Kingman’s Unlabeled n-Coalescent

Raazesh Sainudiin

Biomathematics Research Centre

Department of Mathematics & Statistics, University of Canterbury, NZ,
‡ Department of Statistics, University of Oxford, UK, and
⊗ Biological Sciences, University of California, Irvine, USA.

Joint with: Peter Donnelly†, Bob Griffiths†, Gil McVean†, and Kevin Thornton⊗
Outline – Talk Outline

- The Coalescent Models
- Computationally Intensive Likelihoods
- A Paritllay-ordered Coalescent Experiments Graph
- Unlabeled n-Coalescent
- Results
- Summary
- Acknowledgments
Data and Model 1: $\phi \equiv \theta \in \Phi$, $\theta = 4N_e \mu$ (scaled mutation rate)

The Wright-Fisher Model – Random Mating, Constant Size, No Recombination/Selection

A Population of $N = 10$ homologous DNA seqns. of length m and the Population History of site i

: 1 2 3 4 5 6 7 8 9 10
1 : A A A A A A A A C
2 : G G G G G G G G G
... i : T T A A A A A A
... k : ...

mutation

time
Data and Model 1: $\phi \equiv \theta \in \Phi$, $\theta = 4N_e \mu$ (scaled mutation rate)

The Wright-Fisher Model – Random Mating, Constant Size, No Recombination/Selection

Ex: Data of 3 homologous DNA sequences at site i, its Population History and the Sample History of sampled individuals 1, 2, and 3.

: 1 2 3
i : T T A

MRCA of the population

MRCA of the sample

Time
Model 1: $\phi \equiv \theta \in \Phi$, $\theta = 4N_e\mu$ (scaled mutation rate)

The Coalescent Approximation of the Wright-Fisher (W-F) Model (Kingman, 1982)

A Sample Coalescent Sequence or c-sequence ($\{\{1\}, \{2\}, \{3\}\}$, $\{\{1, 2\}, \{3\}\}$, $\{\{1, 2, 3\}\}$) and coalescent times or epoch times $t_i, i \in \{3, 2\}$.

- Offspring “choose” parents uniformly and independently in W-F model
- $\Pr(2$ lineages coalesce in 1 generation$) = 1/N$
- $\Pr(2$ lins. are distinct $> g$ gens.) $= (1 - 1/N)^g$
- Rescaled time t is g in units of N gens. Then, $\Pr(2$ lins. remain distinct $> t)$ is

$$
(1 - 1/N)^{\lfloor Nt \rfloor} \xrightarrow{N \rightarrow \infty} e^{-t}
$$

- Lineage Death Process: In general, the R.V. T_i that any pair of i lineages coalesce is approximately exponentially distributed for large N.

$$
T_i \sim \text{Exponential} \left(\binom{i}{2} \right)
$$

- Uniform Binary Fusion of two extant lineages.
Model 1: $\phi \equiv \theta \in \Phi$, $\theta = 4N_e\mu$ (scaled mutation rate)

The Coalescent Approximation of the Wright-Fisher (W-F) Model (Kingman, 1982)

- The n-Coalescent is a continuous time Markov Chain on $C_n \equiv \bigcup_{i=1}^{n} C^i_n$, the set partitions of $\{1, \ldots, n\}$, with rates $q(c_h|c_g)$, $c_g, c_h \in C_n$:

$$q(c_h|c_g) = \begin{cases}
-i(i-1)/2 & : \text{if } c_g = c_h \in C^i_n \\
1 & : \text{if } c_h \succ c g \\
0 & : \text{o.w.}
\end{cases}$$

$c_h \prec c g \Leftrightarrow c_h = c_g \setminus c_{g,j} \setminus c_{g,k} \cup (c_{g,j} \cup c_{g,k})$

A realization $c = (c_n, c_{n-1}, \ldots, c_1) \in C_n$

- Superimpose indep. mutations $\sim \text{Poisson}(\theta/2 \equiv 2N\mu)$

∞-many-sites mutation model
Coalescent Space $\mathcal{A}_n \equiv C_n \otimes (0, \infty)^{n-1}$ when $n = 3$ (Model 1)
Realizations from $\mathcal{A}_n \equiv C_n \otimes (0, \infty)^{n-1}$ under Model 1, $n = 6, 32$
Model 2: $\phi \equiv (\theta, \nu) \in \Phi$, $\theta = 4N_e \mu$ (scaled mutn. rate), ν (exp. growth rate)

Figures 1-6 of M. Nordburg, Coalescent Theory, 2000
(1) Every directed acyclic subgraph of the POEG indexes a Martingale
(2) Each node of the POEG is a tri-sequential asymptotic family of Experiments
Likelihood

Likelihood, $P(D|\phi)$, is computed by Integrating Missing-Data:

$$\sum_{c \in C_n} \int_{t \in (0, \infty)^{n-1}} P(D|c, t, \phi) P(c, t|\phi) dt \ dc$$

Cardinalities of the state spaces of the standard n-coalescent on C_n and the unlabeled n-coalescent on F_n (to be seen in the sequel).

