↑(k)}k∈[n]− and {B↑(t)}t∈R+ . Let Cn be
the set of all set partitions of the label set L = {1, 2, . . . , n} of n samples. Let |ca|
denote the number of elements in ca ∈ Cn. Denote by Cin the set of all set partitions
with i blocks, i.e., Cn =

⋃n
i=1Cin. Let ci := {ci,1, ci,2, . . . , ci,i} ∈ Cin denote the i

elements of ci. The partial ordering
...
≺c on Cn is based on the immediate precedence

relation ≺c:

ci′ ≺c ci ⇔ ci′ = ci \ ci,j \ ci,k ∪ (ci,j ∪ ci,k), j 6= k, j, k ∈ {1, 2, . . . , |ci|}.

In words, ci′ ≺c ci, read as ci′ immediately precedes ci, means that ci′ can be obtained
from ci by coalescing any distinct pair of elements in ci. Thus, ci′ ≺c ci implies
|ci′ | = |ci| − 1.

Let the coalescent epochs be labeled n, n− 1, . . . , 1 as we go back in time. Thus,
there are k lineages during epoch k. We say that a lineage identified by ci,j in the i-th
epoch, i.e. the lineage that subtends the sample labels in the set ci,j, is of mi,j vintage
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if ci,j originated in epoch mi,j. We also say that mi,j is the coalescent-epoch vintage
or simply the vintage of ci,j. We notate such lineage-vintage pairs, lineage〈vintage〉,

or vintaged lineages by bi,j := c
〈mi,j〉
i,j and let

bi := {bi,1, bi,2, . . . , bi,i} :=
{
c
〈mi,1〉
i,1 , c

〈mi,2〉
i,2 , . . . , c

〈mi,i〉
i,i

}
,

denote the i vintaged lineages in epoch i formed by pairing the j-th element ci,j ∈ ci ∈
Cin with its respective vintage mi,j ∈ {n, n− 1, . . . , i}, for each j ∈ {1, 2, . . . , i}. Let
the set of such bi’s be Bin and let Bn :=

⋃n
i=1 Bin. Thus, Bn is a vintage augmentation

of Cn. The partial ordering
...
≺b on Bn is inherited from the immediate precedence

relation ≺b:

bi′ ≺b bi ⇔ bi′ = bi \ c
〈mi,j〉
i,j \ c〈mi,k〉

i,k

⋃
(ci,j ∪ ci,k)〈|bi|−1〉,

j 6= k, j, k ∈ {1, 2, . . . , |bi|} .

In words, bi′ ≺b bi, read as bi′ immediately precedes bi, means that bi′ can be
obtained from bi by coalescing any distinct pair of lineages in bi and updating the co-
alesced lineage’s vintage tag to that of the new epoch label. Let b := (bn, bn−1, . . . , b1)
be a sequence of states in Bn that consecutively satisfy the immediate precedence
relation ≺b and the set of such b-sequences be Bn, i.e.,

b := (bn, bn−1, . . . , b1)

∈ Bn := {b : bi ∈ Bin, bi−1 ≺b bi,∀i ∈ {n, n− 1, . . . , 3, 2}} .

The initial state and the final absorbing state of {B↑(k)}k∈[n]− , the jump chain on
Bn, are bn = {{1}〈n〉, {2}〈n〉, . . . , {n}〈n〉} and b1 = {{1, 2, . . . , n}〈1〉}, respectively. The
three b-sequences when n = 3 are given in Table 3. Next we give the transition
probabilities of {B↑(k)}k∈[n]− on Bn.

Proposition 3.1 (Backward transition probabilities of a b-sequence). The transition
probabilities of the jump Markov chain {B↑(k)}k, with discrete time k = n, n −
1, . . . , 2, 1 and finite state space Bn are:

P (bi−1|bi) =

{ (
i
2

)−1
if bi−1 ≺b bi, bi ∈ Bin

0 otherwise
(10)

Proof. When there are i vintaged lineages in the i-th coalescent epoch, a coalescence
event can reduce the number of lineages to i − 1 by coalescing one of

(
i
2

)
many

pairs of vintaged lineages uniformly at random. Hence, the inverse
(
i
2

)−1
appears
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in the transition probabilities. The conditions that bi−1 ≺b bi and bi ∈ Bin for each
i ∈ {n, n−1, . . . , 3, 2} ensure that our b-sequence b = (bn, . . . , b1) remains in Bn as we
go backwards in time from the i-th coalescent epoch with i samples to the (i− 1)-th
coalescent epoch.

Proposition 3.2 (Probabilities of a b-sequence). The probability of a b-sequence
b := (bn, bn−1, . . . , b1) ∈ Bn is:

P (b) = P (bn−1|bn)P (bn−2|bn−1) · · ·P (b1|b2) =
2n−1

n! (n− 1)!
. (11)

Proof. The first equality in (11) is a consequence of Markov property and the second
equality results from a telescoping cancellation when applying (10) to the product
components of the second term in (11).

Therefore the probability of a b-sequence in (11) is constant for all b-sequences,
i.e. it is uniformly distributed over Bn with

P (b) =
1

|Bn|
=⇒ |Bn| =

n! (n− 1)!

2n−1
. (12)

Proposition 3.3 (Bijection between ranked, labeled trees and b-sequences). There
is a bijection between the set of ranked, labeled trees on n leaves and Bn, the set of
b-sequences.

Proof. It is easy to see that each ranked, labeled tree induces a distinct b-sequence
and any two distinct b-sequences induce two distinct ranked, labeled trees.

The next proposition gives the probability of visiting a particular state bi with i
blocks.

Proposition 3.4 (Probability of bi ∈ Bin). Without loss of generality, let us chrono-

logically list bi = {c〈mi,1〉
i,1 , c

〈mi,2〉
i,2 , . . . , c

〈mi,i〉
i,i }, such that mi,1 ≤ mi,2 ≤ · · · ≤ mi,i. Let

ci,1:j := ci,1∪ci,2∪· · ·∪ci,j, where ci,j‘s are the unvintaged blocks in the chronologically
listed bi. Then,

P (bi) =
i!(i− 1)!

n!(n− 1)!

(∏i′

j=1 |ci,j|!(|ci,j| − 1)(|ci,1:j| − j − 1−mi,j + i)!∏i′−1
j=1 (|ci,1:j| − j −mi,j+1 + i)!

)
, (13)
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Proof. For a b-sequence b ∈ Bn define bn:i := (bn, bn−1, . . . , bi+1, bi). Then by (11) and
(10),

P (bn:i) := P ((bn, . . . , bi)) = P (bn−1|bn) . . . P (bi|bi+1) =
2n−ii!(i− 1)!

n!(n− 1)!
.

In particular, each sequence bn:i is equally likely. Let Ni be the number of bn:i-

sequences which lead to bi = {c〈mi,1〉
i,1 , c

〈mi,2〉
i,2 , . . . , c

〈mi,i〉
i,i }. Determining Ni establishes

the probability for bi, since each bn:i-sequence is equally likely, i.e.

P (bi) = P (bn:i)Ni. (14)

Without loss of generality, we can assume for a given bi, we have mi,1 ≤ mi,2 ≤ · · · ≤
mi,i. Thus, we assume that each bi is chronologically listed. Let i′ = max{j : mi,j <
n}. Further define ci,1 ∪ ci,2 ∪ · · · ∪ ci,j−1 =: ci,1:j−1.

For a vintaged lineage bi,j = c
〈mi,j〉
i,j in epoch i, the number of possible b-sequences

in B|ci,j | using (12) is:

|B|ci,j || =
|ci,j|!(|ci,j| − 1)!

2|ci,j |−1
. (15)

In order to calculate Ni, we need to define Ni,j. Let Ni,j be the number of b-
sequences on the label set ci,1:j stopped when all but j lineages coalesced, respecting
(1) a fixed b-sequence on the label set ci,1:j−1 stopped when all but j − 1 lineages
coalesced, and respecting (ii) a fixed b-sequence on the label set ci,j, j ≤ i′ stopped
when all lineages coalesced. We have

Ni = |B|ci,1|| × |B|ci,2|| ×Ni,2 × |B|ci,3|| ×Ni,3 × · · · × |B|ci,i′ || ×Ni,i′ . (16)

We will now determine Ni,j. Note that there are |ci,1:j−1| − (j − 1) coalescent events
on ci,1:j−1 up to epoch i. There are |ci,j| − 1 coalescent events on ci,j. The coalescent
events in epoch i, i+1, . . . ,mi,j−1 happen on ci,1:j−1, coalescent eventmi,j happens on
ci,j. The remaining elements are shuffled together arbitrarily, the number of possible
shuffles equals Ni,j, which is,

Ni,j =

(
|ci,1:j−1| − (j − 1)− (mi,j − i) + |ci,j| − 2

|ci,j| − 2

)
. (17)
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So overall, using Equations (14 – 17), we obtain,

P (bi) = P (bn:i)Ni

= 2n−i i!(i− 1)!

n!(n− 1)!

i′Y
j=1

|ci,j |!(|ci,j | − 1)!

2|ci,j |−1

i′Y
j=2

“|ci,1:j−1| − (j − 1)− (mi,j − i) + |ci,j | − 2

|ci,j | − 2

”

=
i!(i− 1)!

n!(n− 1)!

0@ i′Y
j=1

|ci,j |!

1A (|ci,1| − 1)!

0@ i′Y
j=2

(|ci,j | − 1)(|ci,1:j | − j − 1− (mi,j − i))!
(|ci,1:j−1| − j + 1− (mi,j − i))!

1A
=

i!(i− 1)!

n!(n− 1)!

0@ i′Y
j=1

|ci,j |!

1A (|ci,1| − 1)!

0@ i′Y
j=2

(|ci,j | − 1)

1A0@Qi′

j=2(|ci,1:j | − j − 1− (mi,j − i))!Qi′−1
j=1 (|ci,1:j | − j − (mi,j+1 − i))!

1A
=

i!(i− 1)!

n!(n− 1)!

0@ i′Y
j=1

|ci,j |!(|ci,j | − 1)

1A0@Qi′

j=1(|ci,1:j | − j − 1−mi,j + i)!Qi′−1
j=1 (|ci,1:j | − j −mi,j+1 + i)!

1A
=

i!(i− 1)!

n!(n− 1)!

0@Qi′

j=1 |ci,j |!(|ci,j | − 1)(|ci,1:j | − j − 1−mi,j + i)!Qi′−1
j=1 (|ci,1:j | − j −mi,j+1 + i)!

1A

which completes the proof.

Next we study the jump Markov chain on Bn forward in time. This chain is
denoted by {B↓(k)}k∈[n]+

over the ordered time index set [n]+ := {1, 2, . . . , n} that
denotes the epochs.

Proposition 3.5 (Forward transition probabilities of a b-sequence). The transition
probability from state bi−1 to state bi, such that bi−1 ≺b bi ∈ Bin, in the forward jump
chain {B↓(k)}k∈[n]+

, denoted by P (bi|bi−1) is, by Bayes law,

P (bi|bi−1) =
P (bi−1|bi)P (bi)

P (bi−1)
=

P (bi)(
i
2

)
P (bi−1)

using the P (bi) from Equation 13.

Let {NB↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of n
vintaged sample lineages labeled by L = {1, 2, . . . , n} and taken at random from the
present generation of a Wright-Fisher population of constant size N over the state
space Bn. We derive an approximation of this chain in rescaled time next.
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Proposition 3.6 (Vintaged and labeled n-coalescent). The bNtc-step transition
probabilities, NPbi,bi′ (bNtc), of the chain {NB↑(k)}k∈Z−, converge to the transition
probabilities of the continuous-time Markov chain {B↑(t)}t∈R+ with rate matrix Q,
i.e.

NPbi,bi′ (bNtc)
N→∞−→ Pbi,bi′ (t) = exp (Qt),

where the entries of Q, q(bi′ |bi), bi′ , bi ∈ Bn, specifying the transition rate from bi to
bi′, are:

q(bi′ |bi) =


−
(
i
2

)
if bi′ = bi, bi ∈ Bin

P (bi′ |bi)
(
i
2

)
=
(
i
2

)−1(i
2

)
= 1 if bi′ ≺b bi

0 otherwise

. (18)

We call this continuous-time Markov chain as the vintaged and labeled n-coalescent.
The initial state is bn = {{1}〈n〉, {2}〈n〉, . . . , {n}〈n〉} and the final absorbing state is
b1 = {{1, 2, . . . , n}〈1〉}.

