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Abstract

We investigate bursting behaviour generated in an electrophysiological model of
pituitary corticotrophs. The active and silent phases of this mode of bursting are
generated by moving between two stable oscillatory solutions. The bursting is indi-
rectly driven by slow modulation of the endoplasmic reticulum Ca2+ concentration.
The model exhibits different modes of bursting, and we investigate mode transitions
and similar modes of bursting in other Hodgkin–Huxley models. Bifurcation analysis
and the use of null-surfaces facilitate a geometric interpretation of the model bursting
modes and action potential generation respectively.

1 Introduction

A Hodgkin–Huxley type mathematical model has been constructed which includes the ma-
jor plasma membrane ionic currents identified in pituitary corticotrophs and the associated
intracellular Ca2+ dynamics [LeBeau et al., 1997, Shorten et al., 1999a]. In certain param-
eter regimes the model exhibits a novel form of bursting behaviour. This bursting is due
to the existence of a fast time scale associated with the membrane action potentials and
a slow time scale associated with the slow modulation of the endoplasmic reticulum (ER)
Ca2+ concentration. In this paper we investigate this bursting where the quiescent state
is a small amplitude (“subthreshold”) limit cycle attractor and the spiking state is a limit
cycle attractor. In order to perform a mathematical analysis of this bursting behaviour
we study a reduced version of this model which also exhibits topologically similar types of
bursting behaviour in certain parameter regimes.

Although pituitary corticotrophs do not seem to exhibit these modes of bursting this
interesting type of bursting hasn’t been observed in Hodgkin–Huxley type models and war-
rants further study. Some corticotrophs exhibit other modes of bursting where the depolar-
ization spike is followed by small oscillations in the membrane potential [Kuryshev et al., 1996,
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Kuryshev et al., 1997, Adler et al., 1983]. These modes of bursting are exhibited in our
model and the behaviour and underlying mechanisms have previously been investigated
[LeBeau et al., 1998, Shorten et al., 1999b].

The bursting process is driven by the slow modulation of the endoplasmic reticulum
Ca2+ concentration ([Ca2+]er), giving rise to a slow component in [Ca2+]i. This slow compo-
nent in [Ca2+]i gives rise to the electrical bursting via a Ca2+-activated K+ current. This
store operated burst modulation mechanism has also been observed in other Hodgkin–
Huxley type models [Chay, 1997, Gall and Susa, 1999], and we analyse this mechanism
from a bifurcation perspective.

There has been much interest in bursting oscillations in electrophysiological systems
based on slowly varying dynamical systems [Rinzel, 1987, Bertram et al., 1995, de Vries, 1998].
There are two time scales identified in our model; a fast time scale associated with mem-
brane action potentials, and a slow time scale associated with the gradual increase in
[Ca2+]er. This slow time scale allows us to interpret the model as a fast system evolving
through a slow subsystem. Thus by treating the slow variable as a fixed parameter the
system can be regarded as a family of vector fields. This allows the use of tools from
bifurcation theory to investigate the modes of bursting in the model.

The first formal classification of bursting is due to Rinzel (1987) who classified the
“parabolic”, “elliptic”, and “square-wave” modes of bursting. Bertram et al. (1995) sug-
gested using Roman numerals to identify the different modes, and they introduced the
Type IV burster. Further classification was also carried out by Rush and Rinzel (1994)
and de Vries (1998) who suggested the addition of the “triangular” and Type V burster
respectively. However the current naming scheme is misleading and is becoming unmanage-
able as the number of classified modes increases. A more self-explanatory comprehensive
naming scheme suggested by Izhikevich (2000) is to name the bursting mode after the two
bifurcations involved. Thus for example the well known “elliptic” (Type III) burster is a
“subHopf/fold cycle” burster because the rest state disappears in a subcritical Hopf bifur-
cation and the limit cycle attractor disappears in a fold limit cycle bifurcation. All of the
aforementioned bursters are termed point–cycle bursters due to the fact that the quiescent
state is a stable equilibrium and the spiking state is a limit cycle attractor. In this paper
we investigate a novel form of bursting due to bistability between two periodic solutions.
This is termed a cycle-cycle burster. Due to the bifurcations involved, this topological type
of bursting is named “fold cycle/fold cycle” bursting [Izhikevich, 2000]. Because the fast
spiking subsystem is two-dimensional the burster is termed planar by Izhikevich (2000) .