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>10</th>
<th>30</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>C_n</td>
<td>$</td>
<td>15</td>
<td>1.2×10^5</td>
<td>8.5×10^{23}</td>
</tr>
<tr>
<td>$</td>
<td>F_n</td>
<td>$</td>
<td>5</td>
<td>42</td>
<td>5.6×10^3</td>
</tr>
<tr>
<td>$</td>
<td>F_n</td>
<td>/</td>
<td>C_n</td>
<td>$</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Likelihood is computationally prohibitive at MSA/BIM Resolns.

Exact Methods:

- **MSA**
 - 10,000 Auto-validating i.i.d. Posterior Samples in MRS SY2006 – novel
 - (3/4 leaved phylogenetic tree spaces)
 - ≈ 200 CPU sec for $n \leq 3$,
 - \therefore impractical for $n > 4$

- **BIM**
 - Complete Recursion in PTREE G1980
 - (1 Locus, $\theta = 10$, C-Model 1)
 - \therefore out of stack for $n > 4$

Approximate Methods:

- **MSA**
 - MCMC in COALESCE KYF1998 : $n < 200$ & heuristic

- **BIM**
 - SIS in GENETREE GT1994 : $L(\theta|v) \approx 4$ CPU hrs / θ

The Bottom Line: Exact Genome Scanning at fine DNA resolution is currently impractical for $n > 4$

A Solution: Inference at coarser empirical resolutions, eg. SFS and its sub-experiments – novel
∞-many-sites M-Model: BIM \(v \in \mathcal{V}_n^m \overset{\text{M}}{\rightarrow} \text{SFS} \ \ x \in \mathcal{X}_n^m \)

Let \(v \in \mathcal{V}_n^m \equiv \{0, 1\}^{n \times m} \) be a BIM, then the SFS

\[x_i = N_i(v^T \cdot (1, 1, \ldots, 1)), \quad N_i(y_1, y_2, \ldots, y_s) = \sum_{j=1}^{s} 1_{\{i\}}(y_j), \quad i = 1, \ldots, n - 1. \]

BIM \(v \in \mathcal{V}_4^9 \)

SITES: 1 2 3 4 5 6 7 8 9

IND 1: 0 0 1 0 0 1 0 0 0

IND 2: 0 1 0 0 0 0 0 0 1

IND 3: 0 1 0 0 0 0 1 0 1

IND 4: 0 1 0 0 0 0 1 0 1

COL +: 0 3 1 0 0 1 2 0 3

SFS \(x = (x_1, x_2, x_3) = (2, 1, 2) \in \mathcal{X}_4^9 \)
Coalescent Tree Shape, f-Sequence and Site Frequency Spectrum

$\tilde{c}^\wedge = ((\cdot,3 \cdot),1 \cdot,2 \cdot))$

t_2

t_3

t_4

$P(f^\wedge) = 1/3$

$f^\wedge = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
4 & 0 & 0 & 0
\end{pmatrix}$

x_1

x_2

x_3

$\mathcal{F}_4 = \{f^\wedge, f^\wedge\}$

$
\tilde{c}^\wedge = (((\cdot,3 \cdot),2 \cdot),1 \cdot))$

t_2

t_3

t_4

$P(f^\wedge) = 2/3$

$f^\wedge = \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 \\
4 & 0 & 0 & 0
\end{pmatrix}$
Examples of c-sequence $\rightarrow f$-sequence, when $n = 4$

Ex 1:

$$\begin{align*}
&\left\{1\right\}, \left\{2\right\}, \left\{3\right\}, \left\{4\right\}, \left\{1, 2\right\}, \left\{3\right\}, \left\{4\right\}, \left\{1, 2, 3\right\}, \left\{4\right\}, \left\{1, 2, 3, 4\right\} \rightarrow \\
&(4, 0, 0, 0), (2, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1) \\
\end{align*}$$