Proof. The proof is merely a consequence of substituting the backward transi-
tion probabilities at (10) in the general n-coalescent approximation of (9) since
{NH↑(k)}k∈Z− is a lumped Markov chain of {NB↑(k)}k∈Z− .

We call this vintaged and labeled n-coalescent as the Kingman-Tajima n-
coalescent. We will see that Kingman’s n-coalescent of § 3.2 as well Tajima’s n-
coalescent of § 3.4 are lumped Markov processes of the Kingman-Tajima n-coalescent.

3.2 Unvintaged and labeled n-coalescent

We will obtain {C↑(t)}t∈R+ , the Markov chain called the unvintaged and labeled n-
coalescent over Cn, by a Markov lumping of {B↑(t)}t∈R+ , the vintaged and labeled
n-coalescent over Bn, that omits the epoch vintages from the states in Bn. Each se-
quence of distinct states visited by the jump chain {C↑(k)}k∈[n]− that is embedded
in {C↑(t)}t∈R+ once again induces a ranked, labeled tree, i.e. there is a bijection
between the set of sequential realizations of the jump chain of the unvintaged and
labeled n-coalescent and the set of ranked, labeled trees. Note that we already estab-
lished a bijection between the set of sequential realizations of the jump chain of the
vintaged and labeled n-coalescent and the set of ranked, labeled trees. However, the
state space of the unvintaged and labeled n-coalescent is significantly smaller than
that of the vintaged and labeled n-coalescent. In our nomenclature, the unvintaged
and labeled n-coalescent is Kingman’s n-coalescent [15, 14]. The number of elements
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in Cn is the number of set partitions of a set of size n which is Bell(n), the n-th Bell
number

|Cn| = Bell(n) :=
n∑
j=0

S(j)
n , (19)

where S
(j)
n is the Stirling number of the second kind.

Consider the jump Markov chain {C↑(k)}k∈[n]−
on Cn with initial state cn =

{{1}, {2}, . . . , {n}} and final absorbing state c1 = {{1, 2, . . . , n}}, with the following
transition probabilities [14, (2.2)]:

P (ci′ |ci) =

{(
i
2

)−1
: if ci′ ≺c ci, ci ∈ Cin

0 : otherwise
. (20)

Now, let c := (cn, cn−1, . . . , c1) be a c-sequence or coalescent sequence obtained from
the sequence of states visited by a sequential realization of {C↑(k)}k∈[n]−

, and denote
the set of such c-sequences by

Cn := { c := (cn, cn−1, . . . , c1) : ci ∈ Cin, ci−1 ≺c ci, i ∈ {n, n− 1, . . . , 2}}

The probability that ci ∈ Cin is visited by the chain [14, (2.3)] is:

P (ci) =
(n− i)! i! (i− 1)!

n! (n− 1)!

i∏
j=1

|ci,j|!, (21)

and the probability of a c-sequence is uniformly distributed over Cn with

P (c) =
2∏
i=n

P (ci−1|ci) =
2n−1

n! (n− 1)!
=

1

|Cn|
. (22)

Let {NC↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of n
samples labeled by L = {1, 2, . . . , n} and taken at random from the present genera-
tion of a Wright-Fisher population of constant size N over the state space Cn. We
derive a continuous-time Markov chain that approximates {NC↑(k)}k∈Z− next.

Proposition 3.7 (Unvintaged and labeled n-coalescent [15, (2.10)]). The bNtc-step
transition probabilities, NPci,ci′ (bNtc), of the chain {NC↑(k)}k∈Z−, converge to the
transition probabilities of the continuous-time Markov chain {C↑(t)}t∈R+ with rate
matrix Q, i.e.

NPci,ci′ (bNtc)
N→∞−→ Pci,ci′ (t) = exp (Qt),
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where the entries of Q, q(ci′|ci), ci′ , ci ∈ Cn, specifying the transition rate from ci to
ci′, are:

q(ci′ |ci) =


−
(
i
2

)
if ci′ = ci, ci ∈ Cin

P (ci′|ci)
(
i
2

)
=
(
i
2

)−1(i
2

)
= 1 if ci′ ≺c ci

0 otherwise

. (23)

We call this continuous-time Markov chain as the unvintaged and labeled n-
coalescent. The initial state is cn = {{1}, {2}, . . . , {n}} and the final absorbing state
is c1 = {{1, 2, . . . , n}}.

Proof. The proof is merely a consequence of substituting the backward transi-
tion probabilities at (20) in the general n-coalescent approximation of (9) since
{NH↑(k)}k∈Z− is a lumped Markov chain of {NC↑(k)}k∈Z− .

The unvintaged and labeled n-coalescent is Kingman’s n-coalescent [15, 14] specif-
ically constructed in [14, (Sections 1, 2)]. We retain our nomenclature to emphasize
the particularities of the sample genealogical resolution of Kingman’s n-coalescent.
Figure 2 depicts the coalescent tree space C3T3 = C3 × [0,∞)2 for the label set
L = {1, 2, 3} with sample size n = 3. Thus, elements of C3T3 are the sequence of states
and their waiting-times visited by the continuous time Markov chain {C↑(t)}t∈R+ on
Cn.

Remark 3.8. We can show that P (ci) can also be obtained from P (bi) in (13). Since
we are not interested in the coalescent vintage of any of our lineages, Equation (17)
becomes (

|ci,1:j−1| − (j − 1) + |ci,j| − 1

|ci,j| − 1

)
as we allow any shuffle of the |ci,1:j−1| − (j − 1) coalescent events with the |ci,j| − 1
coalescent events. Let i′ = max{j : mi,j < n}. We have,

P (ci) = 2n−i i!(i− 1)!

n!(n− 1)!

i′Y
j=1

|ci,j |!(|ci,j | − 1)!

2|ci,j |−1

i′Y
j=2

“|ci,1:j−1| − (j − 1) + |ci,j | − 1

|ci,j | − 1

”

=
i!(i− 1)!

n!(n− 1)!

0@ i′Y
j=1

|ci,j |!

1A (|ci,1| − 1)!

0@ i′Y
j=2

(|ci,1:j | − j)!
(|ci,1:j−1| − (j − 1))!

1A
=

i!(i− 1)!

n!(n− 1)!

0@ i′Y
j=1

|ci,j |!

1A0@Qi′

j=1(|ci,1:j | − j)!Qi′−1
j=1 (|ci,1:j | − j)!

1A
=

i!(i− 1)!

n!(n− 1)!

0@ i′Y
j=1

|ci,j |!

1A (n− i)!
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since (|ci,1:i′ |− i′)! = (n− (i− i′)− i′)!. Therefore, P (ci) can be obtained from P (bi),
the probability that a vintaged and labeled n-coalescent visits a particular vintaged
partition bi in Bin.

Proposition 3.9 (Bijection between ranked, labeled trees and c-sequences). There
is a bijection between ranked, labeled trees on n leaves and Cn, the set of c-sequences.

Proof. It is easy to see that each ranked, labeled tree induces a different c-sequence.
Vice versa, any two different c-sequences induce two different ranked, labeled trees.

Proposition 3.10 (Forward transition probabilities of a c-sequence). The transition
probability of the forward jump chain {C↓(k)}k∈[n]+

from ci−1 ∈ Ci−1
n to ci ∈ Cin,

where ci−1 ≺c ci, and j, j′, j′′ are indices such that ci,j ∪ ci,j′ = ci−1,j′′, is

P (ci|ci−1) =
2

(n− i+ 1)
(|ci,j |+|ci,j′ |

|ci,j |

) . (24)

Proof. For the forward jump chain {C↓(k)}k∈[n]+
, first consider the case when ci−1 ≺c

ci with ci ∈ Cin and j, j′, j′′ such that ci,j ∪ ci,j′ = ci−1,j′′ ∈ ci−1. Then with Bayes’
rule,

P (ci|ci−1) =
P (ci−1|ci)P (ci)

P (ci−1)

=
(n− i)! i! (i− 1)!

∏i
j=1 |ci,j|!n! (n− 1)!(

i
2

)
n! (n− 1)!(n− i+ 1)! (i− 1)! (i− 2)!

∏i−1
j=1 |ci−1,j|!

=
2
∏i

j=1 |ci,j|!
(n− i+ 1)

∏i−1
j=1 |ci−1,j|!

=
2 |ci,j|! |ci,j′ |!

(n− i+ 1)|ci−1,j′′|!

=
2 |ci,j|! |ci,j′ |!

(n− i+ 1)(|ci,j|+ |ci,j′ |)!
=

2

(n− i+ 1)
(|ci,j |+|ci,j′ |

|ci,j |

) .
If we do not have ci−1 ≺c ci, then P (ci|ci−1) = 0.

Note that we can also obtain the relationship in (22) from the forward transition
probabilities in (24):

P (c) =
n−1∏
i=1

P (ci+1|ci) =
2n−1

(n− 1)!

1

(|c2,j|+ |c2,j′ |)!
=

2n−1

(n− 1)! n!
. (25)
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Remark 3.11. Our forward-time Markov chain {C↓(k)}k∈[n]+
on Cn is different from

Aldous’ beta-splitting model [2]. The beta-splitting model also produces bipartitions
of a label set forward in time as a Markov branching model. The distinguishing feature
of the beta-splitting model is its recursive repetition of the same bipartitioning or
splitting process anew on elements of a partition of the label set. Therefore the beta-
splitting model only induces labeled trees, but no ranking. When the parameter β =
0, the beta-splitting model induces the same distribution on labeled trees (without
ranking) as the vintaged/unvintaged and labeled n-coalescent. In § 4.3 we revisit
Aldous’ shape statistics that originated under the beta-splitting model from the
lumped Markov chains of § 3.5; {F ↑(k)}k∈[n]+

and {F ↓(k)}k∈[n]+
on Fn.

Proposition 3.12 (Markov lumping from Bn to Cn via C ). Let the vintage-dropping
map C (bj) = cj : Bn → Cn be the following:

C (bj) := C ({bj,1, . . . , bj,j}) := C ({c〈mj,1〉
j,1 , . . . , c

〈mj,j〉
j,j }) = {cj,1, . . . , cj,j} .

The lumped chain, {B↑C (i)}i∈[n]−, of {B↑(i)}i∈[n]−, the jump Markov chain of the
vintaged and labeled n-coalescent on Bn, is Markov and equivalent to {C↑(i)}i∈[n]−,
the jump Markov chain of the unvintaged and labeled n-coalescent on Cn.

Proof. Let ci, cj be any two states in Cn and C −1(ci),C −1(cj) be their respective
inverse images in Bn. Then, the probability of moving from a state bk ∈ C −1(ci) to
the set C −1(cj):

P (C −1(cj)|bk) =
∑

bj′∈C−1(cj)

P (bj′|bk) =

{(
i
2

)−1
if bj′ ≺b bk, bk ∈ Bin

0 otherwise

only depends on bk through C −1(ci) and more specifically through i = |ci|. The
Proposition 3.12 follows from Proposition 2.2.

3.3 Vintaged and sized n-coalescent

Under {D↑(t)}t∈R+ , the vintaged and sized n-coalescent, in each state di ∈ Dn, we
keep track of the number of descendants of each lineage along with its vintage. Each
sequence of visited states or sequential realization of the jump chain, {D↑(k)}k∈[n]− ,
embedded within {D↑(t)}t∈R+ , induces a ranked tree shape. We will see that there is
a bijection between the set of sequential realizations of {D↑(k)}k∈[n]− and the set of
ranked tree shapes. Next, we develop the n-coalescent approximation of the sample
genealogy at the resolution of ranked tree shapes.
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Consider the coalescent epoch i during which there are i lineages. Let di,j denote
the number of leaves subtended by a lineage during the i-th epoch with coalescent
vintage j = 1, 2, . . . , n − 1. Let di,n represent the number of leaf lineages (i.e. the
number of lineages with coalescent vintage n) during the i-th epoch:

di,n = n−
n−1∑
j=1

di,j .

