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(Autonomous) differential-difference equation (DDE)
Wn = f(wn_1, Wn—1+41, -
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INTRODUCTION

(Autonomous) differential-difference equation (DDE)
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Shift operator
D :w; — wjig
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INTRODUCTION

(Autonomous) differential-difference equation (DDE)
w=fD"'w, D""w, ., w, ..., D™ Tw, D™w)

Shift operator

TODA LATTICE
classic example

u=Dlv—v

v=v(u—Du)
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Total time derivative
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TIME DERIVATIVE

Total time derivative

d d
Dig=)_ aDSw =) aDg D*f

=) (D*F)g

with
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Difference operator, A = D — |, takes the role of the spatial
derivative
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DENSITIES

Difference operator, A = D — |, takes the role of the spatial
derivative

A (scalar) function p is a (conserved) density if there exists ],
called the (associated) flux, such that

Dip+AJ=0
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DENSITIES

Difference operator, A = D — |, takes the role of the spatial
derivative

DEFINITION

A (scalar) function p is a (conserved) density if there exists ],
called the (associated) flux, such that

Dip+AJ=0

TODA LATTICE

| A

p= % (Du)® 4 Du (v + Dv)

is a density with flux

J=v?+uvDu
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Two densities are equivalent, p ~ p, if
p=p+Aoc

in which case B
J=]— Dt o
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Two densities are equivalent, p ~ p, if
p=p+Aoc

in which case

In particular
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EQUIVALENCE

Two densities are equivalent, p ~ p, if

p=p+Ac

in which case

In particular

TODA LATTICE

p~ 1 (Du)® +Du(v+Dv) —A(L(Du)? + DuDv)

=%u3+uv+vDu

Leading Order Integrability Conditions



CANONICAL FORM

A density p is canonical if p has no negative shifts and each term
depends on a zero shifted variable.
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CANONICAL FORM

A density p is canonical if p has no negative shifts and each term
depends on a zero shifted variable.

PROPOSITION

Every density is equivalent to a canonical density. Moreover this
canonical density is unique.

| A\
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CANONICAL FORM

A density p is canonical if p has no negative shifts and each term
depends on a zero shifted variable.

| A\

PROPOSITION
Every density is equivalent to a canonical density. Moreover this
canonical density is unique.

By density that depends on g shifts, we mean that its canonical
form has

0p
oDkw =0
for all k > q and
9%p
owoDaw 70
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The (discrete) Euler operator

£(g) =

3w 2D "9

it
N

«0» «F»r « =) 4 Q™



EULER OPERATOR

The (discrete) Euler operator

£l0)= o Y D g

TODA LATTICE

The Euler operator has two components
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DENSITIES VIA THE EULER OPERATOR

A necessary and sufficient condition that a function h exists such
that g=Ah is

€(g)=0.
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DENSITIES VIA THE EULER OPERATOR

A necessary and sufficient condition that a function h exists such
that g=Ah is

For p=p(u, v)
1 azp Zp —1 ap
(D va)a—uerv(u Du) aua\;*” D) Vay
(D~ Tv—v) auav+(“ Du) v7+—v)+(D71)au
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

0
_ =15, _ 1)) % _ g
Dip=(D 'v—v) au—I—v(u Du) 3
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

_ 0 0
D,p= (D 1V—V)£+V(”_D“)a_s
ol =T 22 s — )
ou ov
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

_ 0 0

D,p= (D 1V—V)£+V(”_D“)a_s
~v(D—I)%+v(u—Du)%
ou ov
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

_ 0 0

D,p= (D 1V—V)£+V(”_D“)a_s
~v(D—I)%+v(u—Du)%
ou ov

. ... 0
Canonical if v a—p Z# non-zero constant
Vv
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

_ 0 0

D,p= (D 1V—V)£+V(”_D“)a_s
~v(D—I)%+v(u—Du)%
ou ov

. ... 0
Canonical if v a—p # non-zero constant and so
Vv

p1:u2—|—2v or p2=u
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DENSITIES VIA EQUIVALENCE

TODA LATTICE
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ou ov
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

_ d d

D, p = (D 1v—v)£—|—v(u—Du)a—s
0p
~v(D =1} —
Vv ( )au

. ... 0
Canonical if v a—p # non-zero constant and so
Vv

p1:u2—|—2v or p2=u
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DENSITIES VIA EQUIVALENCE