The model bursting is similar to a mode of cycle–cycle bursting exhibited in the neuron
model of Wang (1993). However in that model the bursting is modulated by the slow
inactivation kinetics of a K+ current. We show here a bifurcation analysis with respect to
this inactivation variable which reveals the model bistability. This shows the subthreshold
limit cycle disappears in a fold cycle bifurcation and the spiking limit cycle attractor
disappears in a subcritical flip (period doubling) bifurcation. This mode is termed a “fold
cycle/flip” burster [Izhikevich, 2000].

The broad classification scheme of Izhikevich (2000) is theoretical in the sense that
many of the 120 bursting modes have yet to be observed in conductance based models.
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The “fold cycle/fold cycle” and “fold cycle/flip” bursters identified in our paper have not
previously been observed in Hodgkin–Huxley type models. An interesting open problem
is whether conductance based models of the Hodgkin–Huxley type impose restrictions on
the possible bifurcations and hence the type of bursters [Izhikevich, 2000].

2 The model

The model is of Hodgkin–Huxley form [Hodgkin and Huxley, 1952], and consists of seven
coupled ordinary differential equations. Four ionic currents are included in the model: 1) a
high-voltage threshold dihydropyridine-sensitive L-type Ca2+ current (ICa−L), responsible
for most of the inward Ca2+ current during an action potential; 2) a low-voltage threshold
rapidly inactivating T -type voltage-sensitive Ca2+ current (ICa−T); 3) a voltage-sensitive
K+ current (IK−DR), predominantly responsible for the action potential repolarization;
and 4) a Ca2+-activated K+ current (IK−Ca), essential in the bursting behaviour. The re-
maining leak current (ILeak) represents all other ionic current contributions not specifically
described. The construction of these ionic currents from electrophysiological measurements
in corticotrophs has previously been described in LeBeau et. al., (1997). The resulting
equations and parameters are shown in the Appendix.

Ca2+ transport is crucial for action potential generation in corticotrophs, and the model
includes equations for the intracellular Ca2+ concentration ([Ca2+]i) and the ER Ca2+ con-
centration. The ER performs a number of important cellular functions, including cellular
Ca2+ homeostasis and protein synthesis [Alberts et al., 1983, p335]. A schematic diagram
of the ionic transport processes is shown in Fig. 1.

The bursting type behaviour we discuss and analyse is exhibited in the full seven
variable model and simpler models containing a smaller number of variables, albeit with
slightly different parameter values. The reduction in the number of model variables utilises
the fact that the channel gating variables mL, hT and mT present in the ICa−L and ICa−T
channel currents (see the Appendix) remain very close to their steady state values during an
action potential, that is they are fast variables and can be removed and set to their steady
state values. This produces a four variable model, which has been previously discussed in
the context of action potential generation and excitability [LeBeau et al., 1998]. However
for ease of explanation we eliminate another variable from the model. The fourth gating
variable n, present in the IK−DR channel current (see the Appendix), is not as fast as the
membrane potential difference (V ). However to aid in the visualisation of the model we set
n to its steady state value to obtain the three variable model governed by the equations in
Table 1. This change does not significantly change the model dynamics. This model system
was solved using a stiff system solver in the numerical package XPPAUT(3.0) 1. Bifurcation
diagrams were computed using AUTO [Doedel, 1981], as incorporated in XPPAUT.

1Written by Bard Ermentrout, and available at ftp.math.pitt.edu/pub/bardware
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Figure 1: Schematic diagram of the ionic pathways included in the model. Three com-
partments are distinguished, the cytosol, the ER, and the extracellular medium. Arrows
indicate ionic channels and pumps. Within the ER and cytosolic compartments, signifi-
cant portions of Ca2+ are bound to buffers, denoted by Ber and Bc respectively. Four ionic
currents are included in the model: an L-type voltage-sensitive Ca2+ current ICa−L, a fast
inactivating T -type voltage-sensitive Ca2+ current ICa−T, a voltage-sensitive K+ current
IK−DR, and a non-voltage sensitive Ca2+-activated K+ current IK−Ca. The remaining leak
current ILeak represents all other ionic current contributions. Also indicated are the ER
and plasma membrane Ca2+-ATPase pumps, Jeff and Jup respectively, along with an ER
Ca2+ leakage term Jrel.

cm
dV

dt
= −(ICa−L + ICa−T + IK−DR + IK−Ca + ILeak),

d[Ca2+]i
dt

=
fcyt
Vc

(Jrel − Jup) + fcytβ(Jin − Jeff),

d[Ca2+]er
dt

= −fer
Ver

(Jrel − Jup),

x = x∞(V ), x ∈ {mL, mT, hT, n},

Table 1: Reduced three-variable model equations.
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3 The model bursting

The bursting behaviour in the three variable model is shown in Fig. 2 A. The quiescent
state is a small amplitude (“subthreshold”) limit cycle attractor and the spiking state is a
limit cycle attractor. Due to the bistability between two periodic solutions this is termed
a cycle-cycle burster [Izhikevich, 2000]. The silent and active phases of the bursts are
associated with increasing and decreasing [Ca2+]er respectively (Fig. 2 C).