Let the number of leaves subtended by the non-leaf lineages during the i-th epoch be
vintage-specifically represented by di := (di,1, di,2, . . . , di,n−1). The state space of such
vintaged and sized ancestral sample lineages during the i-th epoch can be defined by
the set,

Din :=

di ∈ Zn−1
+ :


∑i−1

j=1 di,j = 0,∑n−1
j=1 1N(di,j) +

(
n−

∑n−1
j=1 di,j

)
= i,

di,1 6= 1, di,2 6= 1, . . . , di,n−1 6= 1

 ,

with Dn := ∪ni=1Din.
Let ei be the i-th unit vector of length n. The partial ordering

...
≺d of interest on

Dn is based on the immediate precedence relation ≺d. We say di′ ≺d di ∈ Din if and
only if:

di′ =


di + (di,j + di,k)ei−1

−di,jej − di,kek if i ≤ j < k < n, di,j 6= 0, di,k 6= 0

di + (di,j + 1)ei−1 − di,jej if i ≤ j < n, di,j 6= 0, di,n ≥ 1

di + 2ei−1 if di,n ≥ 2

.

A d-sequence d := (dn, dn−1, . . . , d1) is an n× (n− 1) matrix:

d :=


d1

d2
...

dn−1

dn

 :=


d1,1 d1,2 · · · d1,n−1

d2,1 d2,2 · · · d2,n−1
...

...
. . .

...
dn−1,1 dn−1,2 · · · dn−1,n−1

dn,1 dn,2 · · · dn,n−1

 ,

that is obtained from a sequence of immediately preceding states in Dn. Let Dn be
the set of such d-sequences,

d ∈ Dn := {d := (dn, dn−1, . . . , d1) : di ∈ Din, di−1 ≺d di, i ∈ {2, 3, . . . , n}}.
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The initial state and the final states of the jump chain {D↑(k)}k∈[n]− are

dn = (dn,1, dn,2, . . . , dn,n−1) = (0, 0, . . . , 0) ∈ Dnn and

d1 = (d1,1, d1,2, . . . , d1,n−1) = (n, 0, 0, . . . , 0) ∈ D1
n ,

respectively, and Dn is the set of d-sequences or sequential realizations of this chain
on Dn.

Proposition 3.13 (Backward transition probabilities of a d-sequence). The transi-
tion probabilities of the jump Markov chain {D↑(k)}k∈[n]− on Dn is:

P (di′|di) =

{(
di,n

di,n−di′,n

)(
i
2

)−1
if di′ ≺d di ∈ Din

0 otherwise
. (26)

Proof. The number of leaf lineages that coalesced at the end of epoch i is di,n −
di′,n, where Di−1

n 3 di′ ≺d di ∈ Din. Note that (di,n − di′,n) ∈ {0, 1, 2}, for any
i ∈ {2, 3, . . . , n}. Therefore, three type of coalescent events need to be discriminated
among the

(
i
2

)
many pairs from i distinct lineages during epoch i. First, when (di,n−

di′,n) = 0 we have a coalescent event between two specific non-leaf lineages, each with
coalescent vintage smaller than n. Thus, there is exactly

(
di,n

0

)
= 1 such event among(

i
2

)
possibilities. Second, when (di,n − di′,n) = 1 we have a coalescent event between

one specific non-leaf lineage and any one of di,n many leaf lineages. Thus, there are
exactly

(
di,n

1

)
= di,n many events among

(
i
2

)
possibilities of the second type. Third,

when (di,n − di′,n) = 2 we have a coalescent event between any two of di,n many leaf
lineages. Thus, there are exactly

(
di,n

2

)
many events among

(
i
2

)
possibilities of the

third type. All three types of events are accounted for in (26).

Proposition 3.14 (Probability of a d-sequence). The probability of a d-sequence can
be obtained as follows:

P (d) =
2n−ג(d)−1

(n− 1)!
, (27)

where (g)ג is the number of cherries in d, i.e. the number of times that we have
di,n − di−1,n = 2 as i varies from n to 2. More formally,

(d)ג :=
n∑
i=2

1{2}(di,n − di−1,n) .

Note that P (d) has been established in [28, Eqn. 1].
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Proof.

P (d) =
2∏
i=n

P (di−1|di) =
2∏
i=n

(
di,n

di,n − di−1,n

)(
i

2

)−1

=
2∏
i=n

di,n!

di−1,n!(di,n − di−1,n)!

(
i

2

)−1

= dn,n!
2∏
i=n

1

(di,n − di−1,n)!

(
i

2

)−1

= n!

(
2∏
i=n

((di,n − di−1,n)!)−1

)(
2∏
i=n

(
i

2

)−1
)

= n!

( ∏
j=0,1,2

(j!)−
Pn

i=2 1{j}(di,n−di−1,n)

)
2∏
i=n

(
i

2

)−1

= n!
(

1× 1× 2−
Pn

i=2 1{2}(di,n−di−1,n)
) 2∏
i=n

(
i

2

)−1

=
n!

(d)ג2

n∏
i=2

(
i

2

)−1

=
2n−ג(d)−1

(n− 1)!
.

Proposition 3.15 (Bijection between ranked tree shapes and d-sequences). There
is a bijection between ranked tree shapes on n leaves and Dn, the set of d-sequences.

Proof. It is easy to see that each ranked tree shape induces a different d-sequence.
Vice versa, any two different d-sequences induce two different ranked tree shapes.

Let {ND↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of n
vintaged and unlabeled samples taken at random from the present generation of a
Wright-Fisher population of constant size N over the state space Dn. We derive a
continuous-time Markov chain that approximates {ND↑(k)}k∈Z− on Dn next.

Proposition 3.16 (Vintaged and sized n-coalescent). The bNtc-step transition prob-
abilities, NPdi,di′

(bNtc), of the chain {ND↑(k)}k∈Z−, converge to the transition prob-
abilities of the continuous-time Markov chain {D↑(t)}t∈R+ with rate matrix Q, i.e.

NPdi,di′
(bNtc) N→∞−→ Pdi,di′

(t) = exp (Qt),
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where the entries of Q, q(di′|di), di′ , di ∈ Dn, specifying the transition rate from di to
di′, are:

q(di′ |di) =


−
(
i
2

)
if di′ = di ∈ Din(

di,n

di,n−di′,n

)
if di′ ≺g di ∈ Din

0 otherwise

(28)

The initial state of the chain is dn = (0, 0, . . . , 0) ∈ Dnn and the final absorbing state
is d1 = (1, 0, 0, . . . , 0) ∈ D1

n. This continuous time Markov chain {D↑(t)}t∈R+ on Dn
is called the vintaged and sized n-coalescent.

Proof. The proof is merely a consequence of substituting the backward transi-
tion probabilities at (26) in the general n-coalescent approximation of (9) since
{NH↑(k)}k∈Z− is a lumped Markov chain of {ND↑(k)}k∈Z− .

The vintaged and sized n-coalescent gives a novel n-coalescent resolution. Our
nomenclature emphasizes the particularities of the sample genealogical resolution of
this n-coalescent. In subsequent sections we will see that the vintaged and sized n-
coalescent can be lumped into the vintaged and shaped n-coalescent of Tajima as
well as to the unvintaged and sized n-coalescent of Kingman. Next we show that the
lumping D from Bn to Dn is Markov.

Proposition 3.17 (Markov lumping from Bn to Dn via D). We define the lumping
map D(bk) = di : Bn → Dn by

D(bk) := D
({
c
〈mk,1〉
k,1 , . . . , c

〈mk,k〉
k,k

})
=

(
k∑
j=1

|ck,j|1{1}(mk,j), . . . ,
k∑
j=1

|ck,j|1{n−1}(mk,j)

)
.

The lumped chain, {B↑D(i)}i∈[n]−, of {B↑(i)}i∈[n]−, the jump Markov chain embed-
ded in {B↑(t)}t∈R+, the n-coalescent on Bn, is Markov and equivalent to {D↑(i)}i∈[n]−,
the jump Markov chain embedded in {D↑(t)}t∈R+, the vintaged and sized n-coalescent
on Dn.

Proof. Let di, dj be any two states in Dn and D−1(di),D−1(dj) be their respective
inverse images in Bn. Then, the probability of moving from a state bi′ ∈ D−1(di) to
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the set D−1(dj):

P (D−1(dj)|bi′) =
∑

bj′∈D−1(dj)

P (bj′|bi′)

=

{(
di,n

di,n−dj,n

)(
i
2

)−1
if dj ≺d di ∈ Din

0 otherwise

only depends on bi′ through D−1(di) and specifically through di,n. Proposition 2.2
completes the proof.

Proposition 3.18 (Probability of di ∈ Din). The probability that the Markov chain
{D↑(k)}k∈[n]− visits a state di ∈ Din is

P (di) =
i!(i− 1)!

(n− 1)!

(∏n−1
j=1,di,j>0(di,j − 1)(di,1:j − ki,j − j − 1 + i)!∏n−1

j=1,di,j>0(di,1:j − ki,j −m′i,j + i)!

)
, (29)

where di,1:j :=
∑j

k=1 di,k and m′i,j := min{k > j : di,k > 0} and ki,j := |{m ≤ j :
di,m > 0}|.

Proof. We exploit the Markov lumping from Bn to Dn (Proposition 3.17) and derive
P (di) from P (bi) (Proposition 13), where di ∈ Din and bi ∈ Bin such that dropping
the labels in each subset of bi (but retaining the size and vintage) yields di = D(bi).
We count the number of possible labelings of an element di. This is n!Qn−1

j=1 di,j !
. We

have, with Proposition 13 by multiplying over all epochs (j = 1 . . . n− 1),

P (di) = P (bi)
n!Qn−1

j=1,di,j>0 di,j !

=
i!(i− 1)!

n!(n− 1)!

0@Qn−1
j=1,di,j>0 di,j !(di,j − 1)(di,1:j − ki,j − 1− j + i)!Qn−1

j=1,di,j>0(di,1:j − ki,j −m′i,j + i)!

1A n!Qi
j=1,di,j>0 di,j !

=
i!(i− 1)!

(n− 1)!

0@Qn−1
j=1,di,j>0(di,j − 1)(di,1:j − ki,j − j − 1 + i)!Qn−1

j=1,di,j>0(di,1:j − ki,j −m′i,j + i)!

1A .

Proposition 3.19 (Forward transition probabilities of a d-sequence). The transition
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probability of the forward jump chain {D↓(k)}k∈[n]+
from di−1 to di is:

P (di|di−1)

=


2( di,n

di,n−di−1,n
)

0@Qn−1
j=1,di,j>0

(di,j−1)(di,1:j−ki,j−j−1+i)!Qn−1
j=1,di,j>0

(di,1:j−ki,j−m′
i,j

+i)!

1A
0@Qn−1

j=1,di−1,j>0
(di−1,j−1)(di−1,1:j−ki−1,j−j−2+i)!Qn−1

j=1,di−1,j>0
(di−1,1:j−ki−1,j−m′

i−1,j
+i−1)!

1A if di−1 ≺d di ∈ Din

0 otherwise

(30)

where di,1:j :=
∑j

k=1 di,k and m′i,j = min{k > j : di,k > 0}.

Proof. P (di|di−i), the probability of transition from di−1 ∈ Di−1
n to di ∈ Din, where

di−1 ≺d di, is obtained as follows from (26) and (29) using Bayes’ rule,

P (di|di−1) = P (di−1|di)
P (di)

P (di−1)

=

` di,n
di,n−di−1,n

´`i
2

´−1 i!(i−1)!
(n−1)!

 Qn−1
j=1,di,j>0(di,j−1)(di,1:j−ki,j−j−1+i)!Qn−1

j=1,di,j>0(di,1:j−ki,j−m′i,j+i)!

!
(i−1)!(i−2)!

(n−1)!

 Qn−1
j=1,di−1,j>0(di−1,j−1)(di−1,1:j−ki−1,j−j−2+i)!Qn−1

j=1,di−1,j>0(di−1,1:j−ki−1,j−m′i−1,j+i−1)!

!

=

2
` di,n
di,n−di−1,n

´ Qn−1
j=1,di,j>0(di,j−1)(di,1:j−ki,j−j−1+i)!Qn−1

j=1,di,j>0(di,1:j−ki,j−m′i,j+i)!