TODA LATTICE

For p=p(u, v)

_ d d

D, p = (D 1v—v)£—|—v(u—Du)a—s
0p
~v(D =1} —
Vv ( )au

. ... 0
Canonical if v a—p # non-zero constant and so
Vv

p1:u2—|—2v or p2=u

p3 = logv
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MAIN RESULT

Consider the differential-difference equation

w = f(D"'w, D-Ylw, ..., w, ..., D™ w, D™w).
Let L = (1, m) and Ay, ui be the e / fi d
et L = max(1, and \i, Wi be the eigenvalues o 5D=To an

300w respectively. A necessary condition for the
differential-difference equation to have a conserved density
depending on q = pL + v > L shifts is that

D'y = — A D¢

has a non-zero solution ( for some Ay and w;. In particular, if w is
a scalar then such densities can only occur when 1 = m.
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@ Assume p = p(w, Dw, .

.. Dw) with
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o Assume p = p(w, Dw, .

_, D%w) with
92p
awoDaw 7 °

e Compute D, p

i
v
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@ Assume p = p(w, Dw, .

., D9w) with
9%p
ow oDIw 70
e Compute D, p

@ Transform D, p to canonical form, o
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STRATEGY OF THE PROOF

@ Assume p = p(w, Dw, ..., D9w) with

92p

owoDIw 70

e Compute Dy p
@ Transform D, p to canonical form, o

@ pis a density if and only if 0 = 0. In particular, the leading
integrability conditions are given by

020 B
owoDa+Lyw
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STRATEGY OF THE PROOF

@ Assume p = p(w, Dw, ..., D9w) with
9%p
owoDdIw 70
e Compute Dy p

Transform D, p to canonical form, o

p is a density if and only if o = 0. In particular, the leading
integrability conditions are given by
%o -
dwoDdtLlw

Solutions (or lack of solutions) to this equation will give the
result.
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AN ASIDE: KRONECKER SUMS

DEFINITION

Let R be m X m matrix and S be an arbitrary matrix. The
Kronecker (or direct or tensor) product of R and S is the matrix
given by

R11S Ryi2S -+ RynS

R21S Rz2§ -+ RanS
R®S = ) . ) )

Rm1 S RmZ EEE Rmn S

If R and S are square matrices, Kronecker sum of R and S is given
by

ReS=R@I+I1I&®S.
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LEADING INTEGRABILITY CONDITIONS

Kronecker sums allow us to rewrite the leading integrability
conditions as a (conventional) system of linear equations
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LEADING INTEGRABILITY CONDITIONS

Kronecker sums allow us to rewrite the leading integrability
conditions as a (conventional) system of linear equations

T T
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L q pu—
> D>®D <6DLW)]X 0

SX =
where
Xj
X2
X= )
XN
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LEADING INTEGRABILITY CONDITIONS

TODA LATTICE

of [0 1 and of 0 0
oD-'w |0 0 obw | —v 0 |~
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LEADING INTEGRABILITY CONDITIONS

of [0 1 , ot _[o o
D Tw |oo] ™ Dw | —v o

Leading integrability conditions

C 0% ]
ouoDd9u
0 —D9% 0 0 92p
o 0 0 0 ouaDdv | _
D 0 0 —D9 9%p
0 D 0 0 ovobDdu
9%p
L 9voDdv
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LEADING INTEGRABILITY CONDITIONS

of [0 1 , ot _[o o
D Tw |oo] ™ Dw | —v o

Leading integrability conditions

C 0% ]
ouoDd9u
0 —D9% 0 0 92p
o 0 0 0 ouaDdv | _
D 0 0 —D9 9%p
0 D 0 0 ovobDdu
9%p
L 9voDdv
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EIGENVALUES AND EIGENVECTORS

Leading integrability conditions have non-trivial solutions if either

8 has a zero eigenvalue
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EIGENVALUES AND EIGENVECTORS

Leading integrability conditions have non-trivial solutions if either

8 has a zero eigenvalue

or

S has a non-zero eigenvalue with a non-trivial kernel
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EIGENVALUES AND EIGENVECTORS

PROPOSITION

Let A and B be matrices with eigenvalues Ay, W respectively. Let
8 = (DYA DY) @ D9B. Then the eigenvalues of § are given by
DLA; DL + D9y Let

.Ai:A—)\iI, 'Bj:B—l.LjI.