During the spiking train of action potentials [Ca2+]er slowly increases as the ER se-
questers Ca2+ and therefore acts to buffer the [Ca2+]i (Fig. 2 C). If only a single [Ca2+]i
transient was generated, the additional ER Ca2+ would be returned to the cytosol, and
eventually removed from the cell altogether to recover cellular [Ca2+] homeostasis. How-
ever, Fig. 2 C shows that with each successive action potential, [Ca2+]er builds up as each
transient contributes additional Ca2+ to the cytosol via the L-type Ca2+ current. [Ca2+]er
increases until [Ca2+]er = 17.8 µM, where the limit cycle disappears and [Ca2+]er begins
to decrease. The trajectory is then attracted towards the smaller stable subthreshold qui-
escent state. [Ca2+]er decreases until [Ca

2+]er = 17.3 µM, where the small periodic orbit
disappears, and the trajectory is attracted back towards the spiking state. The process
of moving between the two stable periodic solutions then repeats, and we obtain “fold
cycle/fold cycle” bursting behaviour. The “fold cycle/fold cycle” bursting can be visu-
alised as a flow on a two-dimensional invariant torus in V -[Ca2+]i-[Ca

2+]er phase space
[Hale and Kocak, 1991], with the silent and active phases of the bursts associated with
flow on the inner and outer surfaces of the torus, respectively.

The [Ca2+]i transients mimic the voltage bursting response (Fig. 2 B). Coupled to
the increase in [Ca2+]er during the spiking phase is a slight rise in the average [Ca2+]i
(i.e., averaged over the course of a transient) The small rise in [Ca2+]i results from an
enhanced Ca2+ leak current from the ER and leads to a gradual increase in the average
activation of IK−Ca. This in turn has a subtle inhibitory effect on the regeneration of
action potentials. During the spiking phase the action potential peaks slightly decrease
until enough feedback is present to significantly reduce the action potentials, resulting in
small amplitude oscillations. To allow the individual action potentials to be resolvable
on the scale illustrated, the ER Ca2+ buffering factor is increased from fer = 0.0025 to
fer = 0.01. This reduction in the ER Ca2+ buffering allows [Ca2+]er to change more rapidly
and has little effect on the dynamics under consideration.

The bursting is modulated by a very minor increase in [Ca2+]i, demonstrating the
delicate interplay between the ER filling state and the plasma membrane electrical activity.
This store operated burst modulation mechanism has also been observed in other Hodgkin–
Huxley type models [Chay, 1997, Gall and Susa, 1999]. Further, this effect shows that the
ER could potentially play an important signaling role despite an initial appearance that it
plays only a passive, buffering function during CRH-induced activity.
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Figure 2: (A) Model “Fold cycle/fold cycle” bursting due to bistability between the two
stable periodic solutions. To allow the individual action potentials to be resolvable on the
scale illustrated, the ER Ca2+ buffering factor is increased from fer = 0.0025 to fer = 0.01.
(B) Coupled to the voltage bursting response are [Ca2+]i transients. (C) During the active
and silent phases of the bursts [Ca2+]er increases and decreases respectively.
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4 One parameter bifurcation analysis

Now we consider a fast-slow decomposition of the system of equations based on the pi-
oneering work of Rinzel (1985, 1986, 1987) . This decomposition is justifiable since the
spiking time scale is significantly smaller than the time scale of modulation. As illustrated
in Fig. 2, it is evident that V and [Ca2+]i are the fast variables, and [Ca2+]er is the slow
variable. By treating the slow variable [Ca2+]er as a fixed parameter we can interpret the
model as a family of vector fields, with the slow variable dynamics allowing the fast system
to evolve through this family.

We illustrate the sequence of model behaviour by showing trajectories in [Ca2+]i-V
phase space instead of temporal plots. If the slow variable [Ca2+]er is fixed at 17 µM then
the model exhibits stable action potentials as shown by the stable periodic orbit (—) in
Fig. 3 A. Increasing [Ca2+]er to 17.6 µM changes the model behaviour. In addition to the
large stable periodic orbit a smaller stable oscillation has emerged as shown in Fig. 3 B.
In between these two stable periodic solutions lies an unstable periodic orbit (– – –). This
unstable periodic orbit specifies the regions of attraction of the two periodic solutions. If
[Ca2+]er is further increased the model behaviour changes again. Fig. 3 C indicates the
model behaviour when [Ca2+]er = 18 µM. The large periodic orbit has coalesced with
the unstable periodic orbit and disappeared. All trajectories are now attracted onto the
smaller stable periodic orbit. If [Ca2+]er is further increased to [Ca2+]er = 19 µM, then
the small stable periodic solution has disappeared, and all trajectories are attracted onto
a stable steady state solution (Fig. 3 D). The sequence of [Ca2+]er values chosen above are
not values for which bifurcations occur.