!
 Qn−1

j=1,di−1,j>0(di−1,j−1)(di−1,1:j−ki−1,j−j−2+i)!Qn−1
j=1,di−1,j>0(di−1,1:j−ki−1,j−m′i−1,j+i−1)!

! .

And if di−1 ⊀d di then P (di|di−i) = 0.

3.4 Vintaged and shaped n-coalescent

We have seen that there is a bijection between the set of c-sequences and the set
of ranked, labeled trees. Another set of interest is that of the evolutionary relation-
ships of Tajima [28, Figures 1-3], which are ranked tree shapes in our terms. In this
section, we develop {G↑(t)}t∈R+ , the vintaged and shaped n-coalescent of Tajima
via {G↑(k)}k∈[n]− , its embedded jump chain. We will see that there is a bijection
between Gn, the set of sequential realizations of {G↑(k)}k∈[n]− , and the set of ranked
tree shapes or Tajima’s evolutionary relationships. Note that we already established
a bijection from the set of sequential realizations of {D↑(k)}k∈[n]− , the jump chain of
the vintaged and sized n-coalescent, to the set of ranked tree shapes. However, Gn,
the state space of {G↑(k)}k∈[n]− , is significantly smaller than Dn, the state space of
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{D↑(k)}k∈[n]− . Therefore, it is preferable to use the vintaged and shaped n-coalescent
for inference if it adequately describes the hidden genealogical space up to equivalence
classes of ranked tree shapes.

Consider the coalescent epoch i during which there are i lineages. Let gi,j denote
the presence (gi,j = 1) or absence (gi,j = 0) of a lineage during the i-th epoch with
coalescent vintage j = 1, 2, . . . , n − 1. Define the set of such vintaged and shaped
ancestral lineages of our unlabeled sample of size n, during the i-th coalescent epoch
by,

Gi
n :=

{
gi ∈ {0, 1}n−1 : gi,i = 1,

i−1∑
j=1

gi,j = 0,
n−1∑
j=1

gi,j ≤ i

}
,

with Gn := ∪ni=1Gi
n. We interpret the vector gi ∈ Gi

n in the i-th epoch as follows.
The component gi,i = 1 represents the lineage that just arose at the beginning of the
i-th epoch. The component with gi,j = 1, for i < j < n, represents the presence of
the lineage with coalescent vintage j. The vertices of the unit (n − 1)-dimensional
hypercube contain Gn. We count the elements in Gi

n and Gn next.

Proposition 3.20. The number of elements in Gi
n is, for i < n,

|Gi
n| =

i−1∑
k=0

(
n− i− 1

k

)
. (31)

For i = n, we have |Gn
n| = 1.

Proof. For i = n, we only have one element, a sequence of only 0s, i.e. |Gn
n| = 1.

Now let i < n. Let gi ∈ Gi
n. Since we have i lineages in epoch i, we have at the

most i non-zero entries in gi. In gi, we have gi,j = 0 for j = 1, . . . , i − 1. Further,
gi,i = 1. The remaining n − 1 − i elements are 0 or 1. For k non-zero entries in the
remaining elements, we have

(
n−1−i
k

)
possibilities to assign the 0s and 1s. Summing

over all possible k-values yields (31).

Proposition 3.21. The number of elements in Gn is

|Gn| = Fibo(n+ 1) , (32)

where Fibo(n) is the n-th Fibonacci number.

Proof. From Proposition 3.20 we have, by summing over all i,

|Gn| =
n∑
i=1

|Gi
n| =

n−1∑
i=1

i−1∑
k=0

(
n− i− 1

k

)
+ 1.
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By basic properties of the binomial coefficient, we get,

n−1∑
i=1

i−1∑
k=0

(
n− i− 1

k

)
=

n−2∑
k=0

n−2−k∑
j=k

(
j

k

)
=

n−2∑
k=0

(
n− k − 1

k + 1

)

=
n−1∑
k=1

(
n− k
k

)
= Fibo(n+ 1)− 1 (33)

which proves the proposition.

Lemma 3.22. Let the jump Markov chain {G↑(k)}k∈[n]− be at state gi. Then the
number of leaves not having coalesced by epoch i is

gi,n = i−
n−1∑
j=1

gi,j . (34)

Proof. The proof is by induction on i. In epoch i = n− 1, two leaves are coalescing,
i.e. we have n−2 remaining leaves. Due to (34), we get, gn−1,n = n−1−

∑n−1
j=1 gn−1,j =

n− 1− 1 = n− 2.
Now assume that (34) holds for all i > k. Then, for gk,n we have to consider three

cases:
(i) gk is the result of the coalescence of two leaves in gk+1. By the induction

assumption, we have gk+1,n = k+1−
∑n−1

j=1 gk+1,j. Since two leaves are coalescing, we
have gk,n = gk+1,n − 2. Further, gk,k = 1, gk+1,k = 0 and gk,j = gk+1,j for k < j < n.
So,

gk,n = gk+1,n − 2 = k + 1−
n−1∑
j=1

gk+1,j − 2 = k − 1−
n−1∑
j=1

gk,j + 1 = k −
n−1∑
j=1

gk,j.

(ii) gk is the result of the coalescence of one leaf and a non-leaf component in
gk+1. By the induction assumption, we have gk+1,n = k + 1−

∑n−1
j=1 gk+1,j. Since one

leaf is coalescing, we have gk,n = gk+1,n−1. Further, gk,k = 1, gk+1,k = 0. Assume that
component which evolved in epoch j∗ is coalescing with the leaf. Then gk,j = gk+1,j

for k < j < n, j 6= j∗ and gk,j∗ = 0. So,

gk,n = gk+1,n − 2 = k + 1−
n−1∑
j=1

gk+1,j − 1 = k −
n−1∑
j=1

gk,j.

(iii) gk is the result of the coalescence of two non-leaf component in gk+1.
By the induction assumption, we have gk+1,n = k + 1 −

∑n−1
j=1 gk+1,j. Since no
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leaf is coalescing, we have gk,n = gk+1,n. Further, gk,k = 1, gk+1,k = 0. Further,∑n−1
j=k+1 gk+1,j =

∑n−1
j=k+1 gk,j + 1. So,

gk,n = gk+1,n − 2 = k + 1−
n−1∑
j=1

gk+1,j = k −
n−1∑
j=1

gk,j.

Let ei be the i-th unit vector of length n. The partial ordering
...
≺g of interest on

Gn is based on the immediate precedence ≺g. We say gi′ ≺g gi ∈ Gi
n if and only if

gi′ =


gi + ei−1 − ej − ek if i ≤ j < k < n, gi,j = gi,k = 1

gi + ei−1 − ej if i ≤ j < n, gi,j = 1, gi,n ≥ 1

gi + ei−1 if gi,n ≥ 2

A g-sequence g := (gn, gn−1, . . . , g1) is an n× (n− 1) matrix:

g :=


g1

g2
...

gn−1

gn

 :=


g1,1 g1,2 · · · g1,n−1

g2,1 g2,2 · · · g2,n−1
...

...
. . .

...
gn−1,1 gn−1,2 · · · gn−1,n−1

gn,1 gn,2 · · · gn,n−1


that is obtained from a sequence of immediately preceding states in Gn. Examples

of g-sequences when n = 3 and 4 are depicted in Table 2. Let Gn be the set of such
g-sequences:

g ∈ G := {g := (gn, gn−1, . . . , g1) : gi ∈ Gi
n, gi−1 ≺g gi, i ∈ {2, 3, . . . , n}} .

Proposition 3.23 (Backward transition probabilities of a g-sequence). The transi-
tion probability of the jump Markov chain {G↑(k)}k∈[n]− on Gn is

P (gi′ |gi) =

{(
gi,n

gi,n−gi′,n

)(
i
2

)−1
if gi′ ≺g gi ∈ Gi

n

0 otherwise
, (35)

where gi,n is the number of leaves that have not coalesced by epoch i, as derived in
(34) of Lemma 3.22. The initial state of the chain is gn = (0, 0, . . . , 0) ∈ Gn

n and the
final absorbing state is g1 = (1, 0, 0, . . . , 0) ∈ G1

n.



3 SIX COALESCENT RESOLUTIONS 38

Proof. It is identical to that of d-sequence transition probabilities in (26).

Proposition 3.24 (Probability of a g-sequence). The probability of a g-sequence can
be obtained as follows:

P (g) =
2∏
i=n

P (gi−1|gi) =
2∏
i=n

(
gi,n

gi,n − gi−1,n

)(
i

2

)−1

=
n!

(g)ג2

n∏
i=2

(
i

2

)−1

=
2n−ג(g)−1

(n− 1)!
, (36)

where (g)ג is the number of cherries in g, i.e. the number of times that we have
gi,n − gi−1,n = 2 as i varies from n to 2. More formally,

(g)ג :=
n∑
i=2

1{2}(gi,n − gi−1,n) .

Note that P (g) has been established in [28, Eqn. 1].

Proof. The proof is similar to that of Proposition 3.14.

Proposition 3.25 (Bijection between ranked, labeled trees and g-sequences). There
is a bijection between the set of ranked tree shapes on n leaves and Gn, the set of g-
sequences.

Proof. It is easy to see that each ranked tree shape induces a different g-sequence.
Vice versa, any two different g-sequences induce two different ranked tree shapes.

Let {NG↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of n
vintaged and unlabeled samples taken at random from the present generation of a
Wright-Fisher population of constant size N over the state space Gn. We derive a
continuous-time Markov chain that approximates {NG↑(k)}k∈Z− on Gn next.

Proposition 3.26 (Vintaged and shaped n-coalescent). The bNtc-step transition
probabilities, NPgi,gi′

(bNtc), of the chain {NG↑(k)}k∈Z−, converge to the transition
probabilities of the continuous-time Markov chain {G↑(t)}t∈R+ with rate matrix Q,
i.e.

NPgi,gi′
(bNtc) N→∞−→ Pgi,gi′

(t) = exp (Qt),
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where the entries of Q, q(gi′ |gi), gi′ , gi ∈ Gn, specifying the transition rate from gi to
gi′, are:

q(gi′|gi) =


−
(
i
2

)
if gi′ = gi ∈ Gi

n(
gi,n

gi,n−gi′,n

)
if gi′ ≺g gi ∈ Gi

n

0 otherwise

(37)

The initial state of the chain is gn = (0, 0, . . . , 0) ∈ Gn
n and the final absorbing state

is g1 = (1, 0, 0, . . . , 0) ∈ G1
n. This continuous time Markov chain {G↑(t)}t∈R+ on Gn

is called the vintaged and shaped n-coalescent.

Proof. The proof is merely a consequence of substituting the backward transi-
tion probabilities at (35) in the general n-coalescent approximation of (9) since
{NH↑(k)}k∈Z− is a lumped Markov chain of {NG↑(k)}k∈Z− .

The genealogical resolution of the vintaged and shaped n-coalescent is Tajima’s
evolutionary relationships. We sometimes call the vintaged and shaped n-coalescent
as Tajima’s n-coalescent. Next we show that the lumping G from Dn to Gn is Markov.

Proposition 3.27 (Markov lumping from Dn to Gn via G ). Consider the following
size-dropping map G (dk) = gh : Dn → Gn:

G (dk) := G ((dk,1, . . . , dk,n)) = (1N(dk,1), . . . ,1N(dk,n−1)) = (gh,1, . . . , gh,n−1)

The lumped chain, {D↑G (i)}i∈[n]−, of {D↑(i)}i∈[n]−, the jump Markov chain embedded
in {D↑(t)}t∈R+, the vintaged and sized n-coalescent on Dn, is Markov and equivalent
to {G↑(i)}i∈[n]−, the jump Markov chain embedded in {G↑(t)}t∈R+, the vintaged and
shaped n-coalescent on Gn.

Proof. Let gi, gj be any two states in Gn and G −1(gi),G −1(gj) be their respective
inverse images in Dn. Then, the probability of moving from a state di′ ∈ G −1(gi) to
the set G −1(gj):

P (G −1(gj)|di′)

=
∑

dj′∈G−1(gj)

P (dj′|di′) =

{(
gi,n

gi,n−gj,n

)(
i
2

)−1
if gj ≺g gi, gi ∈ Gi

n

0 otherwise

only depends on di′ through gi and specifically through gi,n. Proposition 2.2 completes
the proof.