Suppose X, § are non-zero solutions offli2 X =0 and sz g=0.
Then the eigenvectors of § associated with DYA; DT 4 D4 Wj are

X ® DYy
if both X and {j are eigenvectors of A and B respectively or

z=D'A;x® DYy — %D " ® DY(B; {)

if neither X nor {j are eigenvectors.
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EIGENVALUES AND EIGENVECTORS

TODA LATTICE

o Eigenvalues are all zero
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EIGENVALUES AND EIGENVECTORS

TODA LATTICE

o Eigenvalues are all zero
0 1
1 0

e Eigenvectors are
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EIGENVALUES AND EIGENVECTORS

TODA LATTICE

o Eigenvalues are all zero
0 1
1 0

@ Generalized eigenvectors are

o]

e Eigenvectors are
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EIGENVALUES AND EIGENVECTORS

TODA LATTICE

o Eigenvalues are all zero
0
1

@ Generalized eigenvectors are

o [9)

@ The solution of leading integrability conditions is spanned by

SRS

Dc

o Eigenvectors are
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EIGENVALUES WITH NON-TRIVIAL KERNELS

PROPOSITION

Suppose that, for A\, n# 0,

(D"'w= —AD"C
has a non-zero solution, (. Then
DL7\ DL + DmL+TLL
will have an one dimensional kernel generated by

m—1
c= (H DkL?\> pmLe

k=1

foreachm =0, 1, 2,.... If no non-zero solution exists then the
kernel is trivial.
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BOGOYAVLENSKII LATTICE

Here L =p and

of v . of LU
N — —j _ j
T TR : b~u B iHDu'

Leading integrability condition for q > p shifts is

p—1 p—1
§ =DPADP + DIy = — (H Dpju) D” + [ [ D"
j=0 j=0
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BOGOYAVLENSKII LATTICE

Here L =p and
of : of :
=A= — D™ — = Diuw.
it § Rt H e

Leading integrability condition for q > p shifts is

p—1 p—1
§ =DPADP + DIy = — (H Dpju) D” + [ [ D"

j=0 j=0

The kernel is generated by (with ¢ = mp + 1)

r—1
(= H Diu (H ka)\> DML = (—1)™ ‘HDk )
j=—(p—1)

k=1

Leading Order Integrability Conditions



BOGOYAVLENSKII LATTICE

Here L =p and
of : of :
=A= — D™ — = Diuw.
it § Rt H e

Leading integrability condition for q > p shifts is

p—1 p—1
§ =DPADP + DIy = — (H Dpju) D” + [ [ D"

j=0 j=0

The kernel is generated by (with ¢ = mp + 1)

r—1
(= H Diu (H ka)\> DML = (—1)™ ‘HDk )
j=—(p—1)

k=1

Therefore the density, if it exists, may be chosen

q
p:HDkqupm(u, Du, ..., D9 Tu).
k=0
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BOGOYAVLENSKII LATTICE

Here L =p and
of : of :
=A= — D™ — = Diuw.
it § Rt H e
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COMPUTATION OF DENSITIES

The density (if it exists) may now be computed by a “split and
shift” strategy on this leading term. Start by setting the candidate
density p to the leading term. The objective is to successively
compute the terms (of lower shift!) that must be added to p until
D,p=0.
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COMPUTATION OF DENSITIES

The density (if it exists) may now be computed by a “split and
shift” strategy on this leading term. Start by setting the candidate
density p to the leading term. The objective is to successively
compute the terms (of lower shift!) that must be added to p until
D,p=0.

e Compute Dy p and evaluate on the DDE.
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COMPUTATION OF DENSITIES

The density (if it exists) may now be computed by a “split and
shift” strategy on this leading term. Start by setting the candidate
density p to the leading term. The objective is to successively
compute the terms (of lower shift!) that must be added to p until
D,p=0.

e Compute Dy p and evaluate on the DDE.