Ex 2:

$$\begin{align*}
&\left\{1\right\}, \left\{2\right\}, \left\{3\right\}, \left\{4\right\}, \left\{1, 2\right\}, \left\{3\right\}, \left\{4\right\}, \left\{1, 2\right\}, \left\{3, 4\right\}, \left\{1, 2, 3, 4\right\} \rightarrow \\
&(4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (0, 0, 0, 1) \\
\end{align*}$$
Kingman’s Unlabeled n-Coalescent

Consider, the integer partitions of n with i blocks:

$$\mathcal{F}^i_n \equiv \{ f_i \equiv (f_{i,1}, f_{i,2}, \ldots, f_{i,n}) \in \mathbb{Z}^n_+ : \sum_{j=1}^n j f_{i,j} = n, \sum_{j=1}^n f_{i,j} = i \}.$$

where $f_{i,j}$ denotes the number of lineages subtending j leaves at the i-th epoch.

Proposition (Kingman’s Unlabeled n-coalescent). *It is the continuous time Markov chain on $\mathcal{F}_n \equiv \bigcup_{i=1}^n \mathcal{F}^i_n$, the set of integer partitions of n, whose infinitesimal generator $q(f_h | f_g)$ for any two states $f_g, f_h \in \mathcal{F}_n$ is:*

$$q(f_h | f_g) = \begin{cases}
-i(i-1)/2 & : \text{if } f_g = f_h, f_g \in \mathcal{F}^i_n \\
 f_{g,j} f_{g,k} & : \text{if } f_h = f_g - e_j - e_k + e_{j+k}, j \neq k, f_g \in \mathcal{F}^i_n, f_h \in \mathcal{F}^{i-1}_n \\
(f_{g,j})(f_{g,j} - 1)/2 & : \text{if } f_h = f_g - e_j - e_k + e_{j+k}, j = k, f_g \in \mathcal{F}^i_n, f_h \in \mathcal{F}^{i-1}_n \\
0 & : \text{otherwise}
\end{cases}$$

Initial state: $f_n = (n, 0, 0, \ldots, 0)$ and absorbing state: $f_1 = (0, 0, \ldots, 1)$.

Any realization of the chain is an f-sequence: $f = (f_n, f_{n-1}, \ldots, f_1) \in \mathcal{F}_n$.

Raazesh Sainudiin, Department of Mathematics & Statistics, University of Canterbury www.math.canterbury.ac.nz/~r.sainudiin – p. 16/27
Proposition (Probability of an f_i). The probability of an $f_i \in \mathcal{F}_n^i$ is:

$$P(f_i) = \frac{i!}{\prod_{j=1}^{i} f_{i,j}!} \left(\frac{n-1}{i-1}\right)^{-1}$$
Kingman’s Unlabeled n-Coalescent

Proposition (Probability of an f_i). The probability of an $f_i \in \mathbb{R}_n^i$ is:

$$P(f_i) = \frac{i!}{\prod_{j=1}^{i} f_{i,j}!} \left(\frac{n-1}{i-1}\right)^{-1}$$

Proposition (Probability of an f-sequence).

$$P(f) = \prod_{i=2}^{n} P(f_i | f_{i-1}) = \frac{2^{-\gamma(f)}}{(n-1)!} \prod_{i=2}^{n} f_{i}$$

where,

- $\gamma(f)$ is the number of distinctly-sized lineage splits
- f_{i} is the number of lineages at the beginning of the i-th epoch that subtend the same number of leaves as the lineage that was split then.
c-sequence, $c \in C_n \rightarrow c$-shape, $\tilde{c} \in \tilde{C}_n \rightarrow f$-sequence, $f \in F_n$

$\tilde{c}^\wedge = ((\cdot, 3 \cdot), 1 \cdot, 2 \cdot))$

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
4 & 0 & 0 & 0
\end{pmatrix}
\]