The visualisation of the vector field is useful in understanding the model behaviour.
This is the reason we make the reduction to the three variable model. The nullclines are
helpful in understanding action potential generation, and are shown with [Ca2+]er fixed at
17 µM in Fig. 3 A. The S-shaped V nullcline (· · ·) is not a function of [Ca2+]er, and hence
is simple to visualise. However the [Ca2+]i nullcline (– – –) is a function of [Ca2+]er, and
moves gradually up and to the left with increasing [Ca2+]er (see Fig. 3 D). Superimposed
in Fig. 3 A is the orbit of a typical action potential (—) in the V -[Ca2+]i phase plane.
Notice that the orbit is heavily attracted onto the S-shaped V nullcline, indicating that V
is a faster variable than [Ca2+]i.

To summarise the sequence of phase portraits shown in Fig. 3 a bifurcation analysis of
the model with respect to the slow variable [Ca2+]er is shown in Fig. 4 A. This bifurcation
structure is called the slow manifold. For [Ca2+]er < 17.46 µM the model only exhibits
stable action potentials (—), with an amplitude of about 50 mV. However for 17.46 ≤
[Ca2+]er < 17.76 µM the model exhibits bistability due to the emergence of a small stable
solution from a saddle node of periodics bifurcation (SNP). A SNP bifurcation is also called
a fold bifurcation of limit cycles or a fold cycle, the term we use in our classification of
bursting. The unstable periodic orbit (– – –) denotes the regions of attraction of the two
periodic orbits. For 17.76 ≤ [Ca2+]er < 18.29 µM only small oscillations are exhibited
due to the disappearance of the action potentials through another SNP bifurcation. For
[Ca2+]er ≥ 18.29 µM the small oscillations disappear in a supercritical Hopf bifurcation
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Figure 3: Sequence of model situations as [Ca2+]er increases. (A) For [Ca2+]er = 17 µM
the model exhibits stable action potentials (—). The S-shaped V nullcline (· · ·) and the
[Ca2+]i nullcline (– – –) indicate that V is a faster variable than [Ca2+]i. Directed arrows
represent trajectories. (B) For [Ca2+]er = 17.6 µM a small stable oscillation has emerged
that is surrounded by an unstable periodic orbit (– – –). (C) The larger periodic orbit has
coalesced with the unstable periodic orbit and disappeared when [Ca2+]er = 18 µM. (D)
When [Ca2+]er = 19 µM the small stable periodic solution has disappeared and is replaced
by a single stable steady state.

(HB) and the previous unstable steady state (– – –) becomes stable (—). The interesting
feature of Fig. 4 A is the bistability between two stable periodic solutions for [Ca2+]er
between the two SNP bifurcations. It is this bistability that is critical for the bursting
type behaviour in the model.

The [Ca2+]er null-surface is independent of V , and is relatively linear for [Ca2+]er <
20 µM. This null-surface is easily visualised and seems simple, but the way it interacts
with the other two null-surfaces leads to interesting behaviour. This interaction is shown in
Fig. 4 A, where the [Ca2+]er nullcline (· – ·) is superimposed onto the slow manifold. This
diagram is useful in understanding of the bursting behaviour previously shown in Fig. 2 A.

The bursting oscillations result from bistability between two stable periodic solutions,
with the silent and active phases of the bursts associated with increasing and decreasing
[Ca2+]er respectively (see Fig. 2). During the spiking train of action potentials [Ca2+]er in-
creases until [Ca2+]er = 17.76 µM, the upper SNP bifurcation in Fig. 4 A. The trajectory is
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Figure 4: Model [Ca2+]er nullcline (· – ·) superimposed on the slow manifold for different
values of νp, the maximum plasma membrane [Ca2+]i pump rate. Increasing νp moves the
slow manifold to the right. (A) When νp = 0.045 µM · µm ·ms−1 the model exhibits the
“fold cycle/fold cycle” bursting in Fig. 2. (B) When νp = 0.04 µM · µm ·ms−1 the model
reaches a steady state where the [Ca2+]er nullcline intersects the slow manifold . (C) When
νp = 0.042 µM ·µm ·ms−1 the model exhibits sustained subthreshold oscillations.(D) When
νp = 0.05 µM · µm ·ms−1 the model exhibits sustained action potentials and is incapable
of bursting.

