
Leading Order Integrability Conditions for
Differential-Difference Equations

Mark Hickman
Department of Mathematics & Statistics

University of Canterbury
M.Hickman@math.canterbury.ac.nz

FoCM 2008
Hong Kong

Leading Order Integrability Conditions



INTRODUCTION

(Autonomous) differential-difference equation (DDE)

ẇn = f(wn−l, wn−l+1, . . . , wn, . . . , wn+m−1, wn+m)

Shift operator
D : wj → wj+1

TODA LATTICE

classic example

u̇ = D−1v− v

v̇ = v (u− Du)
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ẇ = f(D−lw, D−l+1w, . . . , w, . . . , Dm−1w, Dmw)

Shift operator
D : wj → wj+1

TODA LATTICE

classic example

u̇ = D−1v− v

v̇ = v (u− Du)

Leading Order Integrability Conditions



INTRODUCTION

(Autonomous) differential-difference equation (DDE)
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TIME DERIVATIVE

Total time derivative

Dt g =
∑ ∂g

∂Dkw
Dkẇ =

∑ ∂g

∂Dkw
Dkf

with

F ≡ f ∂
∂w

=
∑
α

fα
∂

∂wα

TODA LATTICE

F = u̇
∂

∂u
+ v̇

∂

∂v
= (D−1v− v)

∂

∂u
+ v (u− Du)

∂

∂v
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DENSITIES

Difference operator, ∆ = D − I, takes the role of the spatial
derivative

DEFINITION

A (scalar) function ρ is a (conserved) density if there exists J,
called the (associated) flux, such that

Dt ρ+ ∆J = 0

TODA LATTICE

ρ = 1
3 (Du)3 + Du (v+ Dv)

is a density with flux
J = v2 + uvDu
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EQUIVALENCE

Two densities are equivalent, ρ̃ ∼ ρ, if

ρ̃ = ρ+ ∆σ

in which case
J̃ = J− Dt σ

In particular
Dqρ ∼ ρ and Dt ρ ∼ 0

TODA LATTICE

ρ ∼ 1
3 (Du)3 + Du (v+ Dv) − ∆ (13 (Du)3 + DuDv)

= 1
3 u

3 + uv+ vDu
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CANONICAL FORM

DEFINITION

A density ρ is canonical if ρ has no negative shifts and each term
depends on a zero shifted variable.

PROPOSITION

Every density is equivalent to a canonical density. Moreover this
canonical density is unique.

By density that depends on q shifts, we mean that its canonical
form has

∂ρ

∂Dkw
= 0

for all k > q and
∂2ρ

∂w∂Dqw
6= 0
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EULER OPERATOR

The (discrete) Euler operator

E (g) =
∂

∂w

∑
D−kg

TODA LATTICE

The Euler operator has two components

E =

[
Eu
Ev

]
=

 ∂

∂u

∑
D−k

∂

∂v

∑
D−k

 .
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DENSITIES VIA THE EULER OPERATOR

THEOREM

A necessary and sufficient condition that a function h exists such
that g = ∆h is

E (g) = 0.

TODA LATTICE

For ρ = ρ (u, v)

E (Dt ρ) =

 (D−1v−v)
∂2ρ
∂u2

+v (u−Du)
∂2ρ
∂u∂v+(I−D−1)

(
v
∂ρ
∂v

)
(D−1v−v)

∂2ρ
∂u∂v+(u−Du)

(
v
∂2ρ
∂v2

+
∂ρ
∂v

)
+(D−I)

∂ρ
∂u


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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For ρ = ρ (u, v)

Dt ρ = (D−1v− v)
∂ρ

∂u
+ v (u− Du)

∂ρ

∂v

Canonical if v
∂ρ

∂v
6= non-zero constant and so

ρ1 = u2 + 2v or ρ2 = u

Or v
∂ρ

∂v
= 1

ρ3 = log v
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MAIN RESULT

THEOREM

Consider the differential-difference equation

ẇ = f(D−lw, D−l+1w, . . . , w, . . . , Dm−1w, Dmw).

Let L = max (l,m) and λi, µi be the eigenvalues of
∂f

∂D−Lw
and

∂f

∂DLw
respectively. A necessary condition for the

differential-difference equation to have a conserved density
depending on q = pL+ r > L shifts is that

ζDrµj = − λiDLζ

has a non-zero solution ζ for some λi and µj. In particular, if w is
a scalar then such densities can only occur when l = m.
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STRATEGY OF THE PROOF

Assume ρ = ρ(w, Dw, . . . , Dqw) with

∂2ρ

∂w∂Dqw
6= 0

Compute Dt ρ

Transform Dt ρ to canonical form, σ

ρ is a density if and only if σ = 0. In particular, the leading
integrability conditions are given by

∂2σ

∂w∂Dq+Lw
= 0

Solutions (or lack of solutions) to this equation will give the
result.
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AN ASIDE: KRONECKER SUMS

DEFINITION

Let R be m× n matrix and S be an arbitrary matrix. The
Kronecker (or direct or tensor) product of R and S is the matrix
given by

R⊗ S ≡


R11 S R12 S · · · R1n S

R21 S R22 S · · · R2n S
...