$n = 4$

$\tilde{c}^\wedge = (((\cdot, 3 \cdot), 2 \cdot), 1 \cdot)$

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 \\
4 & 0 & 0 & 0
\end{pmatrix}
\]
\(c\)-sequence, \(c \in \mathcal{C}_n \rightarrow c\)-shape, \(\tilde{c} \in \tilde{\mathcal{C}}_n \rightarrow f\)-sequence, \(f \in \mathcal{F}_n\)

\[
\tilde{c}^{(a)} = (((\cdot, 4 \cdot), 3 \cdot), 2 \cdot, 1 \cdot)
\]

\[
f^a = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\(n = 5\)

\[
\tilde{c}^{(b)} = (((\cdot, 4 \cdot), 2 \cdot, 3 \cdot), 1 \cdot)
\]

\[
f^b = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\tilde{c}^{(c)} = ((\cdot, 4 \cdot), 1 \cdot, (\cdot, 3 \cdot), 2 \cdot)
\]

\[
f^{c/d} = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\tilde{c}^{(d)} = (((\cdot, 4 \cdot), 2 \cdot), 1 \cdot, (\cdot, 3 \cdot))
\]

\[
f^e = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\tilde{c}^{(e)} = (((\cdot, 4 \cdot), 3 \cdot), 1 \cdot, (\cdot, 2 \cdot))
\]
\(c\)-sequence, \(c \in \mathcal{C}_n \rightarrow \tilde{c}\)-shape, \(\tilde{c} \in \tilde{\mathcal{C}}_n \rightarrow f\)-sequence, \(f \in \mathcal{F}_n \)

The number of \(c\)-sequences corresponding to the given \(f \) is

\[
|F^{-1}(f)| = 2^{1-n} n! (n - 1)! P(f) = n! 2^{-\overline{\gamma}(f)} + 1 - n \prod_{i=2}^{n} f_i
\]

Let \(\mathcal{J}(\tilde{c}) \) be the number of cherries of a \(c\)-shape \(\tilde{c} \in \tilde{\mathcal{C}} \).

\[
|\tilde{C}^{-1}(\tilde{c})| = 2^{1-n} n! (n - 1)! P(\tilde{c}) = n! 2^{-\mathcal{J}(\tilde{c})} \quad (Tajima, 1983)
\]

The number of \(c\)-shapes corresponding to the given \(f \) is

\[
|\tilde{C}(F^{-1}(f))| = 2^{-\mathcal{J}(f)} \prod_{i=2}^{n} f_i,
\]

\(\mathcal{J}(f) \equiv n - 1 - \overline{\gamma}(f) - \mathcal{J}(f) \), the number of balanced splits that are not cherries.
Hasse Diagram of the Poset making $\mathcal{F}_n \ (n = 4, \ldots, 12)$
Simulating f-sequences: for SFS, Shape Stats, ...

1: input:
 1. scaled mutation rate θ
 2. sample size n

2: output: a SFS sample x from the n-coalescent

3: generate an f-sequence under the unlabeled n-coalescent

4: draw $t \sim T = (T_2, T_3, \ldots, T_n)$, where T_i’s are independently distributed as $\text{Exponential} \left(\left(\begin{pmatrix} i \end{pmatrix} \right) \right)$

5: $l \leftarrow t^T \cdot f$ and $l_{\bullet} = \sum_{i=1}^{n-1} l_i$

6: draw x from Poisson-Multinomial distribution
 \[e^{-\theta l_{\bullet}} (\theta l_{\bullet})^{\sum_{i=1}^{n-1} x_i} \prod_{i=1}^{n-1} l_i^{x_i} / \prod_{i=1}^{n-1} x_i! \]

7: return: x
Various tree shape statistics are further summaries of the f-sequence

s-sequence or Aldous shape statistic (Aldous, 2001)

$$\tilde{S}(f_n, f_{n-1}, \ldots, f_1) = \tilde{s} \equiv (\tilde{s}_n, \tilde{s}_{n-1}, \ldots, \tilde{s}_2) : \mathcal{F}_n \rightarrow \tilde{S}_n :$$

$$\tilde{s}_i \equiv (\tilde{s}_{i,1}, \tilde{s}_{i,2}) \equiv (\max (\|f\|_i), \min (\|f\|_i)) 2^{-1} \{0\}(\max (\|f\|_i) - \min (\|f\|_i)),$$

$$\|f\|_i \equiv \{ j | f_{i,j} - f_{i-1,j} | \in \mathbb{N} : j \in \{1, 2, \ldots, n\} \}.$$

$$\mathcal{Q}_n \equiv \{ Q_I(\tilde{s}) = q_I \equiv \sum_{i=n}^{2} \tilde{s}_{i,1} 1_I(\tilde{s}_{i,1}) : \tilde{S}_n \rightarrow Q_{In}, \ I \in 2^{\{2,3,\ldots,n\} \setminus \emptyset} \}$$

$$Q_{\{2,3,\ldots,n\}}(\tilde{s}) = q_{\{2,3,\ldots,n\}} = \sum_{i=n}^{2} \tilde{s}_{i,1} \text{ is the Sackin’s index}$$

$$Q_{\{2\}}/2 = q_{\{2\}}/2 \text{ is the number of cherries}$$

$$(n^2 - 3n + 2)^{-1} \sum_{i=n}^{2} (\tilde{s}_{i,1} - 2\tilde{s}_{i,d}) \text{ is the Colless’ index}$$

