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lications in optimization journals. In this paper some simple properties of
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1 Introduction

The theory of positive bases introduced by C. Davis [5] in 1954 does not appear in most
modern texts on linear algebra and has only recently re-emerged in publications in op-
timization journals (see, for example [12], [7], [8]). In this paper some simple properties
of this highly useful theory are highlighted and applied to both theoretical and practical
aspects of the design and implementation of algorithms for nonlinear optimization.

The paper is organized as follows. In the next section some simple properties of positive
bases that are useful to optimization applications are outlined. In Section 3, grids or meshes
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are formally introduced and the properties of positive bases are used to provide examples
of very simple convergence proofs for some grid-based numerical optimization algorithms.

Section 4 is concerned with the very practical problem of estimating derivative infor-
mation using function values at grid points and the inclusion of some numerical examples
illustrates the usefulness of positive bases in this context.

2 Positive Independence & Positive Bases

A positive combination of the set of vectors {vj ∈ Rn : j =1, . . . , r} is a linear combination

α1v1 + · · ·+ αrvr

with αj ≥ 0; if all αj > 0 then it is a strictly positive combination.

2.1 Positive Independence

A set of vectors {vj ∈ Rn : j =1, . . . , r} is positively dependent if one of them is a positive

combination of the others (in particular, if any vj is zero). Otherwise the set is positively

independent. Any subset of a positively independent set is positively independent.

2.2 Positive Basis

A positive basis for a subspace C ⊂ Rn is a set of positively independent vectors whose span

is C. In particular, a positive basis for Rn is such that every vector in Rn can be written

as a positive combination of the positive basis vectors but no member of the positive basis

is expressible as a positive combination of the remaining members of the basis. It is shown

in [5] that the cardinality of a positive basis V+ for Rn satisfies n + 1 ≤ |V+| ≤ 2n. Such

positive bases are easily constructed as the following examples show.

Let V = [v1, . . . , vn] be a matrix whose columns form a basis V = {v1, . . . , vn} for Rn

and let e = [1, . . . , 1]T . Then the columns of

[V,−V e] and [V,−V ] (1)
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are, respectively, positive bases of minimal and maximal cardinality. These simple examples

of positive bases (1) will be referred to as being obtained by extending the basis V to V+.

Other examples (and properties) of positive bases can be found in [5].

The usefulness of positive bases in an optimization context stems from the following

simple result.

Theorem 1

If the set of vectors V+ is a positive basis, then

vT g ≥ 0 ∀v ∈ V+ ⇒ g = 0.

Proof: Let the members of V+ be vi for i = 1, . . . , |V+|. Then

−g =

|V+|∑
i=1

ηivi where ηi ≥ 0 i = 1, 2, . . . , |V+|

and so

0 ≥ −gT g =

|V+|∑
i=1

ηiv
T
i g ≥ 0

The only possibility is g = 0. 2

3 Grids or Meshes in Rn

A grid GV(h, xo) is defined by a mesh size h, a point xo on the grid, and a set of n linearly

independent basis vectors V, where

V = {vj ∈ Rn : j = 1, . . . , n} .

The points on the grid G are:

GV(h) =

{
x ∈ Rn : x = xo + h

n∑
i=1

ηivi

}
.

with ηi integer. If the origin (or any other point) is known to lie on the grid then the

dependence on xo will usually be suppressed. The vectors hv1, . . . , hvn are the steps between

adjacent grid points along each of the principal axes of the grid G.
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3.1 Grid Local Minima

Form a positive basis by extending the basis V to V+. A point x̂ ∈ GV(h, x0) is a grid local

minimum of f with respect to the positive basis V+ if and only if

f(x̂) ≤ f(x̂ + hvi) ∀vi ∈ V+.

Normally each point x̂ + hvi is required to lie on GV(h, x0). A necessary and sufficient

condition for this is that each member of V+ is an integer combination of the members of

V.

Theorem 2

Let {x̂k ∈ GV(hk)} be a sequence of grid local minima (with respect to V+) of f lying

in a compact set X ⊂ Rn and let f : Rn → R be continuously differentiable on X. If

limk→∞ hk = 0 then all limit points of the sequence {x̂k} are stationary points of f .