...
. . .

...
Rm1 S Rm2 S · · · Rmn S

 .

If R and S are square matrices, Kronecker sum of R and S is given
by

R⊕ S ≡ R⊗ I+ I⊗ S.
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LEADING INTEGRABILITY CONDITIONS

Kronecker sums allow us to rewrite the leading integrability
conditions as a (conventional) system of linear equations

SX ≡

[(
DL
(

∂f

∂D−Lw

)T
DL

)
⊕ Dq

(
∂f

∂DLw

)T]
X = 0

where

X =


X1
X2
...
XN

 with Xj =
∂2ρ

∂wj ∂Dqw
=



∂2ρ

∂wj ∂Dqw1
∂2ρ

∂wj ∂Dqw2
...
∂2ρ

∂wj ∂DqwN


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LEADING INTEGRABILITY CONDITIONS

TODA LATTICE

∂f

∂D−1w
=

[
0 1

0 0

]
and

∂f

∂Dw
=

[
0 0

− v 0

]
.

Leading integrability conditions


0 − Dqv 0 0

0 0 0 0

D 0 0 − Dqv
0 D 0 0





∂2ρ

∂u∂Dqu
∂2ρ

∂u∂Dqv
∂2ρ

∂v ∂Dqu
∂2ρ

∂v ∂Dqv


= 0.
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EIGENVALUES AND EIGENVECTORS

Leading integrability conditions have non-trivial solutions if either

S has a zero eigenvalue

or

S has a non-zero eigenvalue with a non-trivial kernel
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EIGENVALUES AND EIGENVECTORS

PROPOSITION

Let A and B be matrices with eigenvalues λi, µj respectively. Let
S = (DLADL)⊕ DqB. Then the eigenvalues of S are given by
DLλiDL + Dqµj. Let

Ai = A− λi I, Bj = B− µj I.

Suppose x̃, ỹ are non-zero solutions of A2i x̃ = 0 and B2j ỹ = 0.

Then the eigenvectors of S associated with DLλiDL + Dqµj are

x̃⊗ Dqỹ

if both x̃ and ỹ are eigenvectors of A and B respectively or

z = DLAi x̃⊗ Dqỹ− x̃D−L ⊗ Dq(Bj ỹ)

if neither x̃ nor ỹ are eigenvectors.
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EIGENVALUES AND EIGENVECTORS

TODA LATTICE

Eigenvalues are all zero

Eigenvectors are [
0
1

] [
1
0

]
Generalized eigenvectors are[

1
0

] [
0
1

]
The solution of leading integrability conditions is spanned by

[
0
1

]
⊕
[
1
0

]
=

[ 0
0
1
0

]
z =

 cDq−1v
0
0

Dc


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EIGENVALUES WITH NON-TRIVIAL KERNELS

PROPOSITION

Suppose that, for λ, µ 6= 0,

ζDrµ = − λDLζ

has a non-zero solution, ζ. Then

DLλDL + DmL+rµ

will have an one dimensional kernel generated by

c =

(
m−1∏
k=1

DkLλ

)
DmLζ

for each m = 0, 1, 2, . . .. If no non-zero solution exists then the
kernel is trivial.
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BOGOYAVLENSKII LATTICE

u̇ = u

(
p∏
j=1

Dju−

p∏
j=1

D−ju

)

Here L = p and

∂f

∂D−pu
= λ = −

p−1∏
j=0

D−ju
∂f

∂Dpu
= µ =

p−1∏
j=0

Dju.

Leading integrability condition for q > p shifts is

S = DpλDp + Dqµ = −

(
p−1∏
j=0

Dp−ju

)
Dp +

p−1∏
j=0

Dq+ju.

The kernel is generated by (with q = mp+ r)

ζ =

r−1∏
j=−(p−1)

Dju c =

(
m−1∏
k=1

Dkpλ

)
Dmpζ = (−1)m−1

q−1∏
k=1

Dku.

Therefore the density, if it exists, may be chosen

ρ =

q∏
k=0

Dku+ ρ(1)(u, Du, . . . , Dq−1u).
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COMPUTATION OF DENSITIES

The density (if it exists) may now be computed by a “split and
shift” strategy on this leading term. Start by setting the candidate
density ρ to the leading term. The objective is to successively
compute the terms (of lower shift!) that must be added to ρ until
Dt ρ ≡ 0.

Compute Dt ρ and evaluate on the DDE.

