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INTRODUCTION

Algebraic computing packages such as MAPLE and
MATHEMATICA are adept at computing the integral of an
explicit expression in closed form (where possible). Neither
program has any trouble in, for example,∫

1

x log x
dx = log (log x).

MAPLE from release 9 onwards has a limited facility to handle
expressions such as∫

uvx − vux
(u− v)2

dx =
v

u− v

(where u and v are understood to be functions of x).
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INTRODUCTION

However neither program can compute the “antiderivative” of
exact expressions in more than one independent variable. For
example there are no inbuilt commands that would compute

ux vy − uxx vy−uy vx + uxy vx

=
∂

∂x
[uvy − ux vy] +

∂

∂y
[ux vx − uvx] .

In this last example, given a so-called differential function f,
we wish to compute a vector field F such that

f = DivF.

Of course, such a vector field F will not exist for an arbitrary
f. The existence (or non existence) and the computation of F
occurs in many situations.
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INTRODUCTION

The existence of F is resolved by the Euler operator.

The computation of F is resolved (in a theoretical sense, at
least) by the homotopy operator.

However, as will be demonstrated in this paper, the practical
implementation of the homotopy operator to compute F
involves a number of subtleties not readily apparent from its
definition.
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NOTATION

The natural arena for our discussion is the jet bundle. The
independent variables will be denoted generically by
x = (x1, x2, x3, . . . , xd).

For a unordered multi-indices (with non-negative components)
I = (i1, i2, . . . , id) and J = (j1, j2, . . . , jd) define

|I| = i1 + i2 + · · ·+ id
I! = i1! i2! · · · id!

xI = xi11 x
i2
2 · · · x

id
d

∂If

∂xI
=

∂|I|f

∂xi11 ∂x
i2
2 · · · ∂x

id
d

I+ J = (i1 + j1, i2 + j2, . . . , id + jd)(
I

J

)
=

(
i1
j1

)(
i2
j2

)
· · ·

(
id
jd

)
=

I!

(I− J)! J!
.
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NOTATION

We introduce a partial ordering on multi-indices. I > J if I− J
has no negative entries.

In order to reduce the number of subscripts, we generically
denote dependent variables by u and use the convention that∑

u

indicates summation over all dependent variables

For each dependent variable u, let uI be the jet variable
associated with

∂Iu

∂xI
.
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NOTATION

The total derivative with respect to xi is given by

Di =
∂

∂xi
+

∑
I, u

uI+ei
∂

∂uI

where ei is the multi-index with 1 in the ith position, 0
elsewhere.

The summation is over all non-negative multi-indices I and all
dependent variables u. However there will only be a finite
number of non-zero terms in this summation.

In the one variable case, we will drop the subscript on D.

The divergence of a differential vector field F is given by

DivF =

d∑
i=1

Di Fi.
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NOTATION

Finally, let
DI = Di11 Di22 · · · Didd

where superscripts indicate composition.
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EXISTENCE – THE EULER OPERATOR

DEFINITION

A scalar differential function f is exact or a divergence if and only
if there exists a differential function F such that

f = DivF =

d∑
i=1

Di Fi.

THEOREM (Olver, 1993, p. 248)

A necessary and sufficient condition for a function f to be exact is
that

Eu f ≡
∑
I

(−1)IDI
∂f

∂uI
= 0 (1)

for each dependent variable u. Eu is called the Euler operator (or
variational derivative) associated with the dependent variable u.
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EXISTENCE – THE EULER OPERATOR

EXAMPLE

Let
f = ux vy − uxx vy − uy vx + uxy vx

then

Eu f = − Dx
∂f

∂ux
+ D2x

∂f

∂uxx
− Dy

∂f

∂uy
+ DxDy

∂f

∂uxy

= − Dx vy − D2x vy + Dy vx + DxDy vx

= − vxy − vxxy + vxy + vxxy

= 0
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EXISTENCE – THE EULER OPERATOR

EXAMPLE

and

Ev f = − Dx
∂f

∂vx
− Dy

∂f

∂vy

= − Dx (uxy − uy) − Dy (ux − uxx)

= 0.

Thus f is exact.
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COMPUTING THE INVERSE

The question we wish to address is that given a differential
function f that is exact, compute F such that

f = DivF.

Of course F will not be unique.