Proof: Since x̂k is a grid local minimizer on the grid GV(hk)

f (x̂k + hkvi) ≥ f (x̂k) , i = 1, . . . , |V+| (2)

Letting g(x), ĝk denote ∇f(x),∇f(x̂k) respectively, the definition of a derivative gives

f (x̂k + hkvi) − f (x̂
k
) =

∫ hk

s=0

vT
i [g (x̂k + svi) − ĝk + ĝk] ds

= hkv
T
i ĝk + E (3)

where

E =

∫ hk

s=0

vT
i [g (x̂k + svi) − ĝk] ds

Using the Lipschitz condition, ||g(y)−g(x)|| ≤ L||y−x||, with Lipschitz constant L (which

exists since X is compact) gives

|E| ≤
∫ hk

s=0

L‖vi‖2s ds ≤ 1
2
LK2h2

k, (4)
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where ‖vi‖ ≤ K ∀vi ∈ V+. Therefore, (2), (3) and (4) provide the bounds

vT
i ĝk ≥ −1

2
LK2hk, ∀vi ∈ V+. (5)

If x̂∞ is a limit point of the sequence {x̂k} of grid local minima then there is a convergent

subsequence {x̂kj
}, say, which has the unique limit x̂∞. In the limit kj → ∞, (5) and the

continuity of g give

vT
i g(x̂∞) ≥ 0, ∀vi ∈ V+

and so g(x̂∞) = 0 by Theorem 1. The choice of limit point of the sequence of grid local

minima was arbitrary, so each limit point of the sequence of grid local minima is a stationary

point of the objective function. 2

A simple illustration of an application of Theorem 2 is to the algorithm of Hooke and

Jeeves [6]. This algorithm consists of exploratory moves and pattern moves being made on

a simple grid (V = I). An important feature of this method is that the mesh size h is only

reduced (typically by a factor of 10) when a grid local minimizer is located. Therefore, it

is only required to show that the method does generate a grid local minimizer on each grid

in order to establish convergence via Theorem 2.

Theorem 3

Let xo be the starting point for the method of Hooke and Jeeves [6]. Let f be continuously

differentiable on the level set S = {x : f(x) ≤ f(xo)} and let the set S be bounded. Then

the method of Hooke and Jeeves generates a sequence of grid local minimizers whose limit

points are stationary points of f .

Proof: The condition that S is bounded implies that any grid G(h) for finite h

has finitely many grid points satisfying f(x) < f(xo) for x ∈ G(h). If an exploratory

move fails then a grid local minimizer has been found. If an exploratory move succeeds,

it is followed by a sequence of pattern and exploratory moves which, if strictly lowering

the function value, are continued. An infinite subsequence of pattern moves on any one

grid is impossible since the function is evaluated only at grid points and there is a finite
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number of these because of the conditions on S. Therefore, the search on the current grid

terminates after a finite number of function evaluations with a failing exploratory move

which characterizes a grid local minimizer. 2

In the above proof it is assumed that the original algorithm of Hooke and Jeeves is

followed. This is described unambiguously in the flow charts of the original paper [6]. The

important point is that success of an exploratory move or a sequence of pattern/exploratory

moves is defined by achieving a strictly lower function value. Some alternative interpre-

tations allow weak inequality to define success (see, for example, [11]) but this is not

considered advisable since convergence is not then assured.

The exploratory moves in Hooke and Jeeves method are made by probing along di-

rections of a maximal positive basis. Clearly, any positive basis which generates points

on a grid could be used without affecting the applicability of Theorem 3. For exam-

ple, if GV(h, xo) is the grid with V = {vj ∈ Rn : j = 1, 2, . . . , n}, then the exploratory

phase need only probe along the directions defined by the minimal positive basis V+ =

{vj ∈ Rn : j = 1, 2, . . . , n + 1}, where vn+1 = −∑n
1 vj because, if f(xo) ≤ f(xo + hvj),

for all j ∈ V+ then xo is a grid local minimizer on GV(h, xo). This observation is also made

in [8].

3.2 A numerical example

The original method of Hooke and Jeeves was applied to Rosenbrock’s function from the

standard start, xo = [−1.2, 1]T , (definitions and properties of the test functions used in

this paper can be found in [9]). An initial mesh length h1 = .1 (with V = I) was used with

successive mesh lengths hk+1 = hk/10. This algorithm required 229 function evaluations

to determine a grid local minimizer with mesh length 10−5 at the solution. A modified

algorithm using exploratory moves by probing the minimal positive basis (on the same

grids) resulted in termination after 176 function evaluations. Note, however, that use of

the minimal positive basis may not always be more efficient.

The method of Hooke and Jeeves is not usually recommended for unconstrained opti-
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mization because its rate of convergence is often too slow to be of practicable use. Like

steepest descent for gradient based optimization algorithms it enjoys good theoretical global

convergence properties but is disappointing in practice (although it usually outperforms

steepest descent). Theorem 2 assumes that the grid basis vectors remain unchanged as the

mesh size decreases. However, it is possible to prove analogous results for the cases where

each grid GVk
(hk, xk), uses a different set of basis vectors, Vk, and origin xk. This is con-

sidered further in [2], [3], where it is shown that the extra flexibility allowed by translating

and realigning the axes of the grid can result in considerable improvements in efficiency.

