Inverting the Divergence Operator

Mark Hickman
Department of Mathematics \& Statistics
University of Canterbury
M.Hickman@math.canterbury.ac.nz

$53^{\text {th }}$ Annual Meeting of the Australian Mathematical Society
Adelaide
28 September - 1 October 2009

Introduction

- Algebraic computing packages such as MAPLE and MATHEMATICA are adept at computing the integral of an explicit expression in closed form (where possible). Neither program has any trouble in, for example,

$$
\int \frac{1}{x \log x} d x=\log (\log x)
$$

Introduction

- Algebraic computing packages such as MAPLE and Mathematica are adept at computing the integral of an explicit expression in closed form (where possible). Neither program has any trouble in, for example,

$$
\int \frac{1}{x \log x} d x=\log (\log x) .
$$

- MAPLE from release 9 onwards has a limited facility to handle expressions such as

$$
\int \frac{u v_{x}-v u_{x}}{(u-v)^{2}} d x=\frac{v}{u-v}
$$

(where u and v are understood to be functions of x).

Introduction

- However neither program can compute the "antiderivative" of exact expressions in more than one independent variable. For example there are no inbuilt commands that would compute

$$
\begin{aligned}
& u_{x} v_{y}-u_{x x} v_{y}-u_{y} v_{x}+u_{x y} v_{x} \\
&=\frac{\partial}{\partial x}\left[u v_{y}-u_{x} v_{y}\right]+\frac{\partial}{\partial y}\left[u_{x} v_{x}-u v_{x}\right]
\end{aligned}
$$

Introduction

- However neither program can compute the "antiderivative" of exact expressions in more than one independent variable. For example there are no inbuilt commands that would compute

$$
\begin{aligned}
& u_{x} v_{y}-u_{x x} v_{y}-u_{y} v_{x}+u_{x y} v_{x} \\
&=\frac{\partial}{\partial x}\left[u v_{y}-u_{x} v_{y}\right]+\frac{\partial}{\partial y}\left[u_{x} v_{x}-u v_{x}\right]
\end{aligned}
$$

- In this last example, given a so-called differential function f, we wish to compute a vector field \mathbf{F} such that

$$
f=\operatorname{Div} \mathbf{F}
$$

Introduction

- However neither program can compute the "antiderivative" of exact expressions in more than one independent variable. For example there are no inbuilt commands that would compute

$$
\begin{aligned}
u_{x} v_{y}-u_{x x} v_{y}-u_{y} & v_{x}+u_{x y} v_{x} \\
& =\frac{\partial}{\partial x}\left[u v_{y}-u_{x} v_{y}\right]+\frac{\partial}{\partial y}\left[u_{x} v_{x}-u v_{x}\right] .
\end{aligned}
$$

- In this last example, given a so-called differential function f, we wish to compute a vector field \mathbf{F} such that

$$
\mathrm{f}=\operatorname{Div} \mathbf{F}
$$

- Of course, such a vector field \mathbf{F} will not exist for an arbitrary f . The existence (or non existence) and the computation of \mathbf{F} occurs in many situations.

Introduction

- The existence of \mathbf{F} is resolved by the Euler operator.

Introduction

- The existence of \mathbf{F} is resolved by the Euler operator.
- The computation of \mathbf{F} is resolved (in a theoretical sense, at least) by the homotopy operator.

Introduction

- The existence of \mathbf{F} is resolved by the Euler operator.
- The computation of \mathbf{F} is resolved (in a theoretical sense, at least) by the homotopy operator.
- However, as will be demonstrated in this paper, the practical implementation of the homotopy operator to compute \mathbf{F} involves a number of subtleties not readily apparent from its definition.

Notation

- The natural arena for our discussion is the jet bundle. The independent variables will be denoted generically by $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right)$.

Notation

- The natural arena for our discussion is the jet bundle. The independent variables will be denoted generically by

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right)
$$

- For a unordered multi-indices (with non-negative components) $\mathrm{I}=\left(\mathfrak{i}_{1}, \mathfrak{i}_{2}, \ldots, \mathfrak{i}_{\mathrm{d}}\right)$ and $\mathrm{J}=\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{d}}\right)$ define

$$
\begin{aligned}
|I| & =i_{1}+\mathfrak{i}_{2}+\cdots+\mathfrak{i}_{d} \\
I! & =i_{1}!i_{2}!\cdots \mathfrak{i}_{d}! \\
x^{I} & =x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{d}^{i_{d}} \\
\frac{\partial^{I} f}{\partial x^{I}} & =\frac{\partial^{|I|} f}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \cdots \partial x_{d}^{i_{d}}} \\
I+J & =\left(i_{1}+\mathfrak{j}_{1}, i_{2}+\mathfrak{j}_{2}, \ldots, i_{d}+\mathfrak{j}_{d}\right) \\
\binom{I}{J} & =\binom{i_{1}}{j_{1}}\binom{i_{2}}{j_{2}} \cdots\binom{i_{d}}{j_{d}}=\frac{I!}{(I-J)!J!} .
\end{aligned}
$$

Notation

- We introduce a partial ordering on multi-indices. $I \geqslant J$ if $I-J$ has no negative entries.