@ Shift all terms so that the resulting expression depends on u
(and not on lower shifts of u). Isolate the leading terms, &.
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COMPUTATION OF DENSITIES

The density (if it exists) may now be computed by a “split and
shift” strategy on this leading term. Start by setting the candidate
density p to the leading term. The objective is to successively
compute the terms (of lower shift!) that must be added to p until
D,p=0.

e Compute Dy p and evaluate on the DDE.

@ Shift all terms so that the resulting expression depends on u
(and not on lower shifts of u). Isolate the leading terms, &.

e Solve
D, p'") = & + terms of lower shift.
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COMPUTATION OF DENSITIES

The density (if it exists) may now be computed by a “split and
shift” strategy on this leading term. Start by setting the candidate
density p to the leading term. The objective is to successively
compute the terms (of lower shift!) that must be added to p until
D,p=0.

e Compute Dy p and evaluate on the DDE.

@ Shift all terms so that the resulting expression depends on u
(and not on lower shifts of u). Isolate the leading terms, &.

e Solve
D, p'") = & + terms of lower shift.

@ If this equation has no solution then a density with ¢ shifts
does not exist. On the other hand if it does has a solution
then “correction” term p(1) is subtracted from p and we
recompute D, p.
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COMPUTATION OF DENSITIES

@ By construction, the highest shift that occurs in the result will
now be lower than before and we repeat the entire procedure
to obtain a new correction term p(z).
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COMPUTATION OF DENSITIES

@ By construction, the highest shift that occurs in the result will
now be lower than before and we repeat the entire procedure
to obtain a new correction term p(z).

@ After a finite number of steps, we will either find an that the
correction term does not exist (and so the density does not
exist) or we will obtain Dy p = 0 and p will be a density.
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BOGOYAVLENSKII LATTICE REVISITED

Consider the Bogoyavlenskii lattice
U=u(uju; —u_ju_s).

The leading term for the q = 3 density is p = uwuq uz us.
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BOGOYAVLENSKII LATTICE REVISITED

Consider the Bogoyavlenskii lattice
U=u(uju; —u_ju_s).

The leading term for the q = 3 density is p = uwuq uz us.

@ We have

Dtp =UuUuj Uy U3z Ugq Us + U] U LL% Ug —U_2U_J7UUT U2 U3

—U_1 u2u1 Uy us —uzu%uzug +uu u%u%
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BOGOYAVLENSKII LATTICE REVISITED

Consider the Bogoyavlenskii lattice
U=u(uju; —u_ju_s).

The leading term for the q = 3 density is p = uwuq uz us.

@ We have

Dtp =UuUuj Uy U3z Ugq Us + U] U u% Ug —U_2U_J7UUT U2 U3

—U_1 u2u1 Uy us —uzu%uzug +uu u%u%

=uuq u2u§u4 —uu%uzugua, +uuw u%u% —uzu%u2u3
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BOGOYAVLENSKII LATTICE REVISITED

Consider the Bogoyavlenskii lattice
U=u(uju; —u_ju_s).

The leading term for the q = 3 density is p = uwuq uz us.

@ We have

Dtp =UuUuj Uy U3z Ugq Us + U] U LL% Ug —U_2U_J7UUT U2 U3

—U_1 u2u1 Uy us —uzu%uzug +uu u%u%

=Uuu uzu§u4 —uu%u2u3u4 +uuq u%u% —uzu%u2u3

@ The leading terms are
_ 2 2
E=uuru2u3ug —uUuUy U2 U3 Ug.
Note terms in us must cancel by the construction of p.
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@ The factor uy must arise from

Wi =uu(UjU —U_7U_2) =UUTU; —UUT U Ug
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BOGOYAVLENSKII LATTICE REVISITED

@ The factor uy must arise from
uzll =Uup u(u1 U —u_q ufz) = uu u% —Uuuj uz uy
or

uly; =uuy (uzug —uug)
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BOGOYAVLENSKII LATTICE REVISITED

@ The factor uy must arise from
uzll =Uup LL(LL] U —u_q ufz) = uu u% —Uuuj uz uy
or
uty, =uuy (uzug —uug)
@ |t cannot arise from
us iL] = Uu3uq (uz Uz —uu_q ) =Uuu u% —uu] uy ug

since the usz dependency in p has already been determined.
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BOGOYAVLENSKII LATTICE REVISITED

@ The factor uy must arise from
uzll =Uup LL(LL] U —u_q ufz) = uu u% —Uuuj uz uy
or
uty, =uuy (uzug —uug)
@ It cannot arise from
us iL] = Uu3uq (uz Uz —uu_q ) =Uuu u% —uu] uy ug

since the usz dependency in p has already been determined.