Shift all terms so that the resulting expression depends on u
(and not on lower shifts of u). Isolate the leading terms, ξ.

Solve
Dt ρ

(1) = ξ+ terms of lower shift.

If this equation has no solution then a density with q shifts
does not exist. On the other hand if it does has a solution
then “correction” term ρ(1) is subtracted from ρ and we
recompute Dt ρ.
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COMPUTATION OF DENSITIES

By construction, the highest shift that occurs in the result will
now be lower than before and we repeat the entire procedure
to obtain a new correction term ρ(2).

After a finite number of steps, we will either find an that the
correction term does not exist (and so the density does not
exist) or we will obtain Dt ρ ≡ 0 and ρ will be a density.
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BOGOYAVLENSKII LATTICE REVISITED

Consider the Bogoyavlenskii lattice

u̇ = u (u1 u2 − u−1 u−2) .

The leading term for the q = 3 density is ρ = uu1 u2 u3.

We have

Dtρ = uu1 u2 u3 u4 u5 + uu1 u2 u
2
3 u4 − u−2 u−1 uu1 u2 u3

− u−1 u
2 u1 u2 u3 − u2 u21 u2 u3 + uu1 u

2
2 u
2
3

≡ uu1 u2 u23 u4 − uu21 u2 u3 u4 + uu1 u
2
2 u
2
3 − u2 u21 u2 u3

The leading terms are

ξ = uu1 u2 u
2
3 u4 − uu21 u2 u3 u4.

Note terms in u5 must cancel by the construction of ρ.
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BOGOYAVLENSKII LATTICE REVISITED

The factor u4 must arise from

u2 u̇ = u2 u (u1 u2 − u−1 u−2) ≡ uu1 u22 − uu1 u2 u4

or

u u̇2 = uu2 (u3 u4 − uu1)

It cannot arise from

u3 u̇1 = u3 u1 (u2 u3 − uu−1) ≡ uu1 u22 − uu1 u2 u4

since the u3 dependency in ρ has already been determined.

Moreover u u̇2 can only generate terms which are linear in u3.
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BOGOYAVLENSKII LATTICE REVISITED

Therefore the term uu1 u2 u
2
3 u4 must arise from

Dt
(
uu21 u2

)
= u21 u2 u̇+ u21 u u̇2 + 2uu1 u2 u̇1

≡ − uu1 u2 u
2
3 u4 + uu21u2 u3 u4

+ terms of lower shift

= − ξ+ terms of lower shift

Therefore
ρ(1) = − uu21 u2

and we update the candidate density

ρ = ρ− ρ(1) = uu1 u2 u3 + uu21 u2.
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BOGOYAVLENSKII LATTICE REVISITED

Repeating the process, we have

Dt ρ ≡ uu1 u22 u23 − u2 u21 u2 u3 + terms of lower shift.

These terms can only arise from

u1 u̇ ≡ − uu1 u2 u3 + terms of lower shift

u u̇1 ≡ uu1 u2 u3 + terms of lower shift

The term uu1 u
2
2 u
2
3 must arise from

Dt
(
u2 u21

)
= 2uu21 u̇+ 2u2 u1 u̇1

≡ − 2uu1 u
2
2 u
2
3 + 2u2 u21 u2 u3

+ terms of lower shift
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BOGOYAVLENSKII LATTICE REVISITED

Therefore
ρ(2) = − 1

2u
2 u21

and we update the candidate density

ρ = ρ− ρ(2) = uu1 u2 u3 + uu21 u2 + 1
2u
2 u21.

Now
Dt ρ ≡ 0.

Therefore ρ is a density.

Leading Order Integrability Conditions
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MAPLE CODE

(6)

O 

(2)

(3)

(4)

(5)

O 

O 

O 

(1)

O 

O 

O 

O 

with(Discrete):
Discrete package, version 0.9 beta.

Copyright 2007 by Mark Hickman.  All rights reserved.

Bogoyavlenskii II: p=2
Bogoyavlenskii(2,2);

u0 u1 u2KuK1 uK2

st:=time():

density(5);
u2 u3 u4 u1 u0 u5Cu2 u3 u4 u1

2 u0Cu2 u3
2 u4 u1 u0K Ku2 u1

2 u0
2
K2 u2

2 u1
2 u0  u3Cu2

2 u1 u0 u3
2

Cu2 u1
3 u0

2
Cu2

2 u1
3 u0C

u1
3 u0

3

3

time()-st;
0.094

density(15):

time()-%%;
20.155

nops(expand(%%));
2187
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FURTHER INFORMATION

M. HICKMAN, Leading Order Integrability Conditions for
Differential-Difference equations, J. Nonl. Math. Phys., 15 (2008)
66–86.

M. HICKMAN, Discrete - MAPLE 10/11 library for
Differential-Difference equations. Currently in “beta”.
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