3 SIX COALESCENT RESOLUTIONS 40

The probability that gi ∈ Gi
n is visited by the chain is obtained by considering

the inverse images, G −1(gi):

P (gi) = P (G −1(gi)) =
∑

dj∈G−1(gi)

P (dj).

with P (dj) from Proposition 29. The probability P (gi) = P (G −1(gi)) can be written
explicitly as follows. Let L = i−gi,n, which is the number of non-leaf lineages in epoch
i. Let f(gi, j1, . . . , jL) = di ∈ Dni where di,j = 0 if and only if gi,j = 0, di,n = gi,n and
di,j = jk if and only if gi,j is the k-th entry which is bigger than zero. The probability
P (gi) is,

P (gi) =

n−gi,n−2(L−1)∑
j1=2

n−gi,n−2(L−2)−j1∑
j2=2

. . .

n−gi,n−2−
PL−2

i=1 ji∑
jL−1=2

P (f(gi, j1, . . . , jL−1, n− gi,n −
L−2∑
i=1

ji)) . (38)

Finally, the transition probabilities of the forward jump chain {G↓(k)}k∈[n]+ can be
obtained from Bayes’ rule as follows:

P (gi|gi−1) =

{
P (gi−1|gi) P (gi)

P (gi−1)
if gi−1 ≺g gi ∈ Gi

n

0 otherwise.
.

3.5 Unvintaged and sized n-coalescent

The unvintaged and sized n-coalescent is mentioned as a lumped Markov chain of the
unvintaged and labeled n-coalescent and termed the ‘label-killed’ process by King-
man [15, 5.2]. Tavaré [30, p. 136-137] terms the unvintaged and sized n-coalescent as
the ‘family-size process’ as part of the nomenclature of a more general birth-death-
immigration process [13]. The transition probabilities of this Markov process are not
explicitly developed in [15] or [30]. They have been developed in [23] into {F ↑(t)}t∈R+ ,
the unvintaged and sized n-coalescent. It is shown in [23, 22] that {F ↑(t)}t∈R+ re-
solves the hidden genealogy space just enough to prescribe the likelihood of site
frequency spectrum and its linear summaries. We briefly retrace {F ↑(t)}t∈R+ and its
embedded jump chain {F ↑(k)}k∈[n]− and show that they can provide the sampling
distribution of a large family of shape statistics including several classical ones. The
significantly smaller state space of {F ↑(t)}t∈R+ allows for a computationally efficient
and statistically sufficient inference based on these statistics.
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Consider the coalescent epoch at which there are i lineages. Let fi,j denote the
number of lineages subtending j leaves, i.e. the frequency of lineages that are ancestral
to j samples, at this epoch. Let us summarize these frequencies from the i lineages as
j varies over its support by fi := (fi,1, fi,2, . . . , fi,n). Then the space of fi’s is defined
by,

Fin :=

{
fi := (fi,1, fi,2, . . . , fi,n) ∈ Zn+ :

n∑
j=1

jfi,j = n,

n∑
j=1

fi,j = i

}
.

Let the set of such frequencies over all epochs be Fn :=
⋃n
i=1 Fin. Note that Fn

contains the frequency of the cardinalities of sets belonging to every element of Cn,
the state space of {C↑(t)}t∈R+ , the unvintaged and labeled n-coalescent. Thus, Fn
is the frequency representation of the integer partitions of n, i.e. the solutions to
the Diophantine equation {(p1, p2, . . . , pn) ∈ Zn+ :

∑n
i=1 ipi = n}, and Fin are those

integer partitions composed of i positive integers. Thus, the cardinality of Fn is the
number of integer partitions of n:

|Fn| = 1 +

bn/2c∑
k=1

p(k, n− k), where

p(k, n) =


0 if k > n

1 if k = n

p(k + 1, n) + p(k, n− k) otherwise

. (39)

Let us define an f -sequence f as follows:

f := (fn, fn−1, . . . , f1) ∈ Fn :=
{
f : fi ∈ Fin, fi−1 ≺f fi, ∀i ∈ {2, . . . , n}

}
,

where ≺f is the immediate precedence relation that induces the partial ordering
...
≺f

on Fn. It is defined by denoting the j-th unit vector of length n by ej, as follows:

fi′ ≺f fi ⇔ fi′ = fi − ej − ek + ej+k .

Thus, Fn is the set of f -sequences with n samples. One can see Fn as the set of
the frequencies of the cardinalities of c-sequences in Cn. Recall the c-sequence c =
(cn, cn−1, . . . , c1), where ci−1 ≺c ci, ci−1 ∈ Ci−1

n , ci ∈ Cin, and ci := (ci,1, ci,2, . . . , ci,i)
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contains its canonically ordered i subsets. Then the corresponding state space lump-
ing map F (ci) = fi : Cn → Fn and the sequence map F (c) = f : Cn → Fn are:

F (ci) :=

(
i∑

h=1

1{1}(|ci,h|), . . . ,
i∑

h=1

1{n}(|ci,h|)

)
,

F (c) := (F (cn), . . . ,F (c1)) . (40)

An f -sequence f written as (fn, fn−1, . . . , f1) is an n× n matrix:

f :=


f1

f2
...

fn−1

fn

 :=


f1,1 f1,2 · · · f1,n−1 f1,n

f2,1 f2,2 · · · f2,n−1 f2,n
...

...
. . .

...
...

fn−1,1 fn−1,2 · · · fn−1,n−1 fn−1,n

fn,1 fn,2 · · · fn,n−1 fn,n


Note that Fn indexes an equivalence class in Cn via the inverse map F−1 at (40).

Having defined f -sequences and their associated sets, we are ready to define
{F ↑(k)}k∈[n]− , the jump Markov chain of the unvintaged and sized n-coalescent on
Fn. Equations (41), (42), (43), (44) and (45) have been derived in [23]. The transition
probability of {F ↑(k)}k∈[n]− from fi ∈ Fin to fi−1 ∈ Fi−1

n is:

P (fi−1|fi)

=


fi,jfi,k

(
i
2

)−1
if fi−1 = fi − ej − ek + ej+k, j 6= k(

fi,j

2

)(
i
2

)−1
if fi−1 = fi − ej − ek + ej+k, j = k

0 otherwise

. (41)

The initial state and the final absorbing state of {F ↑(k)}k∈[n]− on Fn are fn =
(n, 0, . . . , 0) and f1 = (0, 0, . . . , 1), respectively. The probability of an f -sequence,
f := (fn, fn−1, . . . , f1) ∈ Fn, is given by the product:

P (f) =
2∏
i=n

P (fi−1|fi), (42)

and the probability that {F ↑(k)}k∈[n]− visits a particular fi ∈ Fin at the i-th epoch
[30, Equation (7.11)] is:

P (fi) =
i!∏i

j=1 fi,j!

(
n− 1

i− 1

)−1

(43)
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Let us consider the forward time jump chain {F ↓(k)}k∈[n]+ on Fn. The transition
probability of {F ↓(k)}k∈[n]+ from fi−1 ∈ Fi−1

n to fi ∈ Fin is:

P (fi|fi−1)

=



2fi−1,j+k(n− i+ 1)−1 if fi = fi−1 + ej + ek − ej+k, j 6= k,

j + k > 1, fi ∈ Fin, fi−1 ∈ Fi−1
n

fi−1,j+k(n− i+ 1)−1 if fi = fi−1 + ej + ek − ej+k, j = k,

j + k > 1, fi ∈ Fin, fi−1 ∈ Fi−1
n

0 otherwise

(44)

The final absorbing state and the initial state of {F ↑(k)}k∈[n]− on Fn are fn =
(n, 0, . . . , 0) and f1 = (0, 0, . . . , 1), respectively. The probability of an f -sequence,
f := (fn, fn−1, . . . , f1) ∈ Fn, is given by the product:

P (f) =
n∏
i=2

P (fi|fi−1), (45)

Let {NF ↑(k)}k∈Z− be the discrete time sample genealogical Markov chain of n
unvintaged and unlabeled samples taken at random from the present generation of
a Wright-Fisher population of constant size N over the state space Fn. We derive a
continuous-time Markov chain that approximates {NF ↑(k)}k∈Z− on Gn next.

Proposition 3.28 (Unvintaged and sized n-coalescent). The bNtc-step transition
probabilities, NPfi,fi′

(bNtc), of the chain {NF ↑(k)}k∈Z−, converge to the transition
probabilities of the continuous-time Markov chain {F ↑(t)}t∈R+ with rate matrix Q,
i.e.

NPfi,fi′
(bNtc) N→∞−→ Pfi,fi′

(t) = exp (Qt),

where the entries of Q, q(fi′|fi), fi′ , fi ∈ Fn, specifying the transition rate from fi ∈
Fin to fi′, are:

q(fi′ |fi)

=


−i(i− 1)/2 if fi = fi′ , fi ∈ Fin
fi,jfi,k if fi′ = fi − ej − ek + ej+k, j 6= k, fi ∈ Fin, fi′ ∈ Fi−1

n

(fi,j)(fi,j − 1)/2 if fi′ = fi − ej − ek + ej+k, j = k, fi ∈ Fin, fi′ ∈ Fi−1
n

0 otherwise

(46)

The initial state is fn = (n, 0, 0, . . . , 0) and the final absorbing state is f1 =
(0, 0, . . . , 1). This continuous time Markov chain {F ↑(t)}t∈R+ on Fn is called the
unvintaged and sized n-coalescent.
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Proof. The proof is merely a consequence of substituting the backward transi-
tion probabilities at (41) in the general n-coalescent approximation of (9) since
{NH↑(k)}k∈Z− is a lumped Markov chain of {NF ↑(k)}k∈Z− .

Next we show that the lumping F from Cn to Fn as well as the lumping F ′ from
Dn to Fn are Markov.

Proposition 3.29 (Markov lumping from Cn to Fn via F ). Our lumping of the
unvintaged and labeled n-coalescent over Cn to the unvintaged and sized n-coalescent
over Fn, via the mapping F (ci) = fi : Cn → Fn in (40), is Markov as pointed out by
Kingman [15, (5.1),(5.2)] using the arguments in [20, § IIId].

Proof. Let fi, fj be any two states in Fn and F−1(fi),F−1(fj) be their respective
inverse images in Cn. Then, the probability of moving from a state ci′ ∈ F−1(fi) to
the set F−1(fj):

∑
cj′∈F−1(fj)

P (cj′ |ci′) =


fi,`fi,k

(
i
2

)−1
if fj = fi − e` − ek + e`+k, ` 6= k(

fi,`

2

)(
i
2

)−1
if fj = fi − e` − ek + e`+k, ` = k

0 otherwise

,

depends on ci′ only through fi = F (ci′). For any given fi, fj ∈ Fn, this condition
is satisfied by construction, since the above sum equals P (fj|fi) at (41), a quantity
that only depends on fi.

Proposition 3.30 (Markov lumping from Dn to Fn via F ′). Consider the following
vintage-dropping map F ′(dk) = fi : Dn → Fn:

F ′(dk) := F ′((dk,1, . . . , dk,n))

=

(
n−

n−1∑
j=1

dk,j,

n−1∑
j=1

1{2}(dk,i), . . . ,
n−1∑
j=1

1{n}(dk,i)

)
= (fi,1, fi,2, . . . , fi,n) .

The lumped chain, {D↑F
′
(i)}i∈[n]−, of {D↑(i)}i∈[n]−, the jump Markov chain embedded

in {D↑(t)}t∈R+, the vintaged and sized n-coalescent on Dn, is Markov and equivalent
to {F ↑(i)}i∈[n]−, the jump Markov chain embedded in {F ↑(t)}t∈R+, the vintaged and
shaped n-coalescent on Fn.

Proof. Let fi, fj be any two states in Fn and F ′−1(fi),F ′−1(fj) be their respective
inverse images in Dn. Then, the probability of moving from a state di′ ∈ F ′−1(fi) to
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the set F ′−1(fj):

P (F ′−1(fj)|di′) =
∑

dj′∈F ′−1(fj)

P (dj′ |di′)

=


fi,`fi,k

(
i
2

)−1
if fj = fi − e` − ek + e`+k, ` 6= k(

fi,`

2

)(
i
2

)−1
if fj = fi − e` − ek + e`+k, ` = k

0 otherwise

.

only depends on di′ through fi for any given fj. Proposition 2.2 completes the proof.