Note: There are $2^{n-1} - 3$ others in the family \mathcal{Q}_n
Likelihood of a Site Frequency Spectrum

Proposition (Likelihood of SFS). Let $a \in A_n$ be a given coalescent tree, c be its c-sequence, $f = F(c)$ be its f-sequence, $t \equiv (t_2, t_3, t_n) \in (0, \infty)^{n-1}$ be its epoch times and let

$$l \equiv (l_1, \ldots, l_{n-1}) = t^T f = \left(\sum_{i=2}^{n} t_i f_{i,1}, \ldots, \sum_{i=2}^{2} t_i f_{i,n-1} \right), \quad l_\bullet \equiv \sum_{i=2}^{n} l_i, \quad \bar{l}_i \equiv \frac{l_i}{l_\bullet}$$

be its lineage lengths subtending $1, 2, \ldots, n - 1$ leaves, the total tree-size, and relative lineage lengths respectively.
Likelihood of a Site Frequency Spectrum

Proposition (Likelihood of SFS). Let $a \in A_n$ be a given coalescent tree, c be its c-sequence, $f = F(c)$ be its f-sequence, $t \equiv (t_2, t_3, t_n) \in (0, \infty)^{n-1}$ be its epoch times and let

$$l \equiv (l_1, \ldots, l_{n-1}) = t^T f = \left(\sum_{i=2}^{n} t_i f_{i,1}, \ldots, \sum_{i=2}^{n} t_i f_{i,n-1} \right), \quad l_0 \equiv \sum_{i=2}^{n} l_i, \quad \bar{l}_i \equiv \frac{l_i}{l_0}$$

be its lineage lengths subtending $1, 2, \ldots, n - 1$ leaves, the total tree-size, and relative lineage lengths respectively.

$$P(x|\phi, a) = P(x|\phi, l = t^T f) = e^{-\theta l \bullet} (\theta l_\bullet)^S \prod_{i=1}^{n-1} \frac{l_i^{x_i}}{i!} / \prod_{i=1}^{n-1} x_i!$$
Likelihood of a Site Frequency Spectrum

Proposition (Likelihood of SFS). Let \(a \in \mathcal{A}_n \) be a given coalescent tree, \(c \) be its \(c \)-sequence, \(f = F(c) \) be its \(f \)-sequence, \(t \equiv (t_2, t_3, t_n) \in (0, \infty)^{n-1} \) be its epoch times and let

\[
l \equiv (l_1, \ldots, l_{n-1}) = t^T f = \left(\sum_{i=2}^{n} t_i f_{i,1}, \ldots, \sum_{i=2}^{n} t_i f_{i,n-1} \right), \quad l_\bullet = \sum_{i=2}^{n} l_i, \quad \bar{l}_i \equiv \frac{l_i}{l_\bullet}
\]

be its lineage lengths subtending 1, 2, \ldots, \(n-1 \) leaves, the total tree-size, and relative lineage lengths respectively.

\[
P(x|\phi, a) = \frac{1}{\prod_{i=1}^{n-1} x_i!} \sum_{f \in \mathcal{F}_n(x^\circ)} P(f) \left(\int_{t \in (0, \infty)^{n-1}} \left(e^{-\theta l_\bullet} (\theta l_\bullet)^S \prod_{i=1}^{n-1} \bar{l}_i^{x_i} \right) P(t|\phi) \right)
\]

where, \(\mathcal{F}_n(x^\circ) \equiv \bigcup_{\{h: x^\circ_h = 1\} \subseteq \{1, \ldots, n\}} \{f \in \mathcal{F}_n : \sum_{i=1}^{n} f_{i,h} = 0\} \)

\[
X^\circ(x) = x^\circ \equiv (x^\circ_1, \ldots, x^\circ_{n-1}) \equiv (1_N(x_1), \ldots, 1_N(x_{n-1})) \in \{0, 1\}^{n-1}
\]
Proposition (A Proposal over $F_n^c(x^\otimes)$). For a given $x \in X_n^m$, consider the following discrete time Markov chain on the augmented state space $\mathbb{F}_n \times \{0, 1\}^{n-1} \ni (f_h, z_h)$:

$$P^*(((f_h, z_h)|(f_g, z_g)) = \begin{cases} P(f_h|f_g)/\Sigma(f_g, z_g) & : \text{if } (f_h, z_h) \prec_{f, z} (f_g, z_g), \\ 0 & : \text{otherwise} \end{cases}$$

where,

$$\Sigma(f_g, z_g) = \sum_{(j, k) \in H(f_g, z_g)} P(f_g - e_j + e_j + e_k|f_g),$$

$$H(f_g, z_g) = \{(j, k) : f_g, j + k > 0, 1 \leq j \leq \max\{\min\hat{g}, j + k - 1\}, \left\lfloor \frac{j + k}{2} \right\rfloor \leq k \leq j + k - 1\},$$

$$\hat{g} = \max\{i : z_g, i = 1\},$$

$$(f_h, z_h) \prec_{f, z} (f_g, z_g) \iff f_h = f_g + e_j + e_k - e_j + e_k, z_h = z_g - 1_{\{1\}}(z_g, j)e_j - 1_{\{1\}}(z_g, k)e_k$$

where, the initial state is $(f_1, X^\otimes(x)) = ((0, 0, \ldots, 1), x^\otimes)$ and the final absorbing state is $(f_n, (0, 0, \ldots, 0)) = ((n, 0, \ldots, 0), (0, 0, \ldots, 0)).$
Maximum Aposteriori Estimates of θ and ν by \sum over $f \in F_n^c(x^{\otimes})$

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\nu}$</th>
<th>\sqrt{se}</th>
<th>bs</th>
<th>$C_{99%}$</th>
<th>\sqrt{se}</th>
<th>bs</th>
<th>$C_{99%}$</th>
<th>$C_{99%}$</th>
<th>$Qrt(\tilde{K})$</th>
<th>$\hat{\theta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>46</td>
<td>30</td>
<td>42</td>
<td>43</td>
<td>30</td>
<td>53</td>
<td>98</td>
<td>${0.061, 0.079, 0.13}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>19</td>
<td>42</td>
<td>31</td>
<td>22</td>
<td>63</td>
<td>96</td>
<td>${0.074, 0.098, 0.16}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>18</td>
<td>41</td>
<td>35</td>
<td>23</td>
<td>69</td>
<td>93</td>
<td>${0.082, 0.11, 0.17}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>19</td>
<td>48</td>
<td>32</td>
<td>20</td>
<td>68</td>
<td>87</td>
<td>${0.090, 0.12, 0.21}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>12</td>
<td>66</td>
<td>21</td>
<td>11</td>
<td>72</td>
<td>92</td>
<td>${0.098, 0.14, 0.26}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>12</td>
<td>65</td>
<td>18</td>
<td>10</td>
<td>70</td>
<td>93</td>
<td>${0.097, 0.14, 0.21}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>11</td>
<td>64</td>
<td>17</td>
<td>10</td>
<td>66</td>
<td>95</td>
<td>${0.091, 0.14, 0.30}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Topological Unfolding of SFS and Tajima’s D when $n = 4$
Simulated Vs. Gen. Fisher’s Exact Test with Tajima’s D

P-values for Simulated Vs. Exact Tajima’s D Test (\(\theta = 1, 10, 50\))

Left panel: Distribution of p-values from the simulated test (left) and the generalized Fisher’s exact test (right) for three values of \(\theta = \{1, 10, 50\}\) per 1000 bp with \(n = 30\).

Right panel: The almost zero correlation of p-values between the two tests.
Summary

- Limits on Inference from Finest Empirical Resolutions
- Inference from Coarser Site Frequency Spectrum is Possible via a Collapsed Kingman’s n-coalescent Markov chain
- Algebraic Geometry is useful to infer from classical summaries of SFS.
- MSEs are smaller – the exponential growth model
- Helps speed-up intensive SIS methods (Particle filtering on Experiment Graph)
- Topological unfolding of SFS and $D \Rightarrow$ Tree-less Genome Scans are essentially meaningless
- A Decision-theoretic formalism – partially-ordered coalescent experiments graph
- Possible to generalize
- Saves electricity and slows down global warming!
NSF/NIGMS grant DMS-02-01037 to Durrett, Aquadro, and Nielsen and
Research Fellow of the Royal Commission for the Exhibition of 1851.