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Abstract

In canonical vector time series autoregressions, which permit dependence only

on past values, the errors generally show contemporaneous correlation. By contrast

structural vector autoregressions allow contemporaneous series dependence and as-

sume errors with no contemporaneous correlation. Such models having a recursive

structure can be described by a directed acyclic graph. We show, with the use of a

real example, how the identification of these models may be assisted by examination

of the conditional independence graph of contemporaneous and lagged variables. In

this example we identify the causal dependence of monthly Italian bank loan interest

rates on government bond and repurchase agreement rates. When the number of se-

ries is larger, the structural modelling of the canonical errors alone is a useful initial

step, and we first present such an example to demonstrate the general approach to

identifying a directed graphical model.
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channel.
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1 Introduction

The canonical pth order vector autoregressive model, VAR(p), of a stationary, m dimen-

sional time series xt = (xt,1, xt,2, . . . , xt,m)′ is of the form:

xt = c + Φ1xt−1 + Φ2xt−2 + · · ·+ Φpxt−p + et (1)

where c allows for a non-zero mean of xt and et is multivariate white noise with general

covariance matrix V . Our working assumption is that the series is Gaussian but our

methods should be applicable under wider conditions, such as et being I.I.D., presented

for example in Anderson (1971). This model is attractive because its estimation from

a sample x1, x2, . . . , xn, by least squares applied separately to each component of xt, is

straightforward. For large sample length n it is also fully efficient provided there are no

subset constraints on these separate regressions, (Judge et al 1985), the properties of the

estimates given by the regression are reliable, and the estimate of V is independent of the

estimates of Φk. The order p of the regression may be determined by various methods

including inspection of a multivariate partial autocorrelation sequence, see Reinsel (1993)

pp 69-70, or minimization of an order selection criterion such as AIC, Akaike (1973), HIC,

Hannan and Quinn (1979), or SIC, Schwarz (1978). Such criteria have been extensively

used in time series contexts. Recently Swanson and White (1995) have used them for linear

and non-linear modeling of multiple time series and in our examples we also tabulate their

values as an aid to model selection.

There are various approaches to multiple time series modeling which seek either to

transform models such as (1) to a form which includes contemporaneous relationships

among the variables, or to identify directly such a form, see for example Box and Tiao

(1977) and Tiao and Tsay (1989). Our aim in this paper is similar; our approach is to

consider the structural autoregressive model of the same form as (1) but with the addition

of contemporaneous dependence through a matrix coefficient Φ0:

Φ0xt = d + Φ∗
1xt−1 + Φ∗

2xt−2 + · · ·+ Φ∗
pxt−p + at. (2)

The general relationship between time series and structural econometric models was devel-

oped by Zellner and Palm (1974). In our present context the equivalence between (1) and

(2) is given by Φ∗
i = Φ0Φi and Φ0et = at. A requirement of (2) is that the variance matrix

D of at is diagonal. We require a further condition on Φ0, that it represents a recursive
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(causal) dependence of each component of xt on other contemporaneous components. This

is equivalent to the existence of a re-ordering of the elements of xt such that Φ0 is triangular

with unit diagonal. Each possible ordering of xt therefore gives a potentially distinct form

of (2), but these are all statistically equivalent, corresponding to factorizations of

V −1 = Φ′
0D

−1Φ0. (3)

This contrasts with the unique form of (1), which is the attractive feature of that model

from a time-series modeling viewpoint.

The value of (2) therefore lies in the possibility that there is one particular form which,

as a consequence of its representing a true simple mechanism, is more parsimonious in its

parameterization than either (1) or the other forms of (2). This would be reflected in the

ability to exclude many of the elements of Φ0 and Φ∗
i from the model without penalizing

the fit in comparison with the saturated forms of either (1) or (2). Identification of such a

model may then provide added insight into the true mechanisms which generate the data.

That is what we seek to achieve by the method described in this paper. However we

introduce this method in section 2 without reference to dynamic structure. The relationship

(3) shows that some, though not necessarily complete, information on the structure of Φ0

is available from the variance matrix of the innovations. We therefore first illustrate the

method, in section 2, without reference to any lagged structure, by its application to an

innovation series et. This arises from a canonical autoregressive-moving average (ARMA)

model fitted to a series of seven daily dollar term interest rates. In section 3 we consider

how the method may then be extended to identify structural autoregressions. Section 4

contains an an example which illustrates this approach using three monthly monetary time

series..