Notation

- We introduce a partial ordering on multi-indices. $I \geqslant J$ if $I-J$ has no negative entries.
- In order to reduce the number of subscripts, we generically denote dependent variables by u and use the convention that

$$
\sum_{u}
$$

indicates summation over all dependent variables

Notation

- We introduce a partial ordering on multi-indices. $I \geqslant J$ if $I-J$ has no negative entries.
- In order to reduce the number of subscripts, we generically denote dependent variables by u and use the convention that

$$
\sum_{u}
$$

indicates summation over all dependent variables

- For each dependent variable u, let u_{I} be the jet variable associated with

$$
\frac{\partial^{\mathrm{I}} u}{\partial x^{\mathrm{I}}}
$$

Notation

- The total derivative with respect to x_{i} is given by

$$
\mathrm{D}_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}+\sum_{\mathrm{I}, \mathrm{u}} u_{\mathrm{I}+e_{i}} \frac{\partial}{\partial u_{\mathrm{I}}}
$$

where e_{i} is the multi-index with 1 in the $i^{\text {th }}$ position, 0 elsewhere.

Notation

- The total derivative with respect to x_{i} is given by

$$
\mathrm{D}_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}+\sum_{\mathrm{I}, \mathrm{u}} u_{\mathrm{I}+e_{i}} \frac{\partial}{\partial u_{\mathrm{I}}}
$$

where e_{i} is the multi-index with 1 in the $i^{\text {th }}$ position, 0 elsewhere.

- The summation is over all non-negative multi-indices I and all dependent variables u. However there will only be a finite number of non-zero terms in this summation.

Notation

- The total derivative with respect to x_{i} is given by

$$
\mathrm{D}_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}+\sum_{\mathrm{I}, \mathrm{u}} u_{\mathrm{I}+e_{i}} \frac{\partial}{\partial u_{\mathrm{I}}}
$$

where e_{i} is the multi-index with 1 in the $i^{\text {th }}$ position, 0 elsewhere.

- The summation is over all non-negative multi-indices I and all dependent variables u. However there will only be a finite number of non-zero terms in this summation.
- In the one variable case, we will drop the subscript on D.

Notation

- The total derivative with respect to x_{i} is given by

$$
\mathrm{D}_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}+\sum_{\mathrm{I}, \mathrm{u}} u_{\mathrm{I}+e_{i}} \frac{\partial}{\partial u_{\mathrm{I}}}
$$

where e_{i} is the multi-index with 1 in the $i^{\text {th }}$ position, 0 elsewhere.

- The summation is over all non-negative multi-indices I and all dependent variables u. However there will only be a finite number of non-zero terms in this summation.
- In the one variable case, we will drop the subscript on D.
- The divergence of a differential vector field \mathbf{F} is given by

$$
\operatorname{Div} \mathbf{F}=\sum_{i=1}^{\mathrm{d}} \mathrm{D}_{\mathrm{i}} \mathbf{F}_{\mathrm{i}}
$$

Notation

- Finally, let

$$
D^{I}=D_{1}^{i_{1}} D_{2}^{i_{2}} \cdots D_{d}^{i_{d}}
$$

where superscripts indicate composition.

Existence - the Euler operator

Definition

A scalar differential function f is exact or a divergence if and only if there exists a differential function \mathbf{F} such that

$$
f=\operatorname{Div} \mathbf{F}=\sum_{i=1}^{\mathrm{d}} \mathrm{D}_{\mathrm{i}} \mathbf{F}_{\mathrm{i}}
$$

EXISTENCE - THE EULER OPERATOR

Definition

A scalar differential function f is exact or a divergence if and only if there exists a differential function \mathbf{F} such that

$$
f=\operatorname{Div} \mathbf{F}=\sum_{i=1}^{\mathrm{d}} \mathrm{D}_{\mathrm{i}} \mathbf{F}_{\mathrm{i}}
$$

TheOrem (Olver, 1993, p. 248)

A necessary and sufficient condition for a function f to be exact is that

$$
\begin{equation*}
\varepsilon_{u} f \equiv \sum_{I}(-1)^{I} D^{I} \frac{\partial f}{\partial u_{\mathrm{I}}}=0 \tag{1}
\end{equation*}
$$

for each dependent variable $\mathfrak{u} . \mathcal{E}_{\mathfrak{u}}$ is called the Euler operator (or variational derivative) associated with the dependent variable u.