Next we define a shape statistic triple of any f ∈ Fn. Let us denote the entry-wise
maximum or minimum of a vector x by max〈x〉 and min〈x〉, respectively. There are
n − 1 coalescence events in any f . Define (f)ג as the number of events resulting
from the coalescence of a pair of leaves or samples. Such an event is also said to
be a cherry. Next define k(f) as the number of events that arise from coalescing
two sets of distinct sizes. Let the number of the remaining events in f be defined as
î(f). Thus, î(f) is the number of events resulting from the coalescence of two sets
of equal size that are not cherries. A distinctly-sized split of a lineage subtending i
leaves gives rise to two lineages subtending i1 and i2 leaves, such that i1 6= i2 and
i = i1 + i2. In formulae, the above is,

(f)ג :=
n∑
i=2

1{1}(fi−1,2 − fi,2) (47)

k(f) :=
n∑
i=2

1{1}(max〈fi − fi−1〉) (48)

î(f) := n− 1− k(f)− (f)ג (49)

Denoting the entry-wise or Hadamard product by �, let us define f̈i as the frequency
of lineages that subtend the same number of leaves as the lineage that was split at the
beginning of the i-th epoch (forward in time) and the corresponding split frequency
vector Λ̈(f) = f̈ := (f̈2, f̈3, . . . , f̈n) for a given f -sequence f by

Λ̈(f) = f̈ := (f̈2, f̈3, . . . , f̈n) : Fn → F̈n, f̈i := fi−1,−min〈(fi−fi−1)�(1,2,...,n)〉. (50)

For example, if there were four lineages that subtend three leaves each and one of
these four lineages split at the beginning of the i-th epoch, then f̈i = 4.
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Proposition 3.31 (Probability of an f -sequence in terms of its shape statistics).

P (f) =
2k(f)

(n− 1)!

n∏
i=2

f̈i . (51)

Proof. For any f ∈ Fn, we can simplify P (f) given by (45) and (44), as follows:

P (f) =
n∏
i=2

P (fi|fi−i) =
n∏
i=2

(
21{1}max〈fi−fi−1〉 f̈i (n− i + 1)−1

)
=

2
Pn

i=2 1{1}max〈fi−fi−1〉

(n− 1)!

n∏
i=2

f̈i =
2k(f)

(n− 1)!

n∏
i=2

f̈i .

We get (51) from the definition of k(f) at (48) as the number of distinctly-sized
lineage splits in f .

4 Applications of lumped n-coalescents

Next we introduce the formalities to frame a partially ordered graph of lumped n-
coalescents. We identify any n-coalescent {A↑(t)}t∈R+ with its constitutive ordered
triple Ca := (An, {A↑(k)}k∈[n]− ,An). The three components are Ca(1) := An, its state
space, Ca(2) := {A↑(k)}k∈[n]− , its embedded jump Markov chain, and Ca(3) := An,
the set of its sequential realizations. We index the n-coalescent triple Ca by a generic
a-sequence a ∈ Ca(3) := An. Let Cα and Cβ be two n-coalescent triples with a Markov
lumping Mα,β : Cα(1) → Cβ(1). We can apply this lumping to each component of
any α-sequence α = (αn, αn−1, . . . , α1) ∈ Cα(3) to obtain the lumped β-sequence
according to the sequential lumping:

Mα,β(α) = β : Cα(3)→ Cβ(3),

Mα,β(α) = (Mα,β(αn), . . . ,Mα,β(α1)) = (βn, . . . , β1) = β ∈ Cβ(3) .

Definition 4.1 (The lumped n-coalescents graph). Consider an V-indexed set of
n-coalescent triples {Cα, α ∈ V}. Let, Mα,β : Cα(1)→ Cβ(1), for some α, β ∈ V be a
Markov lumping. Let E be a set of such maps as well as the identity map. Then, the
directed graph GV,E with vertices in {Cα, α ∈ V} and directed edges from a vertex
Cα to a vertex Cβ, provided there exists an Mα,β ∈ E, is the lumped n-coalescents
graph. The immediate succedence relation: Cα �C Cβ ⇐⇒ ∃Mα,β ∈ E, induces the
partial ordering

...
�C on {Cα, α ∈ V}, the vertices of GV,E.
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We introduced six different resolutions of the n-coalescent and the Markov lump-
ings between their state spaces (Figure 1). Suppose An is the state space of another
n-coalescent with a Markov lumping B(ai) = bi : An → Bn. Although there are
several ways to augment Bn to An, depending on the statistical problem and data at
hand, we abstract An here to emphasize that Bn is not the finest possible n-coalescent
resolution. Our lumped n-coalescents graph is GV,E with

V = {a, b, c, d, f, g, h} and

E = {Ma,b,Mb,c,Mb,d,Mc,f ,Md,f ,Md,g,Mf,h,Mg,h},where

Ma,b := B : An → Bn, Mb,c := C : Bn → Cn, Mb,d := D : Bn → Dn,
Mc,f := F : Cn → Fn, Md,f := F ′ : Dn → Fn, Md,g := G : Dn → Gn,

Mf,h := H : Fn → Hn, Mg,h := H ′ : Gn → Hn .

The lumped n-coalescents graph is the companion structure of the n-coalescent
experiments graph defined in [23]. The lumped n-coalescents graph formalizes equiv-
alence classes in the hidden space of genealogical sequences that one has to integrate
over in order to compute the likelihood of the observed statistics at each node of the
n-coalescent experiments graph. We can achieve maximal computational efficiency
during likelihood evaluation if we conduct our integrations over the coarsest possible
n-coalescent resolution in GV,E that will yield the exact likelihood of the desired
statistics. We can measure this efficiency by the extent of various Markov lumpings
and the size of the state spaces at different resolutions of GV,E.

4.1 Nature and extent of Markov Lumpings

Here we study the nature and extent of the Markov lumpings between our six concrete
state spaces in the lumped n-coalescents graph GV′,E′ with the sequence-specific index
set V′ = {b, c, d, f, g, h} and E′ = {C ,D ,F ,F ′,G ,H ,H ′} (Figure 1). We have seen
that there is a bijection from Bn, the set of b-sequences, as well as from Cn, the set
of c-sequences, to the set of ranked, labeled trees. We introduced b-sequences since
there are Markov lumpings from b-sequences to all other resolutions. Since the state
space of c-sequences is much smaller — there are no vintage tags — we will only
consider c-sequences when the object of interest in inference is a ranked, labeled tree.
The next two propositions state the impossibility of Markov lumpings between some
state spaces in our lumped n-coalescents graph.

Proposition 4.2. There is no Markov lumping from the state space of c-sequences
to that of g-sequences and vice versa.
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Proof. Since |Gn| < |Cn|, due to (19) and (32), there is clearly no lumping from
Gn to Cn. For the other direction, consider the trees below. In the left tree, for
cl ∈ C2

5 we have cl = {{1, 2}, {3, 4, 5}}. Also in the right tree, for cr ∈ C2
5 we have

cr = {{1, 2}, {3, 4, 5}}, i.e. cl = cr. In the left tree, for gl ∈ G2
5 we have gl = (0, 1, 0, 1).

However, in the right tree, for gr ∈ G2
5 we have gr = (0, 1, 1, 0).

51 2 3 4 5 1 2 3 4

So for two different states in G2
5 we have the same state in C2

5. Thus there is no
lumping from Cn to Gn.

Proposition 4.3. There is no Markov lumping from the state space of g-sequences
to that of f -sequences and vice versa.

Proof. Since |Fn| < |Gn|, due to (32) and (39), there is clearly no lumping from Fn to
Gn. For the other direction, consider the trees below. In the left tree, for gl ∈ G2

6 we
have gl = (0, 1, 1, 0, 0). Also in the right tree, for gr ∈ G2

6 we have gr = (0, 1, 1, 0, 0),
i.e. gl = gr. In the left tree, for fl ∈ F2

6 we have fl = (0, 1, 0, 1, 0, 0). However, in the
right tree, for fr ∈ G2

6 we have fr = (0, 0, 2, 0, 0).

5

3

4

1

2
3

4
5

1

2

So for two different states in F2
6 we have the same state in G2

6. Thus there is no
lumping from Gn to Fn.

Let us now gain some insight on the extent of lumpings between Cn, Gn and Fn.
Note that the cardinality of Cn, |Cn|, is the n-th Bell number in (19). Further, the
cardinality of Gn, |Gn|, is the (n+1)-th Fibonacci number in (32). The cardinality of
Fn, |Fn|, is the number of integer partitions of n in (39). The approximate values of
|Cn|, |Gn| and |Fn| are shown in Table 1 for typical samples sizes of interest to us. In
fact, |Fn|/|Gn| → 0 and |Gn|/|Cn| → 0 as n→∞. This can be advantageous during
integrations, involving dynamic programming, over paths of the Markov chain on Gn
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or Fn instead of Cn or over paths on Fn instead of Gn, provided the coarser resolution
preserves the likelihood of the statistic of interest, i.e. the sampling distribution of
the statistic of interest only depends on c, the hidden c-sequence, up to equivalence
classes specified by F (c) = f or G (c) = g, the corresponding f - or g- sequences, via
their inverse sequential images in Cn given by F−1(f) or G −1(g), respectively.

Table 1: Cardinalities of the state spaces Cn, Gn and Fn.
n = |Hn| 4 10 30 60 90 120
|Cn| 15 1.2× 105 8.5× 1023 9.8× 1059 1.4× 10101 5.1× 10145

|Gn| 5 88 1.3× 106 2.5× 1012 4.7× 1018 8.7× 1024

|Fn| 5 42 5.6× 103 9.7× 105 5.7× 107 1.8× 109

In the following, we will investigate how much information is lost when lumping
the c-sequences to g-sequences or f -sequences. The next two propositions precisely
describe the number of c-sequences or b-sequences or ranked, labeled trees that are
coarsened by any specific f - or g-sequence.

Proposition 4.4 (The ranked, labeled trees of an f -sequence). Let f ∈ Fn be
any given f -sequence and let c ∈ F−1(f) be a corresponding c-sequence. Then the
number of c-sequences (which is the number of ranked, labeled trees) corresponding
to the given f is

|F−1(f)| = 21−n n! (n− 1)!P (f) = n! 2k(f)+1−n
n∏
i=2

f̈i , (52)

and the conditional probability of c given f is

P (c|f) = 2k(f)+n−1(n!)−1

n∏
i=2

f̈−1
i . (53)

Proof. The uniform probability on Cn given by 2n−1(n!(n− 1)!)−1 invokes the prob-
ability on f -sequences in Fn via the inverse image of F−1, i.e.,

P (f) = P (F−1(f)) = |F−1(f)| 2n−1(n!(n− 1)!)−1

and we have the first equality at (52). The second equality at (52) follows from
substituting P (f) at (51). The probability P (c|f) at (53) follows from

P (c|f) =
P (c, f)

P (f)
=
P (c)

P (f)
.
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Proposition 4.5 (The ranked, labeled trees of an g-sequence). Let g ∈ Gn be any
given g-sequence and let b ∈ (D ◦ G )−1(g) := {D−1(d) : d ∈ G −1(g)} be a corre-
sponding b-sequence. Then the number of b-sequences (which is the number of ranked,
labeled trees) corresponding to the given g is

|(D ◦ G )−1(g)| = |D−1(G −1(g))| = 21−n n! (n− 1)!P (g) = n! (g)ג−2 , (54)

where (g)ג is the number of cherries of the ranked tree shape induced by g. The
conditional probability of b or c given g is

P (b|g) = P (c|g) = !n/(g)ג2 . (55)

Proof. The bijection G : Dn → Gn, yields the first equality in (54) as follows:

(D ◦ G )−1(g) := {D−1(d) : d ∈ G −1(g)} = D−1(G −1(g)) .

We derived P (g), the probability of a g-sequence, at (36) in Proposition 3.24. Since
each b-sequence b ∈ Bn = (D ◦ G )(Gn), that is bijectively mapped to a ranked,
labeled tree, has probability 2n−1(n!(n− 1)!)−1, we obtain,

|(D ◦ G )−1(g)| = 21−n n! (n− 1)!P (g) = 21−n n! (n− 1)!
2n−ג(g)−1

(n− 1)!
= n! (g)ג−2 .