2 Recursive structure and partial correlations

Neglecting, for the present treatment, any effects of time series model estimation, we

suppose that we have observations on the vector Gaussian white noise innovations process

et with the usual sample covariance matrix V̂ . We wish to determine from the data the

form of possible sparse structural matrices Φ0 which are compatible with V̂ . There may be

no unique such form without imposing further constraint using insight from the modeling

context. Swanson and Granger (1997) consider an almost identical problem, but focus
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more on testing for the constraints which are implied by a particular structural form of

Φ0 which has commonly occurred in practice. Their tests are expressed in terms of partial

autocorrelations which, as they remark, are not directional and would therefore appear less

appropriate for recursive (causal) models. We also use pair-wise partial autocorrelations,

but conditioning on all remaining variables (i.e. components of et) rather just one other

variable at a time. This is because such partial correlations are used to construct the

conditional independence graph (CIG) of the variables, following procedures presented

for example in Whittaker (1990). As Swanson and Granger also remark, the structural

form of dependence between the variables is naturally expressed by (and is equivalent to) a

directed acyclic graph (DAG), in which nodes representing variables are linked with arrows

indicating the direction of any causal dependence. A DAG implies a single CIG for the

variables, but the possible DAGs which might explain a particular CIG may be several

or none. The point is that, subject to sampling variability, the CIG is a constructible

quantity and a useful one for expressing the data determined constraints on permissible

DAG interpretations.

The CIG consists of nodes representing the variables, two nodes being without a link if

and only if they are independent conditional upon all the remaining variables. In a Gaus-

sian context this conditional independence is indicated by a zero partial autocorrelation:

ρ (eit, ejt|{ekt, k 6= i, j}) = 0. (4)

In the wider linear least squares context, defining linear partial autocorrelations as the same

function of linear unconditional correlations as in the Gaussian context, (4) still usefully

indicates lack of linear predictability of one variable by the other given the inclusion of all

remaining variables. The link with Granger causality is quite evident. The set of all such

partial correlations required to construct the CIG is conveniently calculated as

ρ (eit, ejt|{ekt, k 6= i, j}) = −Wij/
√

(WiiWjj) (5)

where W = V −1. The sample values are obtained by substituting the sample value V̂ of

V .

Our example uses the innovations from the series of daily dollar term rates over the

period from 30th November 1987 to 12th April 1990, excluding non-trading days. The ma-

turity terms are 6 month, 1, 2, 3, 5, 7 and 10 years. Figure 1 illustrates just the six month,

two year and ten year rates. The movements in the series are clearly highly correlated as

5



supported by Table 1 which shows the correlation matrix of the linear innovations from a

well-fitting canonical ARMA(1,1) model estimated for these seven series. Table 2 shows

the corresponding matrix of partial autocorrelations as defined by (5).

Figure 1: Six-month (solid line), two year (broken line) and ten year (dotted line) dollar term
rate series.

Some of these are marked to show significance at the 5% level. The significance levels

are obtained by using the relationship between a regression t value and the sample partial

correlation ρ̂ given by ρ̂ = t/
√

(t2 + ν) (see Greene, 1993,p 180). Here ν is the residual

degrees of freedom in the regression of one of the variables in the partial autocorrelation,

upon all the other variables. The t value is that attached, in this regression, to the other

variable in the partial autocorrelation. This is a relationship deriving from the linear alge-

bra of least squares, and is not reliant upon statistical assumptions. Standard assumptions

are needed to support the usual distribution of t under the null hypothesis that the true

value of the relevant variable is zero, which is equivalent to ρ = 0. There are of course

statistical pitfalls in applying the test simultaneously to all sample partial autocorrelations.

Our attitude is similar to that advocated by Box and Jenkins (1976) for the identification,

for example, of autoregressive models using time series partial autocorrelations. We use
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Table 1: Correlation coefficients of dollar term rate innovations.

et,1 1.000
et,2 0.799 1.000
et,3 0.516 0.538 1.000
et,4 0.502 0.515 0.944 1.000
et,5 0.452 0.458 0.883 0.924 1.000
et,6 0.418 0.425 0.838 0.887 0.965 1.000
et,7 0.420 0.423 0.812 0.863 0.941 0.967 1.000

et,1 et,2 et,3 et,4 et,5 et,6 et,7

Table 2: Partial correlation coefficients of dollar term rate innovations with * indicating signifi-
cance at the 5% level.

et,1 1.00
et,2 *0.720 1.00
et,3 0.022 *0.113 1.00
et,4 0.037 0.017 *0.689 1.00
et,5 0.019 -0.021 *0.154 *0.270 1.00
et,6 -0.045 -0.012 -0.050 0.042 *0.543 1.00
et,7 0.038 0.006 -0.055 0.010 *0.115 *0.658 1.00

et,1 et,2 et,3 et,4 et,5 et,6 et,7

these values to suggest possible models; after fitting these we apply more formal tests and

diagnostic checks to converge on an acceptable model.