Existence - the Euler operator

Example

Let

$$
f=u_{x} v_{y}-u_{x x} v_{y}-u_{y} v_{x}+u_{x y} v_{x}
$$

then

Existence - the Euler operator

EXAMPLE

Let

$$
f=u_{x} v_{y}-u_{x x} v_{y}-u_{y} v_{x}+u_{x y} v_{x}
$$

then

$$
\begin{aligned}
\mathcal{E}_{u} f & =-D_{x} \frac{\partial f}{\partial u_{x}}+D_{x}^{2} \frac{\partial f}{\partial u_{x x}}-D_{y} \frac{\partial f}{\partial u_{y}}+D_{x} D_{y} \frac{\partial f}{\partial u_{x y}} \\
& =-D_{x} v_{y}-D_{x}^{2} v_{y}+D_{y} v_{x}+D_{x} D_{y} v_{x} \\
& =-v_{x y}-v_{x x y}+v_{x y}+v_{x x y} \\
& =0
\end{aligned}
$$

EXISTENCE - THE EULER OPERATOR

EXAMPLE

and

$$
\begin{aligned}
\varepsilon_{v} f & =-D_{x} \frac{\partial f}{\partial v_{x}}-D_{y} \frac{\partial f}{\partial v_{y}} \\
& =-D_{x}\left(u_{x y}-u_{y}\right)-D_{y}\left(u_{x}-u_{x x}\right) \\
& =0
\end{aligned}
$$

Thus f is exact.

COMPUTING THE INVERSE

- The question we wish to address is that given a differential function f that is exact, compute \mathbf{F} such that

$$
\mathrm{f}=\operatorname{Div} \mathbf{F}
$$

Of course \mathbf{F} will not be unique.

COMPUTING THE INVERSE

- The question we wish to address is that given a differential function f that is exact, compute \mathbf{F} such that

$$
\mathrm{f}=\operatorname{Div} \mathbf{F}
$$

Of course \mathbf{F} will not be unique.

Definition

The higher Euler operators are given by

$$
\begin{equation*}
\varepsilon_{u}^{J}=\sum_{I \geqslant J}(-1)^{I-J}\binom{I}{J} D^{I-J} \frac{\partial}{\partial u_{I}} \tag{2}
\end{equation*}
$$

for each non-negative multi-index J and each dependent variable u.

COMPUTING THE INVERSE

- These operators can be easily implemented in both MAPLE and Mathematica. Their importance lies in the following result.

COMPUTING THE INVERSE

- These operators can be easily implemented in both MAPLE and Mathematica. Their importance lies in the following result.

THEOREM

Let f be a differential function. Then

$$
\begin{equation*}
\sum_{J} D^{J}\left(u \varepsilon_{u}^{J} f\right)=\sum_{I} u_{I} \frac{\partial f}{\partial u_{I}} \equiv \mathcal{M}_{\mathfrak{u}} f \tag{3}
\end{equation*}
$$

say.

COMPUTING THE INVERSE

- These operators can be easily implemented in both MAPLE and Mathematica. Their importance lies in the following result.

THEOREM

Let f be a differential function. Then

$$
\begin{equation*}
\sum_{J} D^{J}\left(u \varepsilon_{u}^{J} f\right)=\sum_{I} u_{I} \frac{\partial f}{\partial u_{I}} \equiv \mathcal{M}_{u} f \tag{3}
\end{equation*}
$$

say.

- If f is exact then the left hand side of (3) is a divergence (the $\mathrm{J}=0$ term is zero).

COMPUTING THE INVERSE

LEMMA
The operators $\mathcal{M}_{\mathfrak{u}}$ and D_{i} commute.

COMPUTING THE INVERSE

Lemma

The operators $\mathcal{M}_{\mathfrak{u}}$ and $\mathrm{D}_{\mathfrak{i}}$ commute.

- For the sake of clarity, let us return briefly to the case of one independent variable. If f is exact then (3) reads

$$
\begin{equation*}
D \sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{u}^{j+1} f\right)=\mathcal{M}_{u} f \tag{4}
\end{equation*}
$$

COMPUTING THE INVERSE

LEMMA

The operators $\mathcal{M}_{\mathfrak{u}}$ and $\mathrm{D}_{\mathfrak{i}}$ commute.