4 Estimating Directional Derivatives

The problem of estimating derivatives is important in many applications. Most of the

successful algorithms for numerical optimization rely on gradient information and/or di-

rectional derivatives so it is important to be able to obtain reliable estimates by difference

methods (or other methods) when analytical derivatives are not directly available. A good

description of the difficulties involved are summarised, for example, in the recent text [10,

pp 168–191] which includes a treatment of the relatively recent techniques of automatic

differentiation. In this section, it is shown how positive bases can provide a useful contri-

bution to the problem of determining reliable numerical values for gradients or directional

derivatives.

It is convenient to introduce the notation gv(x) = vT∇f(x) for the directional deriva-

tive of f(x) in the direction v and g
V

for the (column) vector of directional derivatives

[gv1(x), . . . , gvn(x)]T corresponding to directions taken from the columns of the matrix

V = [v1, . . . , vn]. The dependence on x will be suppressed if it is clear from the context

(e.g. g
V

= V T g). A forward difference approximation to gv(x) is obtained by ignoring

the O(h) term in the formula

gv =
f(x + hv) − f(x)

h
+ O(h) (6)

but in order to maintain good relative accuracy as g approaches zero it becomes necessary
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to switch from forward to central differences using the approximation

gv =
f(x + hv) − f(x − hv)

2h
+ O(h2). (7)

at the cost of one extra function evaluation (n for g
V
). Of course, it is not just a question

of which formula to use but also what value for h gives the best accuracy. This paper is

concerned with using function values at grid points so the value of h is set by the mesh

size, therefore it is only the former problem that is considered further.

4.1 When to switch?

Let V+ = [V,−V e] be a minimal positive basis and write

f0 = f(x),

fi = f(x + hvi), i = 1, . . . , n,

fn+1 = f(x − hV e).

Now solve for g
V
, in the least squares sense, the (n + 1) equations:

(fi − f0)/h = gvi
, i = 1, . . . , n

(fn+1 − f0)/h = −(gv1 + · · · + gvn).
(8)

If this solution differs significantly from the forward difference estimate then switch to

central differences. The least squares solution to the equations (8) is easy because the

coefficient matrix is [I : −e]T . The solution is

gvi
= (fi − f̄)/h (9)

where f̄ denotes the mean value of the (n + 1) function values {fj}n+1
1 . Note that, ig-

noring the O(h) terms, the values (6) and (9) will be the same (and exact) when f is an

affine function. Thus these values will usually agree, within reasonable relative accuracy,

at points remote from a stationary point. However, if x is sufficiently close to a strict

local minimizer then the two values cannot make good agreement because f0 < fj will

be satisfied and inspection of the formulas (6) and (9) show that they agree if and only
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if f0 = f̄ which is impossible in this case. As an illustration, consider the problem of

estimating g
V
(x) for the well-known function of Rosenbrock, both at the standard start

x1 = [−1.2, 1]T and at the global minimizer x2 = [1, 1]T . Using h = 10−6 and V = I (so

that g
V
(x) = ∇f(x)), and applying the two formulas (6) and (9) in turn gives the approx-

imations [−215.5993,−87.9999] and [−215.6000,−88.0006] respectively for ∇f(x1). These

both agree with each other to 5 significant figures and represent good approximations to

the exact value ∇f(x1) = [−215.6,−88]T . However, at x2 applying the two formulas (6)

and (9) in turn gives the approximations 10−4[.40100, .99999] and 10−4[.20033,−.00001]

respectively for ∇f(x2). Now there is very poor relative agreement between the two ap-

proximations which do not even agree in sign. The central difference formula at x2 gives

the much more accurate estimate 10−9[.39997,−.00001]. It could be argued that whenever

the formula (6) gives a small value for the derivative then the extra function values in using

(9) are well spent but it can be difficult to know in advance what is meant by small since

it is not only problem dependent but also scale dependent. Therefore, an automatic ap-

proach is preferred. A strategy that has been successfully applied is to accept either of the

estimates (6) or (9) as a suitable approximation to gv if they agree to a relative tolerance

of 10%. Otherwise, use formula (7) to estimate each component of g
V
. This test requires

one extra function evaluation but it saves n when the test shows that central differences

are not required and has the advantage of being completely automatic. This strategy was

applied to a quasi-Newton algorithm based on the BFGS update using a line search based

on the Goldstein conditions (see, for example, [10]) on the test functions described in [9].

For many problems the typical behaviour was to use forward differences for all but the last

two or three iterations. However, for Meyer’s function, only the first five of 332 iterations

used forward differences. This is a very badly scaled problem which provides a severe test

for any optimization algorithm. The strategy used above had no difficulty in finding the

required solution.
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5 Concluding remarks

It has been shown that positive bases can have useful applications in numerical optimiza-

tion. The simple ideas outlined in this paper have also been applied and extended by

the authors to provide significant improvements to the convergence properties of existing

algorithms by minor modifications and to develop new convergent algorithms for numerical

optimization that do not require the evaluation of analytical derivatives. Further examples

can be found in the reports [2, 3, 4] and the Master’s thesis [1].
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