In this example the critical value for significance at the 5% level is an absolute partial

correlation exceeding 0.081. In fact all the marked values exceed the 1% critical value of

0.106, but we indicate the three lower valued significant partial correlations with broken

lines in Figure 2 which represents the tentative conclusions from Table 2 as a CIG. It’s form

is almost that of the linear structure which was investigated by Swanson and Granger. This

figure was presented and discussed by Tunnicliffe Wilson (1992) but without any further

modeling. Central to the interpretation of a CIG is the separation theorem. The CIG is

constructed by pairwise separation of variables which are independent conditional on the

remainder. The separation theorem states that if two blocks of variables are separated,

i.e. there is no link between any member of the first block and any member of the second,

then the two blocks are completely independent conditional on the remaining variables.
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Figure 2: Conditional Independence Graph derived from Table 2 for the dollar term rate inno-
vation series.

See for example Whittaker (1990, pp 64-67) for a general proof and references to more

straightforward proofs in the Gaussian case, where the result can be read directly from the

joint density. To illustrate the theorem, Figure 2 implies that {1,2} are independent of

{6,7} given {3,4,5}. Using a straightforward notation for joint and conditional densities,

the first part of (6) is a consequence of this CIG. Similar arguments lead to the remaining

parts of (6).

f1...7 = f1,2|3,4,5f3,4,5f6,7|3,4,5 = f1,2|3f3,4,5f6,7|5 = f1|2f2|3f3,4,5f6,7|5. (6)

This brings us to the next step which is to determine what DAG structures can explain this

CIG, and to estimate them. This is part of a much wider problem of the search for causal

structure, covered for example by Spirtes, Glymour and Scheines (1993). The procedure to

determine the CIG implied by a given DAG has become known as moralization, following

Lauritzen and Spiegelhalter (1988). A node B in a DAG is a parent of a node A if there is

an arrow from B directly linking to A. Moralization is the construction of a CIG by linking

(marrying), for each node of a DAG, all of its parents. The original links are retained

with their directional arrows deleted. In the Gaussian context it can be seen from (3) that

moralization corresponds to the creation of non-zero entries in V −1, which characterizes

the CIG, from the non-zero entries in Φ0, which characterizes the DAG.

If the graph in Figure 2 were linear, with no links et,3 − et,5 or et,5 − et,7, there would

be just seven possible DAG interpretations. These are obtained by choosing one node as

a root or pivot and directing all arrows away from it. Arrows could not come together as

that would create a new, moral, link. The links et,3 − et,5 and et,5 − et,7 introduce more

possibilities. These can be listed by first considering the possible DAG interpretations of

sub-graphs of Figure 2 as shown in Table 3.

Selected sub-graphs, one from each column, can be re-assembled to construct an overall

DAG. This can only be done however, without creating a new moral link, provided neither

nodes 3 or 5 have parents in two components. This results in 28 possible combinations:
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Table 3: Possible directed subgraphs.

1 2 3 3 4 5 5 6 7

α 1 2 3 A 3 4 5 a 5 6 7

β 1 2 3 B 3 4 5 b 5 6 7

γ 1 2 3 C 3 4 5 c 5 6 7

δ 1 2 3 D 3 4 5 d 5 6 7

E 3 4 5 e 5 6 7

F 3 4 5 f 5 6 7

1)αAa; 2)αAc; 3)αCa; 4)αCc; 5)βAa; 6)βAc; 7)βCa; 8)βCc; 9)γAa; 10)γAc; 11)γBa;

12)γBc; 13)γCa; 14)γCc; 15)γDa; 16)γDb; 17)γDc; 18)γDd; 19)γDe; 20)γDf; 21)γEa;

22)γEb; 23)γEc; 24)γEd; 25)γEe; 26)γEf; 27)γFa; 28)γFc. All these models are in fact

statistically equivalent, as factorizations such as 6 readily confirm. They may be estimated

with full efficiency by separate regressions. For example Figure 3 shows one possible DAG,

