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INTRODUCTION

PROBLEM

When are two curves the same?

What do we mean by the same?

Is the second curve the image of the first curve but viewed
from a different position?
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MATHEMATICAL FORMULATION

Group of allowed transformations, G.

Action of G on R2 (in this case) G× R2 → R2

(g, x) 7→ g · x
Two curves C and C̃ are equivalent (under G) if there exists
g ∈ G such that

g · C = C̃.

For image recognition applications, G is the (Lie) group of
projective transformations (or a subgroup of this group). The
action on R2 is given by

(x, u) 7→
(
αx+ βu+ γ

ρx+ σu+ τ
,
λx+ µu+ ν

ρx+ σu+ τ

)
with

det

α β γ

λ µ ν

ρ σ τ

 = 1.
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MATHEMATICAL SOLUTION IN A NUTSHELL

É. Cartan’s method of equivalence (1922).

Construct a lifted moving coframe.

Prolongation and absorption of this coframe to obtain an
involutive coframe.

Normalize to remove remaining group parameters.

Obtain (eventually!) the differential invariants.

Two curves are equivalent if (and only if) their
differential invariants agree.
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BUT ...

Why not?

Computing differential invariants by hand is not for the faint
hearted.
The differential invariants may be of little use in practice.

For the projective group, the invariants depend on derivatives
up to order 7.

Resolution

Use a algebraic computing package (MAPLE in this case).

The computations are challenging for computer algebra
packages due to term explosion (far more severe than in
“standard” point symmetry computations) and branching.

One can reformulate the equivalence problem to yield
invariants less sensitive to noise.
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EXTERIOR

EXTERIOR is a package that runs under MAPLE 10, 11 or 12
that is design for computations in the exterior bundle of jet
spaces.

Input and output from EXTERIOR matches “hand
computations” as much as possible.

EXTERIOR is ideal for equivalence type computations (as well
as Lie symmetries, Cauchy characteristics, .... computations).

EXTERIOR is not restricted to polynomial dependencies.

EXTERIOR



EXTERIOR

EXTERIOR is a package that runs under MAPLE 10, 11 or 12
that is design for computations in the exterior bundle of jet
spaces.

Input and output from EXTERIOR matches “hand
computations” as much as possible.

EXTERIOR is ideal for equivalence type computations (as well
as Lie symmetries, Cauchy characteristics, .... computations).

EXTERIOR is not restricted to polynomial dependencies.

EXTERIOR



EXTERIOR

EXTERIOR is a package that runs under MAPLE 10, 11 or 12
that is design for computations in the exterior bundle of jet
spaces.

Input and output from EXTERIOR matches “hand
computations” as much as possible.

EXTERIOR is ideal for equivalence type computations (as well
as Lie symmetries, Cauchy characteristics, .... computations).

EXTERIOR is not restricted to polynomial dependencies.

EXTERIOR



EXTERIOR

EXTERIOR is a package that runs under MAPLE 10, 11 or 12
that is design for computations in the exterior bundle of jet
spaces.

Input and output from EXTERIOR matches “hand
computations” as much as possible.

EXTERIOR is ideal for equivalence type computations (as well
as Lie symmetries, Cauchy characteristics, .... computations).

EXTERIOR is not restricted to polynomial dependencies.

EXTERIOR



AN EXAMPLE

PROBLEM

Equivalence of second order ODEs

uxx = F(x, u, ux)

under fibre preserving transformations

(x, u) 7→ (f(x), g(x, u)).

This problem illustrates the features finding the invariants of
the projective group.

Hopefully(!) we can do this computation live in the allocated
time frame.
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AN EXAMPLE

Coframe:

ω =

du− ux dx

dux − F dx

dx



Group action:

G =

a1 0 0

a2 a3 0

0 0 a4


Lifted coframe:

θ = G ·ω =

 a1 du− a1 ux dx

a2 du+ a3 dux − (a2 ux + a3 F)dx

a4 dx


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AN EXAMPLE

“Absorbed” form:

dθ =

Φ1 ∧ θ1 + T θ2 ∧ θ3

Φ2 ∧ θ1 +Φ3 ∧ θ2

Φ4 ∧ θ3


with

Φ =



da1

a1
−
a2 dx

a3

da2

a1
−
a2 da3 + (a2

2 − a2 a3 Fux
− a2

3 Fu)dx

a1 a3

da3

a3
+

(
a2

a3
+ Fux

)
dx

da4

a4


and

T = −
a1

a3 a4
.
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AN EXAMPLE

Freedom in absorbed form:

Φ→ Φ+


χ

1,1
0 0

χ
2,1

χ
2,2

0

χ
2,2

χ
3,2

0

0 0 χ
4,3

 θ.

Normalize non-constant torsion:

T = −1

that is,

a3 =
a1

a4

.
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AN EXAMPLE

Recompute absorbed form:

dθ =

 Φ1 ∧ θ1 − θ2 ∧ θ3

Φ2 ∧ θ1 + (Φ1 −Φ3) ∧ θ2

Φ3 ∧ θ3


with

Φ =



da1

a1

−
a2 a4 dx

a1
1

a2
1
a4

(
a1 a4 da2 − a2 a4 da1 + a1 a2 da4

− (a2
2
a2

4
+ a1 a2 a4 Fux − a2

1
Fu)dx

)
da4

a4

−

(
2a2 a4

a1

+ Fux

)
dx


.
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AN EXAMPLE

Reduced Cartan characters:

s ′ =
[
3 0 0

]

Cartan test:
System is not involutive.

Freedom:

Φ→ Φ+

χ1,1
0 0

χ
2,1

χ
1,1

0

0 0 0

 θ = Φ+ Zθ.
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AN EXAMPLE – PROLONGATION

Prolonged coframe:

θ(1) =

[
θ

Φ

]

Prolonged action:

G(1) =

[
I 0

Z I

]
Normalize non-constant torsion.

This prolonged coframe is involutive.
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AN EXAMPLE – INVARIANT COFRAME

We have

dθ(1) =



Φ1 ∧ θ1 − θ2 ∧ θ3

Φ2 ∧ θ1 + (Φ1 −Φ3) ∧ θ2

Φ3 ∧ θ3

π1 ∧ θ1 −Φ2 ∧ θ3

π2 ∧ θ1 + π1 ∧ θ2 +Φ2 ∧Φ3

− 2Φ2 ∧ θ3


with

π1 = J1 θ2 + J2 θ3

π2 = J3 θ3
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AN EXAMPLE

Normalize invariant structure functions to remove group
parameters.

The coefficients of θa ∧ θb on the equations for dθc are the
structure invariants.

However they are not necessarily independent or in “optimal”
form.

EXTERIOR



AN EXAMPLE

Normalize invariant structure functions to remove group
parameters.

The coefficients of θa ∧ θb on the equations for dθc are the
structure invariants.

However they are not necessarily independent or in “optimal”
form.

EXTERIOR



AN EXAMPLE

Normalize invariant structure functions to remove group
parameters.

The coefficients of θa ∧ θb on the equations for dθc are the
structure invariants.

However they are not necessarily independent or in “optimal”
form.

EXTERIOR


