
Introductory Guide to SAS for Windows

Department of Mathematics and Statistics
University of Canterbury, New Zealand

Written by Julian Visch and Carl Scarrott

This introduction to the software SAS is in no way endorsed by SAS.

In the beginning...

SAS originally stood for for “statistical analysis software”. However, since it’s release SAS

has become an integrated system of software products and services for ‘Business Intelli-
gence’. SAS is now the company name, so is no longer considered an acronym and as such
doesn’t stand for anything.

Contents

1 Introduction 1

1.1 What is SAS and Why are we using it? . 1

1.2 Where can I access SAS? . 1

1.3 SAS Programming . 1

1.3.1 Starting and Exiting SAS . 2

1.3.2 How to Create, Edit and Save Your Own Programs 2

1.3.3 Running a Program . 4

1.3.4 Displaying Output . 6

1.3.5 Outputting/Printing Results . 7

1.3.6 Loading Data into SAS . 7

1.4 Where to get help with SAS? . 7

1.4.1 How to use the SAS? Help . 8

1.4.2 Other Sources of SAS Help . 8

1.4.3 Common Mistakes When Using SAS 8

2 Data Processing 9

2.0.4 Creating Subsets of Data Files . 9

2.1 Inputting Data . 10

2.1.1 Reading in Character Variables . 10

2.1.2 List Input . 10

2.1.3 Column Input . 11

2.1.4 Combining List and Column Inputs 11

2.1.5 Data Files with Different Formats 12

2.1.6 Impossible Data Files . 12

2.1.7 Creating Dependent Variables . 12

2.1.8 Use of ‘IF...THEN...ELSE’ Statements 14

2.1.9 Deleting Observations . 15

2.2 Including Comments Within Your SAS Program 15

2.3 Sorting your Data . 15

i

3 SAS Procedures 17

3.1 Basic Statistics . 17

3.1.1 Using the MEANS Procedure . 17

3.1.2 Calculating Correlations and Covariances 18

3.1.3 Univariate Statistics . 19

3.2 SAS Graphics . 19

3.2.1 Low Level Graphics (Scatter Plots) 19

3.2.2 High Level Graphics (Scatter Plots) 20

3.2.3 Pie Charts . 22

3.2.4 Exporting graphs . 22

ii

Chapter 1

Introduction

1.1 What is SAS and Why are we using it?

In this guide, SAS stands for a statistical software package that allows the users to ma-
nipulate and perform statistical analyses of data. This software package is used in many
companies and is pretty much a standard in many industries. Users come from a wide
range of disciplines (not just statistics!), including medical, biological, actuarial and social
sciences. Knowing the SAS programming language will not only help you with this course
and future research. Many key employers of graduates also desire experience with SAS.

The purpose of this introductory guide is to familiarize you with carrying out some basic
tasks in SAS. Some familiarity with using Windows is assumed. These notes complement
the hints and instructions provided with the assignments.

1.2 Where can I access SAS?

SAS 9.1 is installed on available from all the PC’s in the Mathematics and Statistics De-
partment labs in the basement of the Erskine building. All the software facilities on these
machines is available off campus (i.e. from the Halls of Residence or any PC with high
speed internet access - broadband) using the Windows “Remote Desktop” software, see
the “Computer Documentation” on the dept website for more details. SAS is also installed
on all the PC’s in the labs run by ICTS.

In the dept labs, SAS is on the Windows Desktop. From other machines it will often be
found under Start > Programs menu.

1.3 SAS Programming

When programming in any package the crucial things you must learn are

• How to start the package.

• How to exit the package.

• How to create, edit and save programs for running within the package.

1

• How to run programs (e.g. do statistical analysis).

• How to display the output from the program.

• How to save/print the output to another file.

• How to load external data into the package.

1.3.1 Starting and Exiting SAS

When you first open SAS three windows will appear within the main SAS program window:

• SAS: OUTPUT

This window displays all the output generated from your programs.

• SAS: LOG

This window displays any error messages that occur because of bugs in your program.

• SAS: EDITOR

This window is where you open, write/edit, submit (run) and save programs.

To quit SAS select Exit from the File menu.

1.3.2 How to Create, Edit and Save Your Own Programs

To create your own programs use SAS’s “EDITOR”. You can save files from the “EDITOR”
using Save option from the File menu.

2

Creating a Simple Program

All SAS programs are made up of one or more procedures, made up of a sequence of
statements. The following is an example of a simple procedure:

DATA ageclub; ← create a dataset called ageclub

INPUT StudNo YearBorn; ← specifies variables (StudNo and YearBorn) within dataset
CARDS; ← specifies that the data will follow
123 88

101 89 ← the data
432 90

RUN; ← specifies the end of the procedure.

Notes:

1. Tabs are not the same as spaces in SAS. Make sure no tabs exist in your data, as
otherwise you may encounter problems when you run your SAS programs.

2. SAS ignores the case of letters used. In this guide we tend to use capital letters for
SAS statements and lower case for data/variable names.

Type the above into the PROGRAM EDITOR and save the program in a file with the name “ex-
ample.sas”. Notice that SAS program files have the extension ‘.sas’, so SAS recognizes them.

3

Rules for SAS Statements

• SAS statements end with a semi colon (;).

• SAS statements can be entered in lowercase, uppercase, or a mixture.

• Any number of SAS statements can appear on a single line.

• A SAS statement can be continued over multiple lines, as long as no word is split.

• Words in SAS statements are separated by blanks or by special characters such as the
equal sign.

Rules for SAS Names

• A SAS name can contain from one to eight characters.

• The first character must be a letter or an underscore “ ”.

• Subsequent characters must be letters, numbers, or underscores.

• Blanks cannot appear in SAS names.

1.3.3 Running a Program

If the program file is not yet open, then use the Open option in the File menu. There are
many ways to submit (run) a program. To run the whole program, in the EDITOR select
‘Submit’ from the ‘Run’ menu, or click on the “running man” icon. SAS will run your
program.

4

Once you have submitted the program the LOG window will say something like:
1 DATA ageclub;

2 INPUT StudNo YearBorn;

3 CARDS;

NOTE: The data set WORK.AGECLUB has 3 observations

and 2 variables.

NOTE: DATA statement used:

real time 0.69 seconds

cpu time 0.21 seconds

7 RUN;

The LOG window shows how SAS went step-by=step through your program adding appro-
priate comments as it goes through the steps. Should you have made an error in writing
your program then some comment to that effect will also appear here.

5

Shortcuts

When you only want to run a portion of a program, highlight with the mouse the portion
of your program you wish to submit, right-click with mouse (over highlighted program)
and select ‘Submit Selection’. Try selecting all of example.sas, right click and ’Submit
Selection’.

1.3.4 Displaying Output

Some procedures automatically output the main results. However, to see additional results
you may need to add the PRINT procedure to your program. For example:

PROC PRINT DATA=ageclub; ←

⎧⎨
⎩

Specifies which dataset to print. If you
omit the DATA=ageclub, the most recently
created SAS dataset is printed

Additional options inserted here
RUN;

Add this code to ‘example.sas’, then re-run your program (see Subsection 1.3.3). You
should now get the following in the OUTPUT window:

The SAS System 09:38 Monday, July 10, 2007 1

OBS STUDNO YEARBORN

1 123 88

2 101 89

3 432 90

Date of submission
Page number

6

Output (PRINT) Options

Try out each of the PRINT procedure’s two options

• Specifying which variables to print
VAR YearBorn;

• Specifying a title
TITLE ’Age of Club Members’;

Note: Once you insert a title it will also appear in subsequent outputs.

1.3.5 Outputting/Printing Results

You can print your output from any window, e.g. the OUTPUT window, by selecting ‘Print’
from the ‘File’ menu. Outputs, log and programs can be saved using ‘File’ followed by
‘Save’ option. Exporting graphs is covered in Section 3.2.4.

1.3.6 Loading Data into SAS

This guide outlines three options for reading datasets into SAS, but others exist. Suppose
you have saved the 3 data items in a text file ‘P:\ageclub.txt’ (with no header line).

1. Use the CARD statement:
See example in Section 1.3.3 above. Note: it is important that the last semi-colon
goes on the line after all of the data, otherwise the last observation will be deleted!
There is a similar DATALINES statement, see the SAS help for details.

2. Using the INFILE statement:
Text files can be read into SAS using the INFILE statement. For example, a file in
your P: drive:

DATA ageclub;

INFILE P:\ageclub.txt;

INPUT StudNo YearBorn;

RUN;

3. Using the Import Data Wizard:
To import the data, go to ‘File’ and ‘Import Data’. A wizard window will ask about
the format of the file to import. Click on the pull-down menu and select your file
type (i.e. Excel, Lotus, text, etc.). Then, click Next which will take you to a window
that asks where the file is saved, e.g., P:\ageclub.txt. Click Next again. You will
then be asked for the name of your dataset. Click Next one more time, then click on
the Finish button.

1.4 Where to get help with SAS?

The SAS help menu is helpful . There are two ways of getting SAS help. One is to go to
the help menu and then SAS system help. Then go to the Index tab and type in the name
of the procedure. SAS will give you the syntax of the procedure as well as some examples.

7

1.4.1 How to use the SAS? Help

The SAS help system is very useful if you want to self-learn about SAS procedures. Every
procedure is listed, it’s syntax (way to write program), including discussion of all statement
options. At the end of each procedure, there is usual an example of implementation as
well. For example, to find help on the ‘SORT’, you need to do the following:

• Select SAS Help and Documentation’ from the ‘Help’ menu.

• Select ‘Index’

• Type “Sort”.

• Select the “Procedure under Windows”.

• Use ‘Previous’ and ‘Next’ options to navigate the help.

The current SAS Help system is very similar to most Windows programs, with Contents,
Index, Search and Favourites options. You can click on any underlined text and you will
get a brief explanation of that topic, use the “Back” command to go back to the previous
screen. If you have a specific question use the Search tab and type in the keyword.

1.4.2 Other Sources of SAS Help

There is a lot of information about using SAS on the web. If you ever want examples on
how to use a procedure, e.g. the SORT procedure, then try a google search with terms like
“PROC SORT” and SAS. In particular, the SAS website and those based at universities are
generally the most useful.

1.4.3 Common Mistakes When Using SAS

To successfully run any program, you need to ensure you have:

1. a semi-colon at the end of every statement (except CARD lines used for data input);

2. an input (e.g. INFILE or CARDS) data statement that reads in your dataset (unless
you used the Import Data wizard). Always check the LOG window for error
messages;

3. a DATA statement which names the dataset inside of SAS. Always use the PROC

PRINT procedure to check the data has been read in correctly;

4. an INPUT statement which names the variables in your dataset;

5. at least one space between each word or statement;

6. a RUN statement.

A semi-colon tells SAS that an operation, procedure, or statement is finished, so that it
can go onto run the next. A RUN statement tells SAS to process the previous bit of the
program you wrote. If there is no RUN statement, SAS will not process anything. Lack of
semi-colons and RUN statements are the two most common mistakes in a SAS programs.

8

Chapter 2

Data Processing

2.0.4 Creating Subsets of Data Files

Some datasets are quite large you may wish to take subsets of them rather than loading
the full data set using the set command. The set command has four possible options

• FIRSTOBS=n - Specifies the first observation to be read from the SAS data set you
specify in the ‘SET’ statement. e.g. To create a subset of ageclub which contained
only students after and including row 2 of the data:
DATA ageclub2;

SET ageclub(FIRSTOBS=2);

RUN;

PROC PRINT DATA=ageclub2;

RUN;

• OBS=n - Specifies the last observation to be read from the SAS dataset you specify
in the ‘SET’ statement. e.g. To create a subset of ageclub which contained only
students up to and including row 2 of the data:
DATA ageclub2;

SET ageclub(obs=2);

RUN;

PROC PRINT DATA=ageclub2;

RUN;

• KEEP - Specifies the variables to be included. e.g. To only include the variable StudNo:
DATA ageclub2;

SET ageclub;

KEEP StudNo;

RUN;

PROC PRINT DATA=ageclub2;

RUN;

9

• DROP - Specifies the variables to be excluded. e.g. To remove all the variables except
StudNo:
DATA ageclub2;

SET ageclub;

DROP YearBorn;

RUN;

PROC PRINT DATA=ageclub2;

RUN;

2.1 Inputting Data

2.1.1 Reading in Character Variables

There are two types of variables ‘numerical’ and ‘character’, where character is non-numeric
variables such as names, colours, countries, etc. To inform SAS that you want your variable
to be a character variable you must insert a $ sign. For example, to include the student
names in the dataset above modify the program:
DATA ageclub;

INPUT StudNo YearBorn Student $;

CARDS;

123 88 Bob

101 89 Belle

432 90 Tiye

RUN; PROC PRINT DATA=ageclub;

RUN;

When you run this program the students names also appear in the output.

2.1.2 List Input

List input uses the simplest form of the INPUT statement but places restrictions on data.

Rules for List Input Statements

• Fields (variables) must be separated by at least one blank.

• Each must be specified in order.

• Missing values must be represented by a place holder such as a period, because a
blank field will cause the matching of variable names to get out of sync.

• Character values can’t contain embedded blanks. Instead the characters must all be
joined.

• The default length of character variables is 8, any character
variables exceeding 8 will be truncated.

• Data must be in standard character or numeric format.

10

2.1.3 Column Input

With column input, data values occupy the same fields within each record. When using
column input, you list in the INPUT statement the variable names and identify the location
of the corresponding data fields in the data lines by specifying the column positions. You
can use column input when your raw data is in fixed columns and in standard character
or numerical format.

Reading Embedded Blanks and Longer Variables

The advantage column input has over list input is that you can read embedded blanks and
have longer variables. This is due to

• Column input uses the columns specified to determine the length of column character
variables.

• Column input, unlike list input, reads data until it reaches the last specified column,
not until it reaches a blank space.

Picking and Choosing Variables

Column input also allows fields to be skipped or to be read in any order. You can also
cause only part of a value to be read or re-read, for instance you may wish to only have
the first letter of the students name, then all you have to do is select the column with that
first letter. This is especially important when the data is in the form shown below, because
none of the fields are separated by spaces.

12388Bob

10189Belle

43290Tiye

Note: There has to be a blank spaces after ‘Bob’ and ‘Tiye’, so that they are all of the
same length.
e.g. To select the data in reverse order, modify the input statement to:

INPUT Student $ 6-11 YearBorn 4-5 StudNo 1-3

2.1.4 Combining List and Column Inputs

Now that we have included the students names we may wish to exclude the student num-
ber, this we can do by modifying the input line to

INPUT YearBorn 5-6 Student $;

Where 5-6 refers to the columns where your first desired variable is. The omission of any
further column references informs SAS that each subsequent variable in the input statement
will correspond to the subsequent variable in the data file.

11

Suppose you just wanted the student number and their name but not their age then you
would need to modify the input statement as follows

INPUT StudNo Student $ 8-13;

Where 8-13 refers to the columns where the student names are. The dollar sign can
be on either side of the column reference.
Note: this assumes that all the data is properly set up in columns, because if for example
you had the following

123 88 Bob 123 88
101 89 Belle 101 89
432 90 Tiye 432 90

You can see that the columns method would fail at ‘Belle’ because the “le” would fall
in the wrong column. In this case, you would have to use the list input.

2.1.5 Data Files with Different Formats

For brevity, this guide does not show you every possible format which SAS can handle, but
you will just need to explore as required. Refer to the SAS help, or the manuals which are
available in the library.

2.1.6 Impossible Data Files

Occasionally you may get an data file such as

12388Bob12388
10189Belle10189
43290Tiye43290

This type of formatting is always going to be difficult to read into any package, and you
will often have to edit the datafile first.

2.1.7 Creating Dependent Variables

Sometimes you’ll need to create variables from existing ones. For example, you may wish
to know the actual ages of the students according to the current year minus their date of
birth. Firstly, we save the 3 datalines above into the file ‘P:\ageclub.txt’. Then

DATA ageclub;

INFILE ’P:\ageclub.txt’;

INPUT StudNo YearBorn Student $;

StudAge=107-YearBorn; ← 107 to represent 2007
RUN;

PROC PRINT DATA=ageclub;

RUN;

12

For reference, the basic math operators are:

• addition +

• subtraction -

• multiplication *

• division /

• power **

Logic Statements

Suppose you wished to divide the club into those older than 8 and those below, you can
do this via a logic statement. To create a new variable called ‘old’ add the following after
where you had defined StudAge:

Old=StudAge>=9;

When you re-run your program you will obtain the following output.
OBS STUDNO YEARBORN STUDENT STUDAGE OLD

1 123 88 Hobbes 9 1

2 101 89 Calvin 8 0

3 432 90 Susie 7 0

There are also the “&” and “|” logic statements which refer to “and” and “or” respec-
tively. For example, if you define middle aged students to be between 7 and 9 then you
could write it as follows.

MidAge=StudAge>7 & StudAge<9;

For reference here is the full set of relation operators

Symbol Mnemonic Operator Meaning
= EQ equal to
∼= NE not equal to
> GT greater than
< LT less than

>= GE greater than or equal to
<= LE less than or equal to

13

2.1.8 Use of ‘IF...THEN...ELSE’ Statements

Suppose you wished to divide the ages further into the categories young, middle aged and
old. This can be done via an ‘IF...THEN...ELSE’ statement:

DATA ageclub;

INFILE ’P:\example.txt’;

INPUT StudNo YearBorn Student $;

StudAge=107-YearBorn;

IF StudAge>=19 THEN AgeCat=’Senior’;

ELSE IF StudAge=18 THEN AgeCat=’Middle Aged’;

ELSE AgeCat=’Child’;

RUN;

PROC PRINT DATA=ageclub;

RUN;

Note: The ‘IF’ does not require an ‘END’ statement, unlike many other programming
languages.
Submitting the above program gives:

Age of Club Members 11

09:08 Monday, July 10, 2007

OBS STUDNO YEARBORN STUDENT STUDAGE AGECAT

1 123 88 Hobbes 9 Senior

2 101 89 Calvin 8 Middle

3 432 90 Susie 7 Child

Notice how AgeCat got truncated to the length of its first item. You can specify the length
you require via a ‘LENGTH’ statement, e.g.:

StudAge=107-YearBorn;

LENGTH AgeCat $ 11;

IF StudAge>=19 THEN AgeCat=’Old’;

You also use ‘AND’ and ‘OR’ statements. For instance, the ‘AND” statement works as follows

IF StudAge>17 & StudAge<19 THEN MidAged=’Yes’;

ELSE MidAged=’No ’;

or similarly

IF 17<StudAge<19 THEN MidAged=’Yes’;

ELSE MidAged=’No ’;

Similarly the ‘OR’ statement works as follows

IF StudAge<=17 | StudAge>=19 THEN MidAged=’No ’;

ELSE MidAged=’Yes’;

14

2.1.9 Deleting Observations

Suppose we wished to delete from the data all students who were too old, you can do this
via the DELETE command as follows.
IF AgeCat=’Old’ THEN DELETE;

2.2 Including Comments Within Your SAS Program

To include comments in your SAS programs all you need to do is insert a /∗ at the start of
your comment and a ∗/ at the end of your comment. e.g.
/* This is a sample comment */

2.3 Sorting your Data

SAS’s SORT procedure has the form:
PROC SORT DATA=ageclub OUT=sortclub;

BY YearBorn;

RUN;

PROC PRINT DATA=sortclub; /* Prints sorted data */

RUN;

Sorting by more than one Variable

You can sort by more than one variable by including the additional variables in the BY

statement. For instance, if you wish to sort also by the variables StudNo and StudAge then
you would modify as follows.

PROC SORT DATA=ageclub OUT=sortclub;

BY StudNo StudAge;

RUN;

PROC PRINT;

RUN;

Note: As sortclub was the last data set created, “PROC PRINT”, selects it as the
default.

Sorting in Descending Order

To sort a variable in descending order you only need to modify the program as follows

PROC SORT DATA=ageclub OUT=sortclub;

BY DESCENDING YearBorn;

RUN;

PROC PRINT;

RUN;

15

Removing Duplicates

The ‘NODUPLICATES” option in the sort procedure deletes any observation that duplicates
the values of all variables of another observation in the dataset:
PROC SORT DATA=ageclub OUT=sortclub;

NODUPLICATES;

BY DESCENDING YearBorn;

RUN;

PROC PRINT;

RUN;

16

Chapter 3

SAS Procedures

SAS programs are composed of a sequence of (statistical) procedures. Some of the most
commonly used procedures for statistical analysis are explained in detail below. Many SAS

procedures are now accessible by the menu options. These are usually fine for one-off small
analyses. However, for larger analyses (which may be repeated later), it is good practice
to write a program to do the analysis, which can be saved in a .sas file for later re-use.

3.1 Basic Statistics

3.1.1 Using the MEANS Procedure

Instead of having a series of procedures for calculating basic summary statistics (e.g. min-
imum, maximum) of numerical variables, they have all been combined into the MEANS

procedure. It also calculates confidence limits for the mean and identifies extreme values.
You can select which statistical information required from the available options, see the
SAS help for the syntax and a list of options.

Here’s an example for a mean and its confidence interval calculation:

PROC MEANS DATA=ageclub ALPHA=0.05 CLM MEAN MEDIAN N MIN MAX;

RUN;

The mean, median, sample size, minimum, maximum, and 95% confidence intervals will be
computed for variables age and weight. The ALPHA option specifies the confidence level for
the confidence limit, CLM asks SAS to calculate the confidence interval of the mean. These
summary statistics for all numerical variables in the dataset will be calculated (i.e. StudNo
and YearBorn).

If you only want to calculate the mean some of the variables in your dataset, use the VAR

option and list the variables after the keyword VAR. If you want the means of the variables
by group, use the BY option. For example:

DATA ageclub;

INFILE ’P:\example.txt’;

INPUT StudNo YearBorn Student $;

StudAge=107-YearBorn;

17

IF StudAge>=19 THEN AgeCat=’Senior’;

ELSE IF StudAge=18 THEN AgeCat=’Middle Aged’;

ELSE AgeCat=’Child’;

RUN;

PROC SORT DATA=ageclub;

BY AgeCat;

RUN;

PROC MEANS DATA=ageclub MEAN;

VAR StudAge;

BY AgeCat;

RUN;

Notice that the data must be sorted by the group variable AgeCat, before using the MEANS

procedure. SAS will compute the mean age for each value of AgeCat, i.e. Senior, Middle
Aged and Child.

3.1.2 Calculating Correlations and Covariances

These can be calculated by using the CORR procedure (the covariance is an option). For
example:

PROC CORR DATA=ageclub;

VAR StudNo YearBorn;

RUN;

The Pearson correlation coefficient and its p-value are computed by default and displayed
in a correlation matrix:

Pearson Correlation Coefficients, N = 3

Prob > |r| under H0: Rho=0

StudNo YearBorn

StudNo 1.00000 0.83478

0.3712

YearBorn 0.83478 1.00000

0.3712

The correlation coefficient between StudNo and YearBorn is 0.83478 and 0.3712 is the p-
value for testing the null hypothesis that the coefficient is zero. In this case, the p-value
is greater than 0.05, so there is insufficient evidence to reject the null hypothesis of zero
correlation.

18

3.1.3 Univariate Statistics

PROC UNIVARIATE produces an elementary statistical analysis. It outputs the basic sum-
mary statistics and has optional statements to generate QQ-plots and histograms. For
example:

PROC UNIVARIATE DATA=ageclub;

VAR YearBorn;

QQPLOT;

HISTOGRAM;

RUN;

If the VAR statement was not specified SAS would perform the analysis on all the numeric
variables in the dataset.

3.2 SAS Graphics

SAS has two styles of graphics, low level graphics consisting of text (ASCII)
characters, and high level graphics. Limited details are provided on the low level graphics
as they are slowly(!) becoming defunct.

3.2.1 Low Level Graphics (Scatter Plots)

The PLOT procedure produce low-level graphics, which hark back to the days of line printers
(how many of you can remember those?). An example of a simple plot of StudNo and
YearBorn is

PROC PLOT DATA=ageclub;

PLOT StudNo*YearBorn;

RUN;

Where StudNo is along the vertical axis and YearBorn is along the horizontal. By default,
the PLOT procedure

• Prints the name of the vertical variable next to the vertical axis and the name of the
horizontal variable beneath the horizontal axis.

• Chooses ranges for both axes and automatically places tick marks at reasonably
spaced intervals.

• Uses the letter A as the plotting symbol to indicate one observation; the letter B if
two observations coincide; and so on.

• Prints a legend naming the variables in the plot and explaining the plotting symbols.

19

Adding Title and Labels to a Plot

Here is an example of adding axis labels and titles to a plot: PROC PLOT DATA=ageclub;

PLOT StudNo*YearBorn;

TITLE ’Plot of Student Number against versus Year of Birth’;

LABEL StudNo=’Student Number’

YearBorn=’Year of Birth’;

RUN;

Specifying Plotting Symbols

Should you wish to specify the “asterisk (*)” as the plotting symbol, you simply do the
following

PROC PLOT DATA=ageclub;

PLOT StudNo*YearBorn=’*’;

RUN;

Note: When you specify a plotting symbol, PROC PLOT uses that symbol for all points on
the plot regardless of how many observations may coincide. If observations do coincide, a
message appears at the bottom of the plot telling you how many observations are hidden.

Creating Multiple Plots

Rather than do separate plots for different variables, they can be combined as follows
PROC PLOT DATA=ageclub;

PLOT StudNot*YearBorn=’*’ StudNo*StudAge=’o’;

RUN;

The plots can be overlaid on the same axis using the option OVERLAY: PROC PLOT DATA=ageclub;

PLOT StudNot*YearBorn=’*’ StudNo*StudAge=’o’ / OVERLAY;

RUN;

3.2.2 High Level Graphics (Scatter Plots)

A simple example of a scatter plot is

PROC GPLOT DATA=ageclub;

PLOT StudNo*YearBorn;

RUN;

Notice that the only difference between this and the low level graphics is the GPLOT
statement.

Adding Title(s)

You can add a title using the command ‘title’ as with the PLOT procedure above. Sub-
titles can also be added:

20

PROC GPLOT DATA=ageclub;

PLOT StudNo*YearBorn;

TITLE ’Plot of Student Number against versus Year of Birth’;

TITLE2 ’Example scatter plot using GPLOT’;

LABEL StudNo=’Student Number’

YearBorn=’Year of Birth’;

RUN;

Note: you can have up to ten titles, numbered 1-10, e.g title5.
For more details of titles and other graphic options consult the SAS help.

Bar Plots

Firstly start off looking at a simple histogram

DATA ageclub2;

INPUT StudNo YearBorn Student $;

StudAge=107-YearBorn;

IF StudAge>=19 THEN AgeCat=’Senior’;

ELSE IF StudAge=18 THEN AgeCat=’Middle Aged’;

ELSE AgeCat=’Child’;

CARDS;

123 88 Bob

101 89 Belle

432 90 Tiye

524 89 Sidney

RUN;

PROC GCHART DATA=ageclub2;

VBAR YearBorn;

TITLE ’Histogram of Year of Birth’;

RUN;

You will notice that each of the bars are solid blocks. While this looks nice on the screen,
when printing it is very wasteful of printer ink, not to mention slower. One can use the
PATTERN option to define another style. See the SAS help for details.

Bar Plots with Subgroups

Supposing you want to produce a bar chart with subgroups, you could do that as follows

PROC GCHART DATA=ageclub2;

VBAR YearBorn / SUBGROUP=AgeCat;

TITLE ’Histogram of Year of Birth by Age category’;

RUN;

You will notice that SAS automatically assigns a pattern for each subgroup and then in-
cludes a legend (key).

21

3.2.3 Pie Charts

Here is a simple example of a pie chart

PROC GCHART DATA=ageclub2;

PIE StudAge / NOHEADING VALUE=none SLICE=arrow PERCENT=none;

TITLE ’Pie chart of Ages’;

RUN;

3.2.4 Exporting graphs

Often you will need to export SAS graphics other documents, e.g. Word or Powerpoint.
Graphs export best from PROC GPLOT, as the low-level graphs from PROC PLOT often don’t
look good in other document formats. Low level graphs can simply be copied and pasted
to other programs as they are just plain text.

SAS provides many different formats in which to save graphs and many options for how to
export them, so only a selection is given below.

Exporting to Word/Powerpoint

The following outline methods for exporting to Word or Powerpoint, but will also work for
other programs.

• From GRAPHICS window showing the results of PROC GPLOT, find the graph you
wish to export and left-click on it, go to the ‘Edit’ menu and click ‘Copy’. In
Word/Powerpoint, go to the ‘Edit’ menu, and click on “Paste Special”. Use the
option “Picture” to paste the graph. Depending on your Microsoft Office setup you
may be able to simply use “Paste” instead.

• After selecting the graph you wish to export as before, go to the ‘File’ menu, and
click “Export as Image”. You can choose a variety of different formats in which to
save the graph. After you choose the format, go to the Word/Powerpoint document,
go to the ‘Insert’ menu, click on “Picture from file”, find the file containing the graph
you want to insert and click “OK”.

22

Index

$, 10
SAS Names, 4

Bar Plots, High Level, 21

Cards, 3
Character Variables, 10
Column Input, 11
Comments, 15
Correlation, 18
Covariance, 18

Dataset, 3
Deleting Observations, 15
display, 6
Duplicates, 16

Editor, 2
exit, 2

Formats, 12

Gcharts, 21
Graph, Title, 20
Graphics, High Level, Scatter Plots, 20
Graphics, Low Level, 19
Graphs, Label, 20
Graphs, Title, 20

Help, 8

If, 14
Input, 3
Inputting Data, 10

Label, 20
List Input, 10, 11
Loading Data, 7
Log, 2, 5
Logic Statements, 13

MEANS Procedure, 17
Multiple Plots, 20

Open, 4

Output, 2, 6

Pie Charts, 22
Plotting Symbols, 20
PRINT, 6
Printer, 7
Printing, 7

Quit, 2

Relation Operators, 13
Running, 4

Scatter Plots, Low Level, 19
Screen Output, 7
Selecting, 9, 11
Shortcuts, 6
Sort, Descending, 15
Sort, Multivariables, 15
Sorting, 15
Start, 2
Statements, Rules, 4
Submit, 4
Subsets, 9

Tab, 3
Title, 20

Variables, Dependent, 12

23