then attracted towards the smaller stable periodic orbit of Fig. 4 A, and [Ca2+]er decreases
because d[Ca2+]er/dt < 0 under the [Ca2+]er nullcline (· – ·). [Ca2+]er decreases until a
SNP bifurcation occurs when [Ca2+]er = 17.46 µM, and the small periodic orbit disap-
pears. However the trajectory is not immediately attracted onto the upper stable branch.
Small voltage oscillations in the membrane potential of increasing amplitude continue un-
til [Ca2+]er decreases to 17.3 µM, as shown in Fig. 2 A and Fig. 2 C. This slow passage
through the SNP bifurcation is similar to the slow passage through a Hopf bifurcation,
which is known as the delay or memory effect [Baer et al., 1989, Holden and Erneux, 1993,
Arnold et al., 1994]. The process of moving between the two stable periodic branches then
repeats, and due to the bifurcations involved, this topological type of bursting is named
“fold cycle/fold cycle” bursting [Izhikevich, 2000].

One may ask: What happens if we move the slow manifold relative to the [Ca2+]er
nullcline? There are two of ways to achieve this, we can either move the [Ca2+]er nullcline
or move the slow manifold. The choice is arbitrary, and we choose to decrease the plasma
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membrane [Ca2+]i maximum pump rate (νp) from 0.045 µM·µm·ms−1 to 0.04 µM·µm·ms−1

to move the slow manifold to the left (see Fig. 4 B). For a spiking system on the upper
branch in Fig. 4 B it follows that [Ca2+]er will increase since above the [Ca2+]er nullcline
d[Ca2+]er/dt > 0. [Ca2+]er will continue to increase until [Ca2+]er = 15.43 µM, whereupon
the action potentials disappear through the upper SNP bifurcation and the system moves
onto the smaller stable periodic solution. [Ca2+]er will continue to increase, until the small
oscillations die out via a supercritical HB, and a steady state is reached where the [Ca2+]er
nullcline intersects the slow manifold at [Ca2+]er = 16.8 µM.

If the slow manifold is moved slightly to the right by increasing νp to 0.042 µM · µm ·
ms−1 then the model behaviour changes (Fig. 4 C). As before [Ca2+]er will increase until
the action potentials disappear through a SNP bifurcation, whereupon the system moves
onto the smaller stable periodic solution. However the placement of the [Ca2+]er nullcline
ensures that the solution remains on the small oscillatory branch with [Ca2+]er increasing
to 16.8 µM, which is to the left of the supercritical HB on the lower branch. The model
therefore exhibits sustained subthreshold oscillations.

The model behaviour changes again if the slow manifold is moved slightly more to the
right by further increasing νp to 0.05 µM ·µm ·ms−1 (Fig. 4 D). This time [Ca2+]er increases
until [Ca2+]er = 19.5 µM, which is to the left of the SNP bifurcation on the upper branch.
The oscillations therefore remain on the upper branch and the model exhibits sustained
action potentials. In Fig. 4 A,C,D the slow manifold lies both above and below the [Ca2+]er
nullcline, and hence [Ca2+]er oscillates in phase with the fast subsystem. These oscillations
are very small, but are resolvable in Fig. 2 C.

A bifurcation diagram summarising the change in the model dynamics with νp is shown
in Fig. 5. For νp = 0.04 µM · µm · ms−1 the oscillations decay to a steady state (—
) as previously illustrated in Fig. 4 B. As νp increases a supercritical HB occurs when
νp = 0.0415 µM · µm · ms−1 and the model exhibits small stable oscillations (—). This
corresponds to the situation in Fig. 4 C where the placement of the [Ca2+]er nullcline
ensures that the solution remains on the small oscillatory branch. A torus bifurcation of
limit cycles 2 (TB) occurs when νp = 0.0437 µM·µm·ms−1, and the model exhibits the “fold
cycle/fold cycle” bursting behaviour (– – –) as illustrated in Fig. 2. This TB corresponds to
the moment where left-moving oscillations on the small oscillatory branch in Fig. 4 A meet
the lower SNP bifurcation. This mode of bursting continues until νp = 0.0485 µM·µm·ms−1,
where another TB occurs and the model exhibits sustained action potentials (—). This
corresponds to the situation in Fig. 4 D where the decrease in [Ca2+]er while the action
potential is below the [Ca2+]er nullcline precisely balances the increase in [Ca2+]er while
the action potential is above the [Ca2+]er nullcline and sustained action potentials occur.