@ Moreover w11y can only generate terms which are /inear in us.
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore the term uwu; uy ug U4 must arise from

D, (uu% w) = u? w4 ud uty + 2uug up iy
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore the term uwu; uy u% U4 must arise from

D, (uu% w) = u? w4 ud uty + 2uug up iy

= —uuju u% ug +uu%u2 U3 ug

+ terms of lower shift
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore the term uwu; uy u% U4 must arise from

D, (uu

2
1 U2

)

2

=uj uzu—i—u%uuz 4+ 2uug up g

—Uu u u% ug + uu%uz U3 ug
+ terms of lower shift

— & 4+ terms of lower shift
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore the term uwu; uy u% U4 must arise from

D, (uu% w) = u? w4 ud uty + 2uug up iy

= —uuju u% ug + uu%uz U3 ug
+ terms of lower shift

= — & + terms of lower shift

@ Therefore

ol = —uutw,
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore the term uwu; uy u% U4 must arise from

D, (uu% w) = u? w4 ud uty + 2uug up iy
= —uuju u% ug + uu%uz U3 ug
+ terms of lower shift
= — & + terms of lower shift

@ Therefore

(M — 2

pt") = —uujuy

and we update the candidate density

(M

pP=p—p " =ulwuzus —I—uu%uz.
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BOGOYAVLENSKII LATTICE REVISITED

@ Repeating the process, we have

Dip=uwy u% u% —u? u% uy u3 + terms of lower shift.
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BOGOYAVLENSKII LATTICE REVISITED

@ Repeating the process, we have
Dip=uwy u% u% —u? u% uz u3 + terms of lower shift.

@ These terms can only arise from

U U= —uuy uyus + terms of lower shift

Ul =uug up uz + terms of lower shift
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BOGOYAVLENSKII LATTICE REVISITED

@ Repeating the process, we have
Dip=uwy u% u% —u? u% uz u3 + terms of lower shift.

@ These terms can only arise from

U U= —uuy uyus + terms of lower shift

Ul =uug up uz + terms of lower shift
@ The term uu, u% u% must arise from

Dy (u?uf) = 2uuf i+ 2u? ug iy
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BOGOYAVLENSKII LATTICE REVISITED

@ Repeating the process, we have

Dip=uwy u% u% —u? u% uz u3 + terms of lower shift.
@ These terms can only arise from

U U= —uuy uy uz + terms of lower shift

Ul =uug up uz + terms of lower shift
@ The term uu, u% u% must arise from

Dy (u?uf) = 2uuf i+ 2u? ug iy
= —2uuiuiud + vt wiuoug

+ terms of lower shift
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore

(2) 1.2.2

pr = —u

and we update the candidate density

(2) 2

=Uuuguzuz +uug 2u?

p=p—0p uz—I—%u ujy.
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BOGOYAVLENSKII LATTICE REVISITED

@ Therefore
(2) 1..2.2

pr = —u

and we update the candidate density

(2) 2

=Uuuguzuz +uug 2u?

p=p—0p uz—I—%u ujy.

o Now
D,p=0.

Therefore p is a density.
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MAPL

7> with(Discrete):

Discrete package, version 0.9 beta.
L Copyright 2007 by Mark Hickman. All rights reserved.
| Bogoyavlenskii 11: p=2

> Bogoyavlenskii(2,2);

()
o (U Uy —U_1U_p) 2
L> st:=time():
> density(5);
u2u3u4uluou5+u2u3u4ufu0 +u2u§u4u1uo— (—uzuiug—z ugufuo) Us +u§u1u0u§ ?)
udud
Uy UG+ +
> time()-st;
L 0.094 (4)
L> density(15):
> time()-%%;
L 20.155 (5)
> nops(expand(%%)) ;
L 2187

®)
]

[m] = =
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FURTHER INFORMATION

M. HICKMAN, Leading Order Integrability Conditions for
Differential-Difference equations, J. Nonl. Math. Phys., 15 (2008)
66-86.
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