DEFINITION

The higher Euler operators are given by

EJu =
∑
I>J

(−1)I−J
(
I

J

)
DI−J

∂

∂uI
(2)

for each non-negative multi-index J and each dependent variable u.
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COMPUTING THE INVERSE

These operators can be easily implemented in both MAPLE and
MATHEMATICA. Their importance lies in the following result.

THEOREM

Let f be a differential function. Then∑
J

DJ
(
uEJu f

)
=

∑
I

uI
∂f

∂uI
≡Mu f (3)

say.

If f is exact then the left hand side of (3) is a divergence (the
J = 0 term is zero).
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COMPUTING THE INVERSE

LEMMA

The operators Mu and Di commute.

For the sake of clarity, let us return briefly to the case of one
independent variable. If f is exact then (3) reads

D
∞∑
j=0

Dj
(
uEj+1u f

)
= Mu f. (4)

Formally we wish to define

F = M−1
u

∞∑
j=0

Dj
(
uEj+1u f

)
to obtain

f = D F.
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COMPUTING THE INVERSE

For this strategy to be successful, we must be able to solve
the equation Mu F = g. This equation is a first order linear
partial differential equation for F.

PROPOSITION

Suppose
Mu F = g (5)

for some (given) differential function g. Then

F =

∫u g ◦ φu
λ

dλ+ χ (6)

where

φu : uI 7→
λuI
u

(7)

and χ ∈ kerMu.
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COMPUTING THE INVERSE

EXAMPLE

Let

g =
vux (v− u)

(u+ v)3
.

Then

F =

∫u g ◦ φu
λ

dλ =

∫u vux (v− λ)
u (λ+ v)3

dλ =
vux

(u+ v)2

with
Mu F = g

as expected.
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THE “STANDARD” HOMOTOPY OPERATOR

Note that this approach differs from the standard approach to
homotopy operators.

There the homotopy

φ : uI 7→ λuI

is used and the integral becomes∫1
0

g ◦ φ
λ

dλ. (8)

However, in many situations this integral is singular.
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THE “STANDARD” HOMOTOPY OPERATOR

Consider the almost trivial case

Mu F = 1.

In the standard approach we find

F =

∫1
0

1

λ
dλ

which is, of course, singular.

However, with the approach advocated here, we obtain

F =

∫u 1
λ
dλ = logu.

This frequent singular nature of the integral (8) is one of the
subtleties mentioned above.
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THE ONE INDEPENDENT VARIABLE CASE

Returning to the one independent variable case, let

Iu f =

∞∑
j=0

Dj
(
uEj+1u f

)
(9)

and

F = Hu f =

∫u (Iu f) ◦ φu
λ

dλ. (10)

Equation (4) is
D Iu f = Mu f.

By (6), we have
Mu F = Iu f

and therefore
D Mu F = Mu f.
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THE ONE INDEPENDENT VARIABLE CASE

Since Mu and D commute, we obtain

MuD F = Mu f.

However this only implies that

χ = f− D F ∈ kerMu.

In the work of Hereman and his coworkers, this issue was
circumvented by requiring f to be polynomial with no explicit
dependency on the independent variables. In this case the
kernel of Mu is trivial.

When kerMu is non-trivial, there are a number of issues to be
handled.
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THE CHOICE OF THE HOMOTOPY φu

EXAMPLE

Let
f =

uxx

ux
.

Now Iu f = 1 and so F = Hu f = logu. However

χ = f− D F =
uuxx − u

2
x

uux
∈ kerMu.

We have, if anything, complicated matters.
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THE CHOICE OF THE HOMOTOPY φu

The issue here is that u does not occur explicitly in f. We can
remedy this issue by choosing a different homotopy. In this
case, let

φux : uI 7→
λuI
ux

Now we obtain

F = Hux f ≡
∫ux (Iu f) ◦ φux

λ
dλ = logux.
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THE KERNEL OF Mu

Next we need to deal with the “remainder” χ .

COROLLARY

χ ∈ kerMu if and only if

χ ◦ φu = χ;

that is,
χ = χ(ξI)

where
ξI =

uI
u

(treating the jet variables that do not depend on u as constants).

Thus χ must be a function of the homogeneous coordinates
ξI.
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THE KERNEL OF Mu

In this case, we perform a change of coordinates

µ = logu.

Now

ξx =
ux

u
= µx

ξxx =
uxx

u
= µxx + µ

2
x

ξxxx =
uxxx

u
= µxxx + 3µxx µx + µ

3
x

...

and so χ is a function of derivatives µI but not µ.

We now compute the homotopy based on the dependent
variable µ, Hµx χ. since µ does not occur in χ.
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and so χ is a function of derivatives µI but not µ.

We now compute the homotopy based on the dependent
variable µ, Hµx χ. since µ does not occur in χ.
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THE KERNEL OF Mu

If a remainder still exist, it will be homogeneous in

µI
µx

.

We repeat this process with the variable logµx. At each stage
we reduce the number of variables that the remainder depends
on. Thus the process will terminate with the remainder, if not
zero, depending only on the independent variable.

Note that, despite the notation, the x subscript on the
homogeneous variable ξ does not indicate differentiation. For
example

D ξx = ξxx − ξ
2
x 6= ξxx.

Also note that if f ∈ ker Iu then, by (6), f ∈ kerMu and so
we perform the above change of variables.
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THE KERNEL OF Mu

EXAMPLE

Let
f =

uuxx

u2x
.

Note that Iu f = 0. Rewriting f, we have

f =
ξxx

ξ2x
=
µxx + µ

2
x

µ2x

and so

Iµ f =
1

µx
, F = Hµx f = −

1

µx
.

Now D F− f = − 1 = − D x and so

D

(
x−

1

µx

)
= D

(
x−

u

ux

)
= f.
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MORE THAN ONE DEPENDENT VARIABLE

Repeat process for each dependent variable until reminder
reduces to 0.

EXAMPLE

Let

f =
v(v vx u

2
x + 2u v

2
x ux − uvuxx vx − uvux vxx)

u2x v
2
x

.

(This example cannot be handled by MAPLE Release 13.) Note
that Iu f = 0. In this case we can either introduce homogeneous
variables or

Iv f =
uv2

ux vx
and Hv f =

uv2

ux vx
.

Furthermore

D

(
uv2

ux vx

)
= f.
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MORE THAN ONE INDEPENDENT VARIABLE

If f is exact then (3) becomes∑
I∈J

DI
(
uEIu f

)
= Mu f

with 0 6∈ J.

Split the indexing set J

Jk = {I ∈ J : ik > 0 and ik ′ = 0 for k ′ < k}

for each k = 1, 2, . . . , d.

Clearly the Jk are disjoint whose union is J (there are many
possible choices for this split).
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MORE THAN ONE INDEPENDENT VARIABLE

We now define

Iku f =
∑
I∈Jk

DI−ek
(
uEIu f

)
.

Let

Fk = Hku f ≡
∫u (Iku f) ◦ φu

λ
dλ.

As before, we have

d∑
k=1

Dk F
k − f ∈ kerMu.
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MORE THAN ONE INDEPENDENT VARIABLE

EXAMPLE

Let

f =
u2x vx uy − vu2x uxy + vx uy uxy − ux u

2
y vxy

u2x u
2
y

.

We have

Fx = Hxu f =
uux uy vxy − 2u vx uy uxy − vu3x + ux vx u

2
y

u3x uy

and

Fy = Hyu f =
u(2vx uxx − ux vxx)

u3x

with
DxF

x + DyF
y = f.
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MORE THAN ONE INDEPENDENT VARIABLE

EXAMPLE

Note that if we use v we obtain

Gx = Hxv f =
vu2x + vuy uxy − ux uy vy

u2x uy

and
Gy = Hyv f =

vuxx

u2x

with
DxG

x + DyG
y = f.

Divergence Operator



ALGORITHM

procedure INVDIV(f) . Input exact function f
x := INDVAR(f) . List of independent variables
seq(Fk := 0,k ∈ x) . Initialize Fk

χ := f . Initialize χ
for u ∈ DEPVAR(f) do . u a dependent variable

for k ∈ x do
g = HOMOTOPY(u,χ,k) . Hku(χ)
Fk := Fk + g . Update Fk

χ := χ− Dk g . Update χ
if χ = 0 then return F . F = [seq(Fk,k ∈ x)]
end if

end for
end for
return F, INVDIV(CHANGECOORD(χ)) . Use homogeneous

coordinates
end procedure

Divergence Operator