2A torus bifurcation or Neimark-Sacker bifurcation of limit cycles occurs when a closed invariant curve
bifurcates from a fixed point of the associated Poincaré map. This closed curve corresponds to a two-
dimensional invariant torus.
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Figure 5: A bifurcation analysis of the model with respect to the maximum plasma mem-
brane [Ca2+]i pump rate, νp, summarising the sequence of possibilities in Fig. 4. For
νp = 0.04 µM · µm · ms−1 the oscillations decay to a stable steady state (—). As νp in-
creases a supercritical HB occurs and the model exhibits small stable oscillations (—). A
torus bifurcation (TB) occurs when νp = 0.0437 µM ·µm ·ms−1 and the model exhibits the
“fold cycle/fold cycle” bursting behaviour in Fig. 2 (– – –). This “fold cycle/fold cycle”
bursting continues until νp = 0.0485 µM · µm · ms−1 where another TB occurs and the
model exhibits stable action potentials (—).

5 “Fold cycle/flip” bursting

The bursting in Fig. 2 is similar to a mode of cycle–cycle bursting exhibited in the neuron
model of Wang (1993), which was termed “mixed-mode bursting”. In this Hodgkin–Huxley
type model the bursting is generated by injecting a current (Iapp) and modulated by the
slow inactivation kinetics of a K+ current. The slow inactivation gating variable used in
that paper is ρh1 + (1− ρ)h2. In order to compare Wang’s model with ours we perform a
bifurcation analysis of the model. The model equations and parameters can be found in
Wang (1993) .

In Fig. 6, a bifurcation analysis with respect to the inactivation variable reveals the
model bistability. The quiescent state is a small amplitude subthreshold limit cycle at-
tractor and the spiking state a limit cycle attractor. This diagram shares many of the
topological features of the bifurcation diagrams in Fig. 4. Again, the subthreshold limit
cycle disappears in a SNP bifurcation but now the spiking limit cycle attractor disappears
in a subcritical flip (period doubling) bifurcation (F), and thus is a “fold cycle/flip” burster
[Izhikevich, 2000]. This subcritical flip bifurcation results in three unstable periodic solu-
tions (– – –) for 0.4 ≤ ρh1 + (1− ρ)h2 < 0.402. Although it is difficult to resolve in Fig. 6,
for 0.399 ≤ ρh1+(1−ρ)h2 < 0.4 the model exhibits four periodic solutions, one of which is
stable (—). Unlike the “fold cycle/fold cycle” burster the “fold cycle/flip” burster cannot
occur in models where the fast spiking subsystem is two-dimensional. However, the sharp
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Figure 6: Bifurcation analysis of Wang’s neuron model with respect to the slow inactivation
kinetics of a K+ current. This slow inactivation gating variable is ρh1 + (1 − ρ)h2. The
bursting is generated by injecting a current (Iapp = 3 µA ·cm−2). The model is bistable and
exhibits “fold cycle/flip” bursting where the subthreshold limit cycle disappears in a SNP
bifurcation and the spiking limit cycle attractor disappears in a subcritical flip (period
doubling) bifurcation (F). This burster shares many of the topological features of the “fold
cycle/fold cycle” burster in Fig. 4 A.

loss in stability of the spiking attractor makes it difficult to distinguish experimentally
between the “fold cycle/flip” burster and the “fold cycle/fold cycle” burster.

6 Two parameter bifurcation analysis

The “fold cycle/fold cycle” burster is a variant of the “subHopf/fold cycle” [Izhikevich, 2000]
burster, also known as the “elliptic” [Rinzel, 1987] or type III [Bertram et al., 1995] burster.
This “subHopf/fold cycle” burster for our model is depicted in Fig. 7, where the quiescent
state is a stable equilibrium and the spiking state is a limit cycle attractor. In “sub-
Hopf/fold cycle” bursting the rest state disappears in a subcritical Hopf bifurcation and
the limit cycle attractor disappears in a fold cycle bifurcation (see Fig. 8 A). Certain
changes in our model parameters generate this “subHopf/fold cycle” burster as we now
demonstrate by performing a two-parameter bifurcation analysis of the model with respect
to the slow variable [Ca2+]er, and the leak conductance gL.

If the leak conductance (gL) is increased from 0.3 nS to 0.305 nS, then the bifurcation
diagram of Fig. 4 B changes to that shown in Fig. 8 A. Note that Fig. 8 is constructed
with νp = 0.04 µM · µm · ms−1. This parameter change has taken the model through a
codimension-2 Bautin bifurcation 3 (BB) [Kuznetsov, 1998], where the supercritical Hopf

3A Bautin or generalised Hopf bifurcation occurs when the first Lyapunov exponent changes sign while
the complex eigenvalues of the linearization remain simple, converting a supercritical Hopf bifurcation into
a subcritical one.
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Figure 7: “SubHopf/fold cycle” bursting in the model with gL = 0.305 nS, and νp =
0.0475 µM ·µm ·ms−1. The active bursting phase begins in a subcritical HB and terminates
in the SNP bifurcation of Fig. 8 A.

bifurcation of Fig. 4 B has coalesced with the SNP bifurcation on the lower branch gener-
ating the subcritical HB shown in Fig. 8 A. By suitable placement of the [Ca2+]er nullcline
the model is then capable of exhibiting “subHopf/fold cycle” bursting behaviour by moving
between the subcritical HB and the SNP bifurcation. This bursting behaviour is shown in
the time domain in Fig. 7. [Ca2+]er increases and decreases during the active and silent
phases respectively in a similar fashion to that shown in Fig. 2 B, and the [Ca2+]i transients
mimic the voltage bursting behaviour (not shown).

If gL is decreased from 0.3 nS to 0.25 nS, then the bifurcation diagram in Fig. 4 B
undergoes a different change and is shown in Fig. 8 B. This parameter change has taken
the model through a codimension-2 cusp of periodics bifurcation 4 (CP), where the two
SNP bifurcations of Fig. 4 B coalesce and disappear. The model does not now exhibit
bistability, and hence is incapable of bursting.

If gL is further decreased to 0.04 nS, then the bifurcation diagram in Fig. 4 B changes to
that in Fig. 8 C. The model has gone through another codimension-2 Bautin bifurcation,
where a subcritical HB and a SNP have emerged from the supercritical HB in Fig. 8 B. The
model is again capable of exhibiting “subHopf/fold cycle”bursting behaviour by moving
between the subcritical HB and the SNP bifurcation (not shown but similar to Fig. 7).

The sequence of bifurcation diagrams in Fig. 8 is summarised by the two-parameter
bifurcation diagram in Fig. 9. Curves in the diagram display how the subcritical HB (—),
supercritical HB ( ), and SNP (· · ·) bifurcations move with respect to the bifurcation
parameters. The three codimension-2 bifurcations separate the two-parameter bifurcation
diagram into four regions. Firstly for gL > 0.304 nS, the model is capable of “subHopf/fold
cycle” bursting, as shown in Fig. 7. As gL is decreased a codimension-2 Bautin bifurcation
(BB) occurs and for 0.27 < gL < 0.304 nS the model is capable of “fold cycle/fold cycle”

4A cusp of periodics bifurcation occurs when the three equilibria in the associated Poincaré map, two
stable and one unstable, merge together at a cusp point.
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Figure 8: Bifurcation analysis of the model with respect to the slow variable [Ca2+]er for
different values of the leak conductance gL. (A) For gL = 0.305 nS a codimension-2 Bautin
bifurcation (BB) has occurred where the supercritical HB in Fig. 4 B has coalesced with
the SNP on the lower branch generating a subcritical HB. The model can now exhibit
“subHopf/fold cycle” bursting, as shown in Fig. 7. (B) For gL = 0.25 nS a codimension-2
cusp of periodics bifurcation (CP) has occurred where the two SNP bifurcations in Fig. 4 B
coalesce and disappear. The model is no longer capable of bursting. (C) For gL = 0.04 nS
another BB has occurred and the model is again capable of “subHopf/fold cycle” bursting.



16 A Hodgkin–Huxley bursting model

0

0.1

0.2

0.3

0.4

0 10 20 30 40
2+ µ([Ca   ] M)er

gL

BB

CP

BB

}
}

}
} No bursting

SubHopf  fold cycle bursting

SubHopf  fold cycle bursting

Fold cycle  fold cycle bursting

/

/

/

Figure 9: Two-parameter bifurcation analysis of the model with respect to the slow variable
[Ca2+]er, and the leak conductance gL. Curves in the diagram display how the supercritical
HB (— bold), subcritical HB (— thin), and SNP (· · ·) bifurcations move with respect to
the bifurcation parameters. For gL > 0.304 nS and gL < 0.05 nS the model is capable of
“subHopf/fold cycle” bursting. “Fold cycle/fold cycle” bursting occurs for 0.27 < gL <
0.304 nS, and for 0.05 < gL < 0.27 nS the model is incapable of bursting.

bursting, as shown in Fig. 2. As gL is further decreased the model undergoes a codimension-
2 cusp of periodics bifurcation (CP) when gL = 0.27 nS, and the two SNP bifurcations
coalesce and disappear. For 0.05 < gL < 0.27 nS the model does not exhibit bistability and
hence is incapable of bursting. Another Bautin bifurcation occurs as gL is further decreased,
and for gL < 0.05 nS the model can again generate “subHopf/fold cycle” bursting.