Thus, (54) gives us the number of ranked, labeled trees that map to any given g-
sequence g based on ,(g)ג the number of cherries of g. Due to the bijection from Bn
to Cn and the uniform distribution on Bn and Cn, the probability P (c|g) = P (b|g)

P (c|g) =
P (c, g)

P (g)
=
P (c)

P (g)
=
P (B−1(c))

P (g)
=
P (b)

P (g)
=
P (b, g)

P (g)
= P (b|g) .

Now,

P (b|g) = P (c|g) =
P (c)

P (g)
=

2n−1(n!(n− 1)!)−1

2n−ג(g)−1((n− 1)!)−1 = !n/(g)ג2 .

There is a bijection from Dn, the set of d-sequences, as well as from Gn, the set
of g-sequences, to the set of ranked tree shapes. Again, since the state space of g-
sequences is much smaller — as we do not track the size of components — we will
only consider g-sequences when the object of interest in inference is a ranked tree
shape. We introduced d-sequences since there are lumpings from d-sequences to f -
sequences. For various shape statistics of ranked tree shapes, whose likelihood only
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depends on the hidden f -sequence (described in § 4.3), it is preferable to study the
lumped Markov chain on Fn as opposed to that on Gn. The next proposition gives
the number of g-sequences or d-sequences or ranked tree shapes that are coarsened
by any specific f -sequence.

Proposition 4.6 (The ranked tree shapes of an f -sequence). Let f ∈ Fn be any

given f -sequence and let d ∈ F ′−1
(f) and g ∈ G (F ′−1

(f)) := {G (d) : d ∈ F ′−1
(f)}

be a corresponding d- and g-sequence, respectively. The number of ranked tree shapes
corresponding to the given f is

|F ′−1
(f)| = |G (F ′−1

(f))| = 2−
bi(f)

n∏
i=2

f̈i , (56)

and the conditional probability of g given f is

P (g|f) = 2
bi(f)

(
n∏
i=2

f̈i

)−1

. (57)

Proof. The first equality in (56) is due to the bijection between Dn and Gn. For the

second equality in (56), we establish |F ′−1
(f)| = 2−

bi(f)
∏n

i=2 f̈i next. Recall that out
of the n− 1 splits in an f , (f)ג many of them are cherries and directly lead to leaves
while k(f) many of them lead to distinctly-sized splits. Let the number of remaining

splits in f be defined as î(f) := n− 1− k(f)− .(f)ג Thus, î(f) is the number of
balanced or equal-sized splits that are not cherries.

Let us highlight the following two facts: (1) for any b, b′ ∈ D−1(F ′−1
(f)) =

C −1(F−1(f)) ⊆ Bn, P (b) = P (b′) = 2n−1(n!(n − 1)!)−1, and (2) for any d, d′ ∈
F ′−1

(f) and any g, g′ ∈ G (F ′−1
(f)), P (d) = P (d′) = P (g) = P (g′) = 2n−1−ג(f)/(n−

1)!, since (f)ג =
∑n

i=2 fi,2 = (d)ג = (′d)ג = (g)ג = .(′g)ג Therefore, the number of
ranked tree shapes mapped by a given f -sequence is the number of ranked labeled
trees of an f -sequence divided by the number of ranked labeled trees of a g- or
d-sequence with the same number of cherries as the f -sequence:

|F ′−1
(f)| = |G (F ′−1

(f))| = |C
−1(F−1(f))|
|(D ◦ G −1(g)|

=
|F−1(f)|
n! (g)ג−2 =

|F−1(f)|
n! (f)ג−2

= 2k(f)+ג(f)+1−n
n∏
i=2

f̈i,

where we use (54) for the third-last equality and (52) for the last equality. Finally,

(56) follows from the definition of î(f) := n− 1− k(f)− .(f)ג We get (57) from
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P (g) at (36), P (f) at (51) and the definition of î(f) as follows:

P (g|f) =
P (g, f)

P (f)
=
P (g)

P (f)
=

2n−ג(g)−1((n− 1)!)−1

2k(f)((n− 1)!)−1
∏n

i=2 f̈i
=

2n−1−k(f)−ג(f)∏n
i=2 f̈i

= 2
bi(f)

(
n∏
i=2

f̈i

)−1

.

4.2 Examples

Next we provide some concrete examples of α-sequences for small n where α ∈ V′ =
{b, c, d, f, g, h} and calculate P (f), |F−1(f)|, P (g), |(D ◦ G )−1(g)| and |F ′−1

(f)|
based on (51), (52) (36), (54) and (56), respectively.

Example 4.7 (2 Samples). When there are 2 samples, we have exactly one b-, c-
, d-, g- and f -sequence. We provide the d-, g- and f -sequences in Table 2. The
only c-sequence in C2 is ({{1}, {2}}, {{1, 2}}) and the only b-sequence in B2 is
({{1}〈2〉, {2}〈2〉}, {{1, 2}〈1〉}).

In Example 4.7 with n = 2 (see first row of Table 2), there is only one f -sequence
whose k(f) = 0 and Λ̈(f) = f̈ = (1) and

∏2
2 f̈i = 1. Thus, P (f) = (20/(2− 1)!) 1 =

1. We confirm the solitary c-sequence in C2 since |F−1(f)| = 2! 20+1−2 1 = 1.
Also, there is only one f - and g-sequence with (f)ג = (g)ג = 1, and thus P (g) =
22−1−1/(2− 1)! = 1, |(D ◦ G )−1(g)| = 2! 2−1 = 1. Since there are no equal sized splits

that are not cherries, î(f) := n− 1− k(f)− (f)ג = 2 − 1 − 0 − 1 = 0, and thus

|F ′−1
(f)| = 2−0 1 = 1.

Example 4.8 (3 Samples). When there are 3 samples, we have 3 b-sequences, 3
c-sequences, 1 d-sequence, 1 g-sequence and 1 f -sequence. In Table 3, we tabulate
the state-space, (backward) transition diagram, sequences and the corresponding
probabilities at each of the six n-coalescent resolutions in V′.

There is only one f -sequence whose k(f) = 1, Λ̈(f) = f̈ = (1, 1) and
∏3

i=2 f̈i =
1. Thus, P (f) = (21/(3 − 1)!) 1 = 1 and |F−1(f)| = 3! 21+1−3 1 = 3. Again,
there is only one f - and g-sequence with one cherry, i.e. (f)ג = (g)ג = 1, and

î(f) := n− 1− k(f)− (f)ג = 3− 1− 1− 1 = 0. Thus, P (g) = 23−1−1/(3− 1)! = 1,

|(D ◦ G )−1(g)| = 3! 2−1 = 3 and |F ′−1
(f)| = 2−0 1 = 1.
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n ranked tree shape d-sequence g-sequence f -sequence ג k î f̈

2 2 d =

(
2
0

)
g =

(
1
0

)
f =

(
0 1
2 0

)
1 0 0 (1)

3 2
1

d =

3 0
0 2
0 0

 g =

1 0
0 1
0 0

 f =

0 0 1
1 1 0
3 0 0

 1 1 0 (1, 1)

4 3
2

1

dh =


4 0 0
0 3 0
0 0 2
0 0 0

 gh =


1 0 0
0 1 0
0 0 1
0 0 0

 fh =


0 0 0 1
1 0 1 0
2 1 0 0
4 0 0 0

 1 2 0 (1, 1, 1)

4 3 2
1

d∧ =


4 0 0
0 2 2
0 0 2
0 0 0

 g∧ =


1 0 0
0 1 1
0 0 1
0 0 0

 f∧ =


0 0 0 1
0 2 0 0
2 1 0 0
4 0 0 0

 2 0 1 (1, 2, 1)

Table 2: The d-, g- and f -sequences when n is 2, 3, and 4 are shown along with
the corresponding ranked tree shape and the four shape statistics, namely, ג = ,(f)ג

k = k(f), î = î(f) and f̈ = Λ̈(f).

Example 4.9 (4 Samples). In the case of four samples, there are 18 b-sequences,
18 c-sequences, 2 d-sequence, 2 g-sequence and 2 f -sequence. We provide the d-,
g- and f -sequences in Table 2. Out of the 18 c-sequences in C4, it is possible to
apply (40) and find that 12 c-sequences map to fh and 6 map to f∧. Note that the
ranked tree shapes corresponding to all the c-sequences F−1(fh) is the completely
unbalanced g-sequence gh and that corresponding to all the c-sequences F−1(f∧) is
the completely balanced g-sequence g∧. Finally, the shape statistic triple for the two
f -sequences are:

,k(fh),(fh)ג) î(fh)) = (1, 2, 0) and ,k(f∧),(∧f)ג) î(f∧)) = (2, 0, 1) .

Let us examine the two f -sequences closely. For f∧ with k(f∧) = 0, Λ̈(f∧) = f̈∧ =
(1, 2, 1) and

∏4
i=2 f̈

∧
i = 2 we obtain P (f∧) = (20/(4 − 1)!) 2 = 1/3, |F−1(f∧)| =

4! 20+1−4 2 = 6 and and |F ′−1
(f∧)| = 2−1 2 = 1. Similarly, for fh with k(fh) = 2,

Λ̈(fh) = f̈h = (1, 1, 1) and
∏4

i=2 f̈
h
i = 1, we obtain P (fh) = (22/(4 − 1)!) 1 = 2/3,

|F−1(fh)| = 4! 22+1−4 1 = 12 and |F ′−1
(fh)| = 2−0 1 = 1.

Let us examine the two g-sequences closely. For g∧ with (∧g)ג = 2, P (g∧) =
24−1−2/(4− 1)! = 1/3 and |(D ◦ G )−1(g∧)| = 4! 2−2 = 6 and for gh with (gh)ג = 1,
P (gh) = 24−1−1/(4− 1)! = 2/3 and |(D ◦ G )−1(gh)| = 4! 2−1 = 12.

Example 4.10 (5 Samples). In the case of five samples, there are 180 b-sequences,
180 c-sequences, 5 d-sequence, 5 g-sequence and 4 f -sequence. As shown in Ta-
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Table 3: When n = 3 we tabulate the state spaces, (backward) transition diagrams,
the sequences and their probabilities at six resolutions of the n-coalescent.
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ble 4, we denote the 5 g-sequences as ga, gb, gc, gd, ge and the five d-sequences as
da, db, dc, dd, de along with their corresponding f -sequences as f a, f b, f cd, f e. Note
that gc and gd as well as dc and dd map to the same f -sequence f cd. Finally, the
shape statistic triples for the four f -sequences are:

f)ג) a),k(f a), î(f a)) = (1, 3, 0), f)ג) b),k(f b), î(f b)) = (2, 1, 1),

f)ג) cd),k(f cd), î(f cd)) = (2, 2, 0), f)ג) e),k(f e), î(f e)) = (2, 2, 0) .

For the four f -sequences: f a, f b, f cd and f e, and the five g-sequences: ga, gb, gc,
gd and ge, we apply their shape statistics:

k(f a) = 3 k(f b) = 1 k(f cd) = k(f e) = 2

(ga)ג = 1 (gb)ג = (gc)ג = (gd)ג = (ge)ג = 2
5∏
i=2

f̈ ai =
5∏
i=2

f̈ ei = 14 = 1
5∏
i=2

f̈ bi =
5∏
i=2

f̈ cdi = 1 1 2 1 = 2,

to obtain the probabilities and cardinalities, based on (51), (52) (36), (54) and (56),
as follows:

P (f a) = (23/(5− 1)!) 1 = P (f cd) = (22/(5− 1)!) 2 = 1/3

P (f b) = (21/(5− 1)!) 2 = P (f e) = (22/(5− 1)!) 1 = 1/6

|F−1(f a)| = 5! 23+1−5 1 = |F−1(f cd)| = 5! 22+1−5 2 = 60

|F−1(f b)| = 5! 21+1−5 2 = |F−1(f e)| = 5! 22+1−5 1 = 30

P (ga) = 25−1−1/(5− 1)! = 1/3

P (gb) = P (gc) = P (gd) = P (ge) = 25−1−2/(5− 1)! = 1/6

|(D ◦ G )−1(ga)| = 5! 2−1 = 60

|(D ◦ G )−1(gb)| = |(D ◦ G )−1(gc)| = 5! 2−2 = 30

|(D ◦ G )−1(gd)| = |(D ◦ G )−1(ge)| = 5! 2−2 = 30

|F ′−1
(f a)| = |F ′−1

(f e)| = 2−0 1 = 1

|F ′−1
(f b)| = 2−1 2 = 1

|F ′−1
(f cd)| = 2−0 2 = 2 .