- For the sake of clarity, let us return briefly to the case of one independent variable. If f is exact then (3) reads

$$
\begin{equation*}
D \sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{u}^{j+1} f\right)=\mathcal{M}_{u} f \tag{4}
\end{equation*}
$$

- Formally we wish to define

$$
F=\mathcal{M}_{\mathfrak{u}}^{-1} \sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{\mathfrak{u}}^{j+1} f\right)
$$

to obtain

$$
\mathrm{f}=\mathrm{DF}
$$

COMPUTING THE INVERSE

- For this strategy to be successful, we must be able to solve the equation $\mathcal{M}_{\mathfrak{u}} F=g$. This equation is a first order linear partial differential equation for F.

COMPUTING THE INVERSE

- For this strategy to be successful, we must be able to solve the equation $\mathcal{M}_{\mathfrak{u}} F=g$. This equation is a first order linear partial differential equation for F.

Proposition

Suppose

$$
\begin{equation*}
\mathcal{M}_{u} F=g \tag{5}
\end{equation*}
$$

for some (given) differential function g. Then

$$
\begin{equation*}
F=\int^{u} \frac{g \circ \phi_{u}}{\lambda} d \lambda+\chi \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{u}: u_{\mathrm{I}} \mapsto \frac{\lambda u_{\mathrm{I}}}{u} \tag{7}
\end{equation*}
$$

and $\chi \in \operatorname{ker} \mathcal{M}_{u}$.

COMPUTING THE INVERSE

EXAMPLE

Let

$$
\mathrm{g}=\frac{v \mathrm{u}_{\mathrm{x}}(v-\mathrm{u})}{(\mathrm{u}+v)^{3}}
$$

Then

$$
\mathrm{F}=\int^{\mathrm{u}} \frac{\mathrm{~g} \circ \phi_{\mathrm{u}}}{\lambda} \mathrm{~d} \lambda=\int^{\mathrm{u}} \frac{v \mathrm{u}_{\mathrm{x}}(v-\lambda)}{u(\lambda+v)^{3}} \mathrm{~d} \lambda=\frac{v u_{\mathrm{x}}}{(u+v)^{2}}
$$

with

$$
\mathcal{M}_{u} F=g
$$

as expected.

- Note that this approach differs from the standard approach to homotopy operators.
- Note that this approach differs from the standard approach to homotopy operators.
- There the homotopy

$$
\phi: u_{\mathrm{I}} \mapsto \lambda \mathfrak{u}_{\mathrm{I}}
$$

is used and the integral becomes

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathrm{~g} \circ \phi}{\lambda} \mathrm{~d} \lambda \tag{8}
\end{equation*}
$$

- Note that this approach differs from the standard approach to homotopy operators.
- There the homotopy

$$
\phi: \mathfrak{u}_{\mathrm{I}} \mapsto \lambda \mathfrak{u}_{\mathrm{I}}
$$

is used and the integral becomes

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathrm{~g} \circ \phi}{\lambda} \mathrm{~d} \lambda . \tag{8}
\end{equation*}
$$

- However, in many situations this integral is singular.

THE "STANDARD" HOMOTOPY OPERATOR

- Consider the almost trivial case

$$
\mathcal{M}_{\mathfrak{u}} \mathrm{F}=1 .
$$

THE "STANDARD" HOMOTOPY OPERATOR

- Consider the almost trivial case

$$
\mathcal{M}_{\mathfrak{u}} F=1
$$

- In the standard approach we find

$$
\mathrm{F}=\int_{0}^{1} \frac{1}{\lambda} \mathrm{~d} \lambda
$$

which is, of course, singular.

THE "STANDARD" HOMOTOPY OPERATOR

- Consider the almost trivial case

$$
\mathcal{M}_{\mathfrak{u}} F=1 .
$$

- In the standard approach we find

$$
\mathrm{F}=\int_{0}^{1} \frac{1}{\lambda} \mathrm{~d} \lambda
$$

which is, of course, singular.

- However, with the approach advocated here, we obtain

$$
F=\int^{u} \frac{1}{\lambda} d \lambda=\log u .
$$

THE "STANDARD" HOMOTOPY OPERATOR

- Consider the almost trivial case

$$
\mathcal{M}_{u} F=1
$$

- In the standard approach we find

$$
\mathrm{F}=\int_{0}^{1} \frac{1}{\lambda} \mathrm{~d} \lambda
$$

which is, of course, singular.

- However, with the approach advocated here, we obtain

$$
\mathrm{F}=\int^{u} \frac{1}{\lambda} \mathrm{~d} \lambda=\log u .
$$

- This frequent singular nature of the integral (8) is one of the subtleties mentioned above.