γAa, with values attached to the links which correspond to the regressions coefficients of

et,1 on et,2, et,2 on et,3, et,3 on none, et,4 on et,3, et,5 on {et,3,et,4}, et,6 on et,5 and et,7 on

{et,5,et,6}. To assess this model we use minus twice the log-likelihood, which we call the

deviance. This is given by n
∑

log σ̂2
r where σ̂2

r are the MLEs of the residual variances

from these regressions (not the bias corrected mean square errors). This may be compared

with the deviance of the saturated model in which each variable is regressed upon all

previous variables, or equivalently with n log det V̂ . It is possible that some of the CIG

links might be explained by moralization, for example the link et,3 → et,5 in subgraph

C. This was checked by fitting the model without this link and a significant increase in

the deviance indicated that it should not be removed. The link between et,5 and et,7 was

similarly retained. The assumption that the error covariance matrix D is diagonal is the

basis of a diagnostic test applied to the sample correlations of the residuals from the model
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Figure 3: Graph γAa with link regression coefficients.

Table 4: Residual correlation matrix for the innovations model.

1 1.000
2 -0.092 1.000
3 0.143 0.000 1.000
4 -0.044 0.025 0.000 1.000
5 0.010 -0.071 0.000 0.000 1.000
6 -0.025 -0.043 -0.056 0.110 0.050 1.000
7 0.032 0.047 -0.024 0.038 0.029 0.001 1.000

1 2 3 4 5 6 7

regressions. These are shown in Table 4 for the fitted model γCa and the correlation

of 0.143 between residuals for et,1 and et,3 is significant. Consequently we introduced a

further term into the model as shown in Figure 4. The correlations between the residual

pairs et,1,et,2 and et,1,et,3 were both reduced to less than 0.01 with very little change to the

other correlations. There remains one correlation between the residuals for et,4 and et,6

with a value of 0.11 which is just significant. We could find no simple model extension

that would account for this. Table 5 provides a comparison of these two models with the

t,1 t,3 t,6 t,7tt,2 t,4 t,5e e e e e ee

Figure 4: Graph γAa with an added link.

saturated model in terms of the deviance and three model selection criteria. For ease of

interpretation the table shows the deviance and criteria with the values for the saturated

model subtracted. Selective elimination of coefficients with small t values in a model may

cause the deviance increase to be larger than that typical of the chi-squared distribution

having degrees of freedom given by the reduction in number of parameters. The selection
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criteria AIC, HIC and SIC provide protection against this. They are obtained by adding

to the deviance the respective penalties 2k, 2k log log n and k log n, where n is the series

length and k is the number of fitted parameters. A negative value of a criterion favours

selection of the indicated model, in comparison with the saturated model. The criteria are

ordered by increasing penalty on the number of parameters. On the basis of this table and

the diagnostic residual correlations, we conclude that the final fitted DAG is an acceptable

parsimonious model for the structure of the innovations series. It is not unique, but limits

the range of possible structures considered when the model is extended to include lagged

variables.

Table 5: Comparisons of the different models.

reduction in increase in relative relative relative
model no. of pars. deviance AIC HIC SIC
γAa 13 38.63 12.63 -9.62 -44.53

γAa improved 12 21.04 -2.95 -23.50 -55.72

3 Identifying structural autoregressions

It will be usual that the order p of a canonical autoregression will have been, at least

tentatively, identified for the series. Structural autoregressive model identification then

proceeds by construction of the CIG using the data matrix X consisting of the collection of

contemporaneous and lagged data vectors (xp+1−k,i, . . . , xn−k,i)
′ for each series i = 1, . . . , m

and each lag k = 0, . . . , p. Assuming that the time series or data vectors have been mean

corrected we use the covariance matrix estimate V̂ = X ′X/(n− p). A CIG is constructed

from V̂ in a similar manner as before, but with two differences:

1. the significance levels used are z/
√

(z2 + ν) ≈ z/
√

n− p, where z is a critical value

of the standard normal distribution.

2. we retain only those links which are significant and are either between contempora-

neous variables or attach to contemporaneous variables from lagged variables.