Applications of (36) and (54) to the g-sequences of Examples 4.7, 4.8, 4.9 and
4.10 above are consistent with those of Tajima’s topological relationships [28, Figures
1-3].
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ranked tree shape d-sequence g-sequence f -sequence ג k î f̈

1

4

3

2

da =


5 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2
0 0 0 0

 ga =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 f a =


0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0
5 0 0 0 0

 1 3 0 (1, 1, 1, 1)

1

4

2

3 db =


5 0 0 0
0 2 3 0
0 0 3 0
0 0 0 2
0 0 0 0

 gb =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 f b =


0 0 0 0 1
0 1 1 0 0
2 0 1 0 0
3 1 0 0 0
5 0 0 0 0

 2 1 1 (1, 1, 2, 1)

1

2

4
3

dc =


5 0 0 0
0 3 2 0
0 0 2 2
0 0 0 2
0 0 0 0

 gc =


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

 f cd =


0 0 0 0 1
0 1 1 0 0
1 2 0 0 0
3 1 0 0 0
5 0 0 0 0

 2 2 0 (1, 1, 2, 1)

1

2

3
4

dd =


5 0 0 0
0 3 0 2
0 0 2 2
0 0 0 2
0 0 0 0

 gd =


1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1
0 0 0 0

 f cd =


0 0 0 0 1
0 1 1 0 0
1 2 0 0 0
3 1 0 0 0
5 0 0 0 0

 2 2 0 (1, 1, 2, 1)

1

2

3

4
de =


5 0 0 0
0 4 0 0
0 0 2 2
0 0 0 2
0 0 0 0

 ge =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 0

 f e =


0 0 0 0 1
1 0 0 1 0
1 2 0 0 0
3 1 0 0 0
5 0 0 0 0

 2 2 0 (1, 1, 1, 1)

Table 4: The d-, g- and f -sequences when n = 5 are shown along with the corre-
sponding ranked tree shape and the four shape statistics, namely, ג = ,(f)ג k = k(f),

î = î(f) and f̈ = Λ̈(f). Note that the third and forth row have the same f -sequence.
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4.3 Shape Statistics where f-sequences are sufficient

Next we will show that any f -sequence f realized under the unvintaged and sized
n-coalescent captures a considerable amount of information about the ranked tree
shapes in the equivalence class of c-sequences F−1(f) or in G (F ′−1

(f)). For instance,
various tree shape statistics are further summaries of the f -sequence. We will make
the former sentence precise by showing that several tree-shape statistics in the litera-
ture are functions of a sequence of n−1 ordered pairs obtained from f -sequences. For
a given c-sequence c := (cn, cn−1, . . . , c1), the corresponding shape statistic sequence
or s̃-sequence is s̃ := (s̃n, s̃n−1, . . . , s̃1), where s̃i := (s̃i,1, s̃i,2). The i-th ordered pair
(s̃i,1, s̃i,2) of the s̃-sequence is the size of the set ci−1,j that just coalesced and the size
of the smaller of the two sets that just coalesced at the end of the i-th coalescent
epoch. Here, we map the s̃-sequences directly from the set of f -sequences. The s̃-
sequence or the sequential Aldous shape statistic [2] S̃(f) = s̃ : Fn → S̃n is obtained
from an f -sequence f as follows:

S̃(fn, fn−1, . . . , f1) = s̃ := (s̃n, s̃n−1, . . . , s̃2),

s̃i := (s̃i,1, s̃i,2) :=
(
max (‖f‖i),min (‖f‖i)2

−1{0}(max (‖f‖i)−min (‖f‖i))
)
,

‖f‖i := { j|fi,j − fi−1,j| ∈ N : j ∈ {1, 2, . . . , n} }. (58)

Therefore, f -sequences contain the information in s̃-sequences. Aldous [2] constructs
the s̃-sequence forward in time using a tree-splitting model. This is partly motivated
by a description of tree-shape imbalance via median-regression over a scatter-plot of
the ordered pairs (s̃i,1, s̃i,2)’s obtained from phylogenetic trees that were estimated
from DNA sequences of extant taxa [2]. Next we show that several classical scalar-

valued tree shape statistics are functions of s̃ = S̃(f). First consider the following
family of scalar-valued tree shape statistics indexed by the non-empty elements of
the power set of {2, 3, . . . , n}.

Qn := {QI(s̃) = qI :=
2∑
i=n

s̃i,11I(s̃i,1) : S̃n → QIn, I ∈ 2{2,3,...,n} \ ∅}

Then, Q{2,3,...,n}(s̃) = q{2,3,...,n} =
∑2

i=n s̃i,1 is the Sackin’s index which is the sum of
the number of leaves subtended by each internal node [28, 21]. Q{2}/2 = q{2}/2 is the
number of cherries, i.e., the number of internal nodes that subtend exactly 2 leaves
[18]. There are 2n−1 − 3 other scalar-valued shape statistics in the family Qn for the
n-coalescent. Another scalar-valued statistic that needs more information than the
number of leaves subtended by the set of internal nodes is the Colless’ index [6].
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It is the sum of the absolute difference between the number of leaves subtended by
the two branches bifurcating from each internal node up to a constant factor. The
Colless’ index of an f -sequence f only depends on its Aldous shape statistic sequence
S̃(f) = s̃ and is given by (n2 − 3n + 2)−1

∑2
i=n(s̃i,1 − 2s̃i,d). Thus, we have shown

that any f -sequence f captures a lot of information about the ranked tree shapes in
G (F ′−1

(f)). However, some information is lost about the ranked tree shapes in the
coarsening as one f -sequence may encode several distinct g-sequences — recall that
2 distinct g-sequences mapped to the same f -sequence in Example 4.10.

4.4 Shape Statistics where g-sequences are sufficient

In the last section, we showed that sampling distributions of f -sequences are sufficient
to obtain that of several tree shape statistics. However, there are statistics based
on ranked tree shapes for which the n-coalescent resolution of f -sequences is not
sufficient. In [8], the runs statistic was proposed for detecting lineage-specific bursts
within a population or between species.

f -sequence τ1 τ2
0 0 0 0 0 1
0 1 0 1 0 0
0 3 0 0 0 0
2 2 0 0 0 0
4 1 0 0 0 0
6 0 0 0 0 0

 . 4

1

2

3

1

2

3

4
5

5

Figure 5: Two ranked tree shapes on six leaves. Note that τ1, the ranked tree shape
in the middle panel, has run statistic 4 while τ2 on the right has run statistic 5.
However, both ranked tree shapes have the same f -sequence on the left.

The runs statistic is calculated recursively from a ranked tree shape τ . Note that
the ranking on a tree shape is simply a total order of the interior vertices of the tree
shape. By deleting the root of τ , we obtain two ranked tree shapes τ1 and τ2. The
ranked tree shape τ is induced by these two ranked tree shapes τ1 and τ2 together
with a shuffle on the interior vertices of τ1 and τ2. A shuffle puts the n1 interior
vertices in τ1 and the n2 interior vertices in τ2 in order, e.g. 112122 means that first
we have two bifurcations in τ1, then a bifurcation in τ2, followed by one bifurcation
in τ1, then two bifurcations in τ2. The number of runs of a shuffle is the number of
times we switch from i to j (i 6= j) plus one. Our shuffle 112122 has four runs. The
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number of runs of a ranked tree shape τ is defined recursively,

R(τ) = R(τ1) +R(τ2) + s(τ) ,

where s(τ) is the number of runs in the shuffle on the interior vertices of τ1 and τ2.
For details see [8].

As g-sequences can be mapped to ranked tree shapes via a bijection (Proposition
3.25), the g-sequences are sufficient for determining the runs statistic. Runs statistic
cannot be obtained from f -sequences. For example, let us consider τ1 and τ2, the
two ranked tree shapes in Figure 5. There are 4 runs in τ1 whereas τ2 has 5 runs.
However, both τ1 and τ2 have the same f -sequence.

5 Summary

We investigated the n-coalescent approximation of sample genealogical Markov
chains of the simplest Wright-Fisher model. We showed that Kingman’s n-coalescent
approximation can be applied to any genealogical Markov chain that has the death
chain as its lumped Markov chain. We described the combinatorial structures, for-
ward and backward transition probabilities, sequence-specific and state-specific prob-
abilities of the n-coalescent at six concrete genealogical resolutions. They include the
genealogical resolutions of α-sequences, where α ∈ V′ = {b, c, d, g, f, h}.

Tajima’s evolutionary relationships have been formalized into Tajima’s n-
coalescent or the vintaged and shaped n-coalescent. Its realizations are g-sequences
that are in bijection with ranked tree shapes over a state space that is contained in
{0, 1}n−1. Kingman’s unlabeled n-coalescent or the unvintaged and sized n-coalescent
has been given a complete Markov description to produce f -sequences over the sate
space of integer partitions of n. The augmentation of the set of all set partitions of
L = {1, 2, . . . , n}, the state space of Kingman’s labeled n-coalescent or the unvin-
taged and labeled n-coalescent, by coalescent vintage tags, led to the state space
of the Kingman-Tajima n-coalescent or the vintaged and labeled n-coalescent. King-
man’s n-coalescent as well Tajima’s n-coalescent are lumped Markov processes of the
Kingman-Tajima n-coalescent. The b- and c-sequences that are realized sequentially
under the Kingman-Tajima and the Kingman’s labeled n-coalescents, respectively,
are in bijection with ranked, labeled trees. The vintaged and sized n-coalescent over
the state space of ordered integer partitions of n has d-sequences as its realizations.
Both d- and g-sequences are in bijection with ranked tree shapes. Our second coarsest
resolution of f -sequences preserves considerable information about the genealogies
although it is not in bijection with any of the familiar definitions of phylogenetic
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trees. The f -sequences are sufficient for site frequency spectrum and its linear com-
binations as shown in [23, 22] as well as for several tree shape statistics as shown
here. Finally, the coarsest resolution is the pure death chain with only one h-sequence
(n, n− 1, . . . , 2, 1).

Using the theory of lumped Markov chains we formalized several Markov lumpings
between V′ = {b, c, d, g, f, h}, the six n-coalescent resolutions we pursued here. There
is a partial order on V′ induced by E′, the set of Markov lumpings between the six
resolutions. We formalized this structure by GV′,E′ , the lumped n-coalescents graph,
and noted its implications for computational efficiency during likelihood evaluations
in n-coalescent experiments. For likelihood evaluations during inference, we want the
state space of the hidden genealogical Markov chains to be as small as possible. For
instance, if the likelihood of our statistics requires integration at the resolution of
ranked, labeled trees, we use c-sequences. If it requires integration over ranked tree
shapes, we use g-sequences, and if it only requires integration over block sizes, we use
f -sequences. The lumped n-coalescents graph allows us to consistently move between
different n-coalescent resolutions as needed.

The lumped n-coalescents graph GV′,E′ is a formal and constructive embodi-
ment of the unified multi-resolution n-coalescent. The lumped Markov chain projec-
tions of the underlying sample genealogical process through the Kingman-Tajima
n-coalescent at the maximal vertex in GV′,E′ simultaneously at all other vertices of
GV′,E′ gives us our unified multi-resolution n-coalescent. The basic properties of the
n-coalescent, including (i) the robustness to variations in the underlying discrete
population genetic models and (ii) the consistent embedding of the n-coalescent in
the (n+ 1)-coalescent to obtain the coalescent, naturally apply to the unified multi-
resolution coalescent. One can also obtain a unified multi-resolution coalescent of
other more general coalescent processes.

Kemeney & Snell [12, p. 124] observe the following about a lumped process:

It is also often the case in applications that we are only interested in
questions which relate to this coarser analysis of the possibilities. Thus
it is important to be able to determine whether the new process can be
treated by Markov chain methods.

It is exactly this observation about a lumped Markov process in the coalescent context
that led to this paper and we have taken the necessary applied probabilistic steps
towards realizing the potential for computationally efficient and statistically sufficient
inference from population genetic statistics of today’s massive genomic data.
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