7 Summary

Using a reduced model of corticotroph electrophysiology, we investigated model bursting.
The bursting is indirectly driven by slow modulation of the endoplasmic reticulum Ca2+

concentration which gives rise to a slow component in [Ca2+]i and results in electrical burst-
ing via a Ca2+-activated K+ current. The bursting frequency is dependent on the endoplas-
mic reticulum Ca2+ storage capacity, the Ca2+ transport mechanisms, and the activation
of a Ca2+-activated K+ current. This store operated burst modulation mechanism has also
been observed in other Hodgkin–Huxley type models [Chay, 1997, Gall and Susa, 1999].
The bursting behaviour can be interpreted as the evolution of a fast oscillatory system
through a slow subsystem. Thus, bifurcation theory along with the null-surfaces assist in
analysing the bursting mechanism and allow a geometric interpretation of action potential
generation.

The model exhibits a novel form of bursting due to bistability between two stable
oscillatory solutions. Due to the bifurcations involved, this type of bursting is named “fold
cycle/fold cycle” bursting [Izhikevich, 2000], and is topologically equivalent to flow on a
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two-dimensional torus. The “fold cycle/fold cycle” bursting behaviour can be interpreted
as a variant of the “subHopf/fold cycle” burster, and changes in the underlying model
topology allow the model to exhibit this mode of bursting. We have investigated transitions
between these different modes of bursting using bifurcation theory.

The model bursting is similar to a mode of cycle–cycle bursting exhibited in the neuron
model of Wang (1993). However, in this later model the bursting is modulated by the
slow inactivation kinetics of a K+ current. A bifurcation analysis with respect to this
inactivation variable reveals that the spiking state disappears in subcritical flip bifurcation,
and thus is a “fold cycle/flip” burster. This mode of bursting shares many of the topological
features of the “fold cycle/fold cycle” burster and has also not previously been observed
in a Hodgkin–Huxley type model.

This paper aims to highlight interesting modes of bursting in Hodgkin–Huxley type
models and the underlying mechanisms. In particular it illustrates how slight parameter
changes can lead to quite complex changes in the model behaviour. Many interesting
questions regarding the physiological significance of the different bursting modes, and their
use in distinguishing bursters experimentally remain to be resolved.
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Appendix: Equations and parameter values

The full seven-variable model equations for the excitable corticotroph cell are as follows:
Ionic currents

cm
dV

dt
= −(ICa−L + ICa−T + IK−DR + IK−Ca + ILeak)

ICa−L = gCa-Lm
2
LφCa

ICa−T = gCa-Tm2
ThTφCa

IK−DR = gK-DRnφK

IK−Ca = gK-Ca
[Ca2+]i

4

[Ca2+]i
4 + K4

c

φK

ILeak = gL(V − VL)

φj = V
[j]i − [j]e exp[−zjFV /(RT )]

1− exp[−zjFV /(RT )]
, j ∈ {Ca2+,K+},
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Gating variables

τx
dx

dt
= x∞ − x, x ∈ {mL,mT, hT, n}

x∞ =
1

1 + exp [(Vx − V )/kx]
, x ∈ {mL,mT, n}

hT∞ =
1

1 + exp [(V − VhT)/khT ]

τx(V ) =
τ̄x

exp [(V − Vτ )/kτ ] + 2 exp [2(Vτ − V )/kτ ]
, x ∈ {mL,mT}

ER Ca2+ equations

d[Ca2+]er
dt

= − fer
Ver

(Jrel − Jup)

Jrel = P ([Ca2+]er − [Ca2+]i)

Jup =
νer[Ca2+]i

2

[Ca2+]i
2 + Ker

2

Cytosolic Ca2+ equations

d[Ca2+]i
dt

=
fcyt
Vc

(Jrel − Jup) + fcytβ(Jin − Jeff)

Jin = −α(ICa−L + ICa−T)

Jeff =
νp[Ca2+]i

2

[Ca2+]i
2 + Kp

2

The parameter values in the model are listed in Table 2. Source code for our model suitable
for running on XPPAUT is available from the authors.
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[K+]e Extracellular [K+] 5.6 mM [Guérineau et al., 1991]
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