These differences arise from the time series context, where the usual properties of regression

estimation hold only in large samples and for regression on lagged values. See for example
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Anderson (1971, p211). The main consequence is that we can assume only a large sample

Normal distribution for the (so-called) t values in the autoregression. Also, these properties

do not hold for a time series regression equation which includes both future and past

regressors, because the errors are not then in general uncorrelated. A sample partial

autocorrelation between xt−h,i and xt−k,j for some 0 < h, k < p can correspond only to

a t value in the regression of one of these, say xt−h,i on all the other values, including at

least one past and one future value. The t value for xt−k,j and therefore the sample partial

correlation between xt−h,i and xt−k,j will not have the required properties. See however

Reale and Tunnicliffe Wilson (2000) for an account of how the sampling properties may be

determined in this case.

In summary, the significance levels specified in 1 can only be applied to the links

specified in 2. These are however the only links we consider for selection of a structural

autoregression which, viewed as a DAG, only contains such links. For a stationary VAR(p)

model, the subgraph of the CIG that consists of just the links specified in this way will be

unchanged if the maximum lag used in its construction is greater than the true order p,

but there may be some loss of efficiency in the statistical inference.

As an example consider the structural VAR(1) model expressed in (7) and represented

by the DAG in Figure 5(a), where for convenience we now refer to the three series as xt,

yt and zt.




1 0 0
−φ210 1 0

0 −φ321 1







xt

yt

zt


 =




φ∗
111 0 φ∗

131

0 φ∗
221 0

0 0 φ∗
331







xt−1

yt−1

zt−1


 =




ut

vt

wt


 (7)

On division by Φ0 model (7) is brought to the canonical form in which, it may readily

be determined, the only sparseness is the zero value of φ121. Thus, including the innova-

tion correlations, but not their variances, 11 parameters would be required in the canonical

model, whereas only 6 are required in the structural form shown. Furthermore, the two

other possible structural forms, corresponding to different orderings of the contemporane-

ous variables, would each be completely saturated, with 12 parameters. Where a sparse

structural form might exist, it is therefore worthwhile investigating. In this example, with

only three possible structural orderings, each could be fitted and regression testing used to

discover the most parsimonious. The graphical modeling approach does however provide

immediate insight into the model selection.
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Figure 5: (a) The DAG representation of the model 7, (b) the subgraph of the CIG derived
from (a), and (c) the DAG representations compatible with (b).

The CIG obtained by appropriate moralization of this time series DAG is shown in

Figure 5(b). Note that, following the points made above, the moral link between xt−1 and

zt−1 implied by Figure 5(a) is not shown in the CIG.

We point out now that the CIG of the innovations et from the canonical form of a

VAR(p) model, is the same as the subgraph associated with the contemporaneous values

in the CIG constructed for the series xt. This is because the distribution of xt conditional

upon p or more past values is by definition the same as the distribution of et, apart from

the conditional mean. For the example model (7) a linear CIG would therefore be found

for the innovations from a canonical AR(1). This would allow three DAG interpretations,

xt → yt → zt, xt ← yt → zt and xt ← yt ← zt, with the fourth possibility, xt → yt ← zt,

excluded because it would imply a moral link between xt and zt in the CIG. Now consider

the possible structural VAR(1) models compatible with Figure 5(b). The possible directions

attachable to links between contemporaneous variables are those just listed. We then attach

the direction of the arrow of time to the remaining links, but consider the possibility that

some of them may be moral links. Note first that the link xt−1 → xt must be true, it cannot

be created as a moral link. That implies the direction xt → yt, else a moral link would

form between xt−1 and yt. Then xt → yt → zt is the only possibility for contemporaneous

dependence. The position is now that shown in Figure 5(c).

The direct links xt−1 → xt, yt−1 → yt and zt−1 → zt cannot be explained as moral links.

Each of the remaining links yt−1 → xt, zt−1 → xt and zt−1 → yt might be so explained but

it is also compatible with Figure 5(b) that they are all causal links. Regression estimation

of the model represented in Figure 5(c) will establish if they are real.
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To summarize, the aims and strategy of CIG based identification are:

1. to clarify the recursive ordering of contemporaneous variables, i.e. the direction of the

links between these variables. An ordering (or possibly more than one) is selected

which is generally consistent with the evidence presented in the CIG, taking into

account the effects of moralization.

2. for any such ordering, to determine the selection of links from lagged to contempo-

raneous variables. An initial model including all such links which appear in the CIG

is a useful starting point. Regression estimation of the selected DAG model can be

used to remove any unnecessary links and establish which might be explained by

moralization.

Efficient estimation of the selected model is done by separate regressions of each con-

temporaneous variable on those causal variables indicated in the DAG. The overall model

is again assesed by a deviance n′ ∑ log σ̂2
r , where n′ = n − p is here the length of data

vectors used in the regression, and σ̂2
r are the MLEs of the residual variances from these

regressions (not the bias corrected mean square estimates).