THE ONE INDEPENDENT VARIABLE CASE

- Returning to the one independent variable case, let

$$
\begin{equation*}
\mathcal{J}_{\mathfrak{u}} f=\sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{\mathfrak{u}}^{j+1} f\right) \tag{9}
\end{equation*}
$$

THE ONE INDEPENDENT VARIABLE CASE

- Returning to the one independent variable case, let

$$
\begin{equation*}
\mathcal{J}_{\mathfrak{u}} f=\sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{\mathfrak{u}}^{j+1} f\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\mathcal{H}_{\mathfrak{u}} f=\int^{u} \frac{\left(\mathcal{J}_{\mathfrak{u}} f\right) \circ \phi_{u}}{\lambda} d \lambda . \tag{10}
\end{equation*}
$$

THE ONE INDEPENDENT VARIABLE CASE

- Returning to the one independent variable case, let

$$
\begin{equation*}
\mathcal{J}_{\mathfrak{u}} f=\sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{\mathfrak{u}}^{j+1} f\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\mathcal{H}_{\mathfrak{u}} f=\int^{u} \frac{\left(\mathcal{J}_{\mathfrak{u}} f\right) \circ \phi_{u}}{\lambda} d \lambda . \tag{10}
\end{equation*}
$$

- Equation (4) is

$$
D \mathcal{J}_{\mathfrak{u}} f=\mathcal{M}_{\mathfrak{u}} \mathrm{f}
$$

THE ONE INDEPENDENT VARIABLE CASE

- Returning to the one independent variable case, let

$$
\begin{equation*}
\mathcal{J}_{\mathfrak{u}} f=\sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{\mathfrak{u}}^{j+1} f\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\mathcal{H}_{\mathfrak{u}} f=\int^{\mathfrak{u}} \frac{\left(\mathcal{J}_{\mathfrak{u}} f\right) \circ \phi_{u}}{\lambda} d \lambda . \tag{10}
\end{equation*}
$$

- Equation (4) is

$$
D \mathcal{J}_{\mathfrak{u}} f=\mathcal{M}_{\mathfrak{u}} f
$$

- By (6), we have

$$
\mathcal{M}_{\mathfrak{u}} F=\mathcal{J}_{\mathfrak{u}} f
$$

- Returning to the one independent variable case, let

$$
\begin{equation*}
\mathcal{J}_{\mathfrak{u}} f=\sum_{j=0}^{\infty} D^{j}\left(u \varepsilon_{\mathfrak{u}}^{j+1} f\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}=\mathcal{H}_{\mathfrak{u}} \mathrm{f}=\int^{\mathfrak{u}} \frac{\left(\mathcal{J}_{\mathfrak{u}} \mathrm{f}\right) \circ \phi_{\mathrm{u}}}{\lambda} \mathrm{~d} \lambda . \tag{10}
\end{equation*}
$$

- Equation (4) is

$$
D \mathcal{J}_{\mathfrak{u}} f=\mathcal{M}_{\mathfrak{u}} f
$$

- By (6), we have

$$
\mathcal{M}_{\mathfrak{u}} F=\mathcal{J}_{\mathfrak{u}} f
$$

and therefore

$$
D \mathcal{M}_{\mathfrak{u}} F=\mathcal{M}_{\mathfrak{u}} f
$$

THE ONE INDEPENDENT VARIABLE CASE

- Since $\mathcal{M}_{\mathfrak{u}}$ and D commute, we obtain

$$
\mathcal{M}_{u} D F=\mathcal{M}_{u} \mathrm{f}
$$

THE ONE INDEPENDENT VARIABLE CASE

- Since \mathcal{M}_{u} and D commute, we obtain

$$
\mathcal{M}_{u} D F=\mathcal{M}_{u} \mathrm{f}
$$

- However this only implies that

$$
\chi=\mathrm{f}-\mathrm{DF} \in \operatorname{ker} \mathcal{M}_{\mathfrak{u}}
$$

THE ONE INDEPENDENT VARIABLE CASE

- Since \mathcal{M}_{u} and D commute, we obtain

$$
\mathcal{M}_{u} D F=\mathcal{M}_{u} \mathrm{f}
$$

- However this only implies that

$$
\chi=f-D F \in \operatorname{ker} \mathcal{M}_{u} .
$$

- In the work of Hereman and his coworkers, this issue was circumvented by requiring f to be polynomial with no explicit dependency on the independent variables. In this case the kernel of $\mathcal{M}_{\mathfrak{u}}$ is trivial.

THE ONE INDEPENDENT VARIABLE CASE

- Since $\mathcal{M}_{\mathfrak{u}}$ and D commute, we obtain

$$
\mathcal{M}_{u} D F=\mathcal{M}_{u} \mathrm{f}
$$

- However this only implies that

$$
\chi=\mathrm{f}-\mathrm{DF} \in \operatorname{ker} \mathcal{M}_{u}
$$

- In the work of Hereman and his coworkers, this issue was circumvented by requiring f to be polynomial with no explicit dependency on the independent variables. In this case the kernel of $\mathcal{M}_{\mathfrak{u}}$ is trivial.
- When ker $\mathcal{M}_{\mathfrak{u}}$ is non-trivial, there are a number of issues to be handled.

EXAMPLE

Let

$$
\mathrm{f}=\frac{\mathrm{u}_{\mathrm{xx}}}{\mathrm{u}_{\mathrm{x}}}
$$

Now $\mathcal{J}_{u} f=1$ and so $F=\mathcal{H}_{u} f=\log u$. However

$$
\chi=f-D F=\frac{u u_{x x}-u_{x}^{2}}{u u_{x}} \in \operatorname{ker} \mathcal{M}_{u} .
$$

We have, if anything, complicated matters.

THE CHOICE OF THE HOMOTOPY ϕ_{u}

- The issue here is that u does not occur explicitly in f. We can remedy this issue by choosing a different homotopy. In this case, let

$$
\phi_{u_{x}}: \mathfrak{u}_{\mathrm{I}} \mapsto \frac{\lambda \mathfrak{u}_{\mathrm{I}}}{\mathfrak{u}_{\mathrm{x}}}
$$

- The issue here is that u does not occur explicitly in f. We can remedy this issue by choosing a different homotopy. In this case, let

$$
\phi_{\mathfrak{u}_{x}}: \mathfrak{u}_{\mathrm{I}} \mapsto \frac{\lambda \mathfrak{u}_{\mathrm{I}}}{\mathfrak{u}_{\mathrm{x}}}
$$

- Now we obtain

$$
\mathrm{F}=\mathcal{H}_{\mathfrak{u}_{x}} \mathrm{f} \equiv \int^{\mathbf{u}_{x}} \frac{\left(\mathcal{J}_{\mathfrak{u}} \mathrm{f}\right) \circ \phi_{\mathbf{u}_{x}}}{\lambda} \mathrm{~d} \lambda=\log {u_{x}}
$$

The kernel of \mathcal{M}_{u}

- Next we need to deal with the "remainder" χ.

The kernel of \mathcal{M}_{u}

- Next we need to deal with the "remainder" χ.
- Next we need to deal with the "remainder" χ.

Corollary

$\chi \in \operatorname{ker} M_{u}$ if and only if

$$
\chi \circ \phi_{\mathfrak{u}}=\chi ;
$$

that is,

$$
\chi=\chi\left(\xi_{I}\right)
$$

where

$$
\xi_{\mathrm{I}}=\frac{\mathrm{u}_{\mathrm{I}}}{\mathrm{u}}
$$

(treating the jet variables that do not depend on u as constants).

- Next we need to deal with the "remainder" χ.

Corollary

$\chi \in \operatorname{ker} M_{u}$ if and only if

$$
\chi \circ \phi_{\mathfrak{u}}=\chi ;
$$

that is,

$$
\chi=\chi\left(\xi_{I}\right)
$$

where

$$
\xi_{\mathrm{I}}=\frac{\mathrm{u}_{\mathrm{I}}}{\mathrm{u}}
$$

(treating the jet variables that do not depend on u as constants).

- Thus χ must be a function of the homogeneous coordinates ξ_{I}.

The kernel of \mathcal{M}_{u}

- In this case, we perform a change of coordinates

$$
\mu=\log u
$$

- In this case, we perform a change of coordinates

$$
\mu=\log u
$$

- Now

$$
\begin{aligned}
\xi_{x} & =\frac{u_{x}}{u}=\mu_{x} \\
\xi_{x x} & =\frac{u_{x x}}{u}=\mu_{x x}+\mu_{x}^{2} \\
\xi_{x x x} & =\frac{u_{x x x}}{u}=\mu_{x x x}+3 \mu_{x x} \mu_{x}+\mu_{x}^{3}
\end{aligned}
$$

and so χ is a function of derivatives μ_{I} but not μ.

- In this case, we perform a change of coordinates

$$
\mu=\log u
$$

- Now

$$
\begin{aligned}
\xi_{x} & =\frac{u_{x}}{u}=\mu_{x} \\
\xi_{x x} & =\frac{u_{x x}}{u}=\mu_{x x}+\mu_{x}^{2} \\
\xi_{x x x} & =\frac{u_{x x x}}{u}=\mu_{x x x}+3 \mu_{x x} \mu_{x}+\mu_{x}^{3}
\end{aligned}
$$

and so χ is a function of derivatives μ_{I} but not μ.

- We now compute the homotopy based on the dependent variable $\mu, \mathcal{H}_{\mu_{\mathrm{x}}} \chi$. since μ does not occur in χ.

The kernel of \mathcal{M}_{u}

- If a remainder still exist, it will be homogeneous in

$$
\frac{\mu_{\mathrm{I}}}{\mu_{x}}
$$

- If a remainder still exist, it will be homogeneous in

$$
\frac{\mu_{I}}{\mu_{x}}
$$

- We repeat this process with the variable $\log \mu_{x}$. At each stage we reduce the number of variables that the remainder depends on. Thus the process will terminate with the remainder, if not zero, depending only on the independent variable.

THE KERNEL OF \mathcal{M}_{u}

- If a remainder still exist, it will be homogeneous in

$$
\frac{\mu_{\mathrm{I}}}{\mu_{x}}
$$

- We repeat this process with the variable $\log \mu_{x}$. At each stage we reduce the number of variables that the remainder depends on. Thus the process will terminate with the remainder, if not zero, depending only on the independent variable.
- Note that, despite the notation, the x subscript on the homogeneous variable ξ does not indicate differentiation. For example

$$
D \xi_{x}=\xi_{x x}-\xi_{x}^{2} \neq \xi_{x x} .
$$

THE KERNEL OF \mathcal{M}_{u}

- If a remainder still exist, it will be homogeneous in

$$
\frac{\mu_{\mathrm{I}}}{\mu_{x}}
$$

- We repeat this process with the variable $\log \mu_{x}$. At each stage we reduce the number of variables that the remainder depends on. Thus the process will terminate with the remainder, if not zero, depending only on the independent variable.
- Note that, despite the notation, the x subscript on the homogeneous variable ξ does not indicate differentiation. For example

$$
D \xi_{x}=\xi_{x x}-\xi_{x}^{2} \neq \xi_{x x} .
$$

- Also note that if $f \in \operatorname{ker} \mathcal{J}_{\mathfrak{u}}$ then, by (6), $f \in \operatorname{ker} \mathcal{M}_{\mathfrak{u}}$ and so we perform the above change of variables.

The kernel of \mathcal{M}_{u}

EXAMPLE

Let

$$
f=\frac{u u_{x x}}{u_{x}^{2}}
$$

Note that $\mathcal{J}_{\mathfrak{u}} f=0$. Rewriting f , we have

$$
f=\frac{\xi_{x x}}{\xi_{x}^{2}}=\frac{\mu_{x x}+\mu_{x}^{2}}{\mu_{x}^{2}}
$$

and so

$$
\mathcal{J}_{\mu} f=\frac{1}{\mu_{x}}, \quad F=\mathcal{H}_{\mu_{x}} f=-\frac{1}{\mu_{x}}
$$

Now $D F-f=-1=-D x$ and so

$$
D\left(x-\frac{1}{\mu_{x}}\right)=D\left(x-\frac{u}{u_{x}}\right)=f
$$

More than one dependent variable

- Repeat process for each dependent variable until reminder reduces to 0 .

EXAMPLE

Let

$$
\mathrm{f}=\frac{v\left(v v_{x} u_{x}^{2}+2 u v_{x}^{2} u_{x}-u v u_{x x} v_{x}-u v u_{x} v_{x x}\right)}{u_{x}^{2} v_{x}^{2}}
$$

(This example cannot be handled by Maple Release 13.) Note that $\mathcal{J}_{\mathfrak{u}} f=0$. In this case we can either introduce homogeneous variables or

$$
\mathcal{J}_{v} \mathrm{f}=\frac{u v^{2}}{u_{x} v_{x}} \text { and } \mathcal{H}_{v} \mathrm{f}=\frac{u v^{2}}{u_{x} v_{x}}
$$

Furthermore

$$
D\left(\frac{u v^{2}}{u_{x} v_{x}}\right)=f
$$

More than one independent variable

- If f is exact then (3) becomes

$$
\sum_{I \in J} D^{I}\left(u \varepsilon_{u}^{I} f\right)=\mathcal{M}_{u} f
$$

with $0 \notin \mathrm{~J}$.

More than one independent variable

- If \boldsymbol{f} is exact then (3) becomes

$$
\sum_{I \in J} D^{I}\left(u \varepsilon_{\mathfrak{u}}^{I} f\right)=\mathcal{M}_{\mathfrak{u}} f
$$

with $0 \notin \mathrm{~J}$.

- Split the indexing set J

$$
\mathrm{J}_{\mathrm{k}}=\left\{\mathrm{I} \in \mathrm{~J}: \mathfrak{i}_{\mathrm{k}}>0 \text { and } \mathfrak{i}_{\mathrm{k}^{\prime}}=0 \text { for } \mathrm{k}^{\prime}<\mathrm{k}\right\}
$$

for each $k=1,2, \ldots, d$.

More than one independent variable

- If \boldsymbol{f} is exact then (3) becomes

$$
\sum_{I \in J} D^{I}\left(u \varepsilon_{u}^{I} f\right)=\mathcal{M}_{u} f
$$

with $0 \notin \mathrm{~J}$.

- Split the indexing set J

$$
\mathrm{J}_{\mathrm{k}}=\left\{\mathrm{I} \in \mathrm{~J}: \mathfrak{i}_{\mathrm{k}}>0 \text { and } \mathfrak{i}_{\mathrm{k}^{\prime}}=0 \text { for } \mathrm{k}^{\prime}<\mathrm{k}\right\}
$$

for each $k=1,2, \ldots, d$.

- Clearly the J_{k} are disjoint whose union is J (there are many possible choices for this split).

More than one independent variable

- We now define

$$
\mathcal{J}_{\mathfrak{u}}^{k} f=\sum_{\mathrm{I} \in \mathrm{~J}_{\mathrm{k}}} D^{\mathrm{I}-e_{k}}\left(\mathbf{u} \varepsilon_{\mathfrak{u}}^{\mathrm{I}} \mathbf{f}\right)
$$

More than one independent variable

- We now define

$$
\mathcal{J}_{\mathfrak{u}}^{k} f=\sum_{I \in J_{k}} D^{I-e_{k}}\left(u \varepsilon_{\mathfrak{u}}^{I} f\right)
$$

- Let

$$
F^{k}=\mathcal{H}_{\mathfrak{u}}^{k} f \equiv \int^{\mathfrak{u}} \frac{\left(\mathcal{J}_{\mathfrak{u}}^{k} f\right) \circ \phi_{\mathfrak{u}}}{\lambda} d \lambda .
$$

More than one independent variable

- We now define

$$
J_{\mathfrak{u}}^{k} f=\sum_{I \in J_{k}} D^{I-e_{k}}\left(u \varepsilon_{\mathfrak{u}}^{I} f\right)
$$

- Let

$$
F^{k}=\mathcal{H}_{\mathfrak{u}}^{k} f \equiv \int^{\mathfrak{u}} \frac{\left(\mathcal{J}_{\mathfrak{u}}^{k} f\right) \circ \phi_{\mathfrak{u}}}{\lambda} d \lambda .
$$

- As before, we have

$$
\sum_{k=1}^{d} D_{k} F^{k}-f \in \operatorname{ker} \mathcal{M}_{u}
$$

More than one independent variable

EXAMPLE

Let

$$
f=\frac{u_{x}^{2} v_{x} u_{y}-v u_{x}^{2} u_{x y}+v_{x} u_{y} u_{x y}-u_{x} u_{y}^{2} v_{x y}}{u_{x}^{2} u_{y}^{2}}
$$

We have

$$
F^{x}=\mathcal{H}_{u}^{x} f=\frac{u u_{x} u_{y} v_{x y}-2 u v_{x} u_{y} u_{x y}-v u_{x}^{3}+u_{x} v_{x} u_{y}^{2}}{u_{x}^{3} u_{y}}
$$

and

$$
F^{y}=\mathcal{H}_{\mathfrak{u}}^{y} f=\frac{u\left(2 v_{x} u_{x x}-u_{x} v_{x x}\right)}{u_{x}^{3}}
$$

with

$$
D_{x} F^{x}+D_{y} F^{y}=f
$$

More than one independent variable

EXAMPLE

Note that if we use v we obtain

$$
\mathrm{G}^{x}=\mathcal{H}_{v}^{x} \mathrm{f}=\frac{v \mathrm{u}_{x}^{2}+v u_{y} u_{x y}-u_{x} u_{y} v_{y}}{u_{x}^{2} u_{y}}
$$

and

$$
\mathrm{G}^{y}=\mathcal{H}_{v}^{y} \mathrm{f}=\frac{v \mathrm{u}_{x x}}{u_{x}^{2}}
$$

with

$$
D_{x} G^{x}+D_{y} G^{y}=f
$$

ALGORITHM

procedure $\operatorname{InvDiv}(f)$
$x:=\operatorname{INDVAR}(f)$
$\operatorname{seq}\left(F^{k}:=0, k \in x\right)$
$\chi:=\mathrm{f}$
for $u \in \operatorname{DEPVAR}(f)$ do for $k \in x$ do

$$
\mathrm{g}=\text { НОМОТОРУ }(\mathrm{u}, \chi, \mathrm{k})
$$ $\mathrm{F}^{\mathrm{k}}:=\mathrm{F}^{\mathrm{k}}+\mathrm{g}$ $\chi:=\chi-D_{k} g$ if $\chi=0$ then return F end if end for

end for
return $\mathrm{F}, \operatorname{INvDiv}(\operatorname{CHANGECOORD}(\mathrm{X})) \quad \triangleright$ Use homogeneous
coordinates
end procedure