Progress can only be made if the CIG is relatively sparse; no discrimination of structural

models can be made if it saturated. Much depends on noting the absence of links which

would be present if certain contemporanous directions were not avoided. One must be wary

though of building up long chains of logic based upon the statistical evidence in the CIG.

As we know from section 2, model fitting reveals a link xt,1 − xt,3 which Figure 2 fails to

reveal. Likelihood based comparisons with a saturated model will indicate which models

are plausible and may discriminate clearly between some competing models. Checks should

be applied to confirm that the residuals are orthogonal innovations, and used as a possible

guide to model improvement.

4 Structural Autoregressive modeling - an example

We now consider a real example of three monthly Italian monetary times series to assess

the existence of the lending channel of the monetary transmission.

Bernanke and Blinder in 1988 proposed a model for aggregate demand which allows the

existence of another monetary transmission mechanism together with the existing money

channel.
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According to the latter we can distinguish only two different assets in the market:

money and bonds; every other asset is a perfect substitute of one of them. In this case

an open market sale of bonds by the central bank would force the bond interest rate up

because the household sector, as a matter of accounting, must hold less money and more

bonds. If there is not full and instantaneous adjustment of the prices there will be a loss of

money in real terms for households; this will cause eventually an increase in real interest

rates which in turn can have effects on investments and real economy.

The other view is called lending channel or credit channel. According to this theory

bank loans and bonds are not perfect substitutes so that we can distinguish three different

assets in the market: money, bonds and bank loans. Under these conditions monetary

policy can work on either bond interest rate or loan interest rate or both so that an impact

on the latter can be independent from an effect on the former. An example (see Kashyap

and Stein, 1993) is given by an open market sale, which, reducing banks’ reserves, as a

matter of accounting will make banks release less loans. If money and bonds are close

substitutes there will be a minimal impact on bonds interest rate. Nevertheless the cut on

loan supply will push up their cost with an influence on the real economy. In this case we

have a weak money channel but a strong lending channel.

In Bernanke and Blinder’s model there are three necessary conditions for the existence

of the lending channel:

1. from the firms point of view intermediated loans and open market bonds must not

be perfect substitutes;

2. the central bank must be able, by changing the amount of reserves of the banking

system, to affect the supply of intermediated loans;

3. there must be an imperfect price adjustment to monetary policy shocks.

There is a clear evidence that the Italian economy matches at least two of the above

mentioned conditions and hence provides a suitable environment to verify the existence of

the lending channel. In fact as Buttiglione and Ferri (1994) pointed out:

1. Italian firms, as their balance sheets show, are funded far more by banking credit

than issued bonds or commercial paper, so that they can unlikely be seen as perfect

substitutes. There isn’t any commercial paper market indeed;
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2. during the eighties Italian banks reduced the amount of securities in their portfolios

and now the adjustment is completed. Hence they can’t neutralise a shock on reserves

by asset management anymore.

Moreover the lack of a secondary market for CDs has prevented banks to using

liability management in response to monetary restrictions.

The third condition, concerning the speed of price adjustment, although central for any

monetary economics theory, is normally less apparent and more difficult to assess.

Recently Bagliano and Favero (1998) carried out an empirical analysis to test whether

the lending channel has worked in Italy. They estimated two different VAR models to

investigate the transmission from the monetary policy impulse to the government bond and

loan interest rate and hence to their difference. A widening of the latter imply the existence

of the credit channel (see Bernanke and Blinder, 1988). It involves three variables: 1) the

repurchase agreement interest rate (a), whose innovations may be viewed as monetary

policy innovations; 2) the average interest rate on government bonds with residual life

longer than one year (b); 3) the average interest rate on bank loans (c). With the second

VAR system, of order five, they assessed the impulses of monetary policy to real economy.

It includes four different variables: 1) the difference between bank loan and government

bond; 2) the loan interest rate; 3) the industrial production; 4) the inflation.

The results of their analysis supported the existence of the lending channel in the Italian

monetary market.

We partially used Bagliano and Favero’s framework to apply our VAR model identifica-

tion strategy, investigating the relationships among the variables of the first VAR system

they estimated, to verify if there is a direct causal effect from a monetary policy impulse

(the repurchase agreement interest rate) to the loan interest rate. To pursue our analysis

we used the same monthly time series taken from the same sources (Bank of Italy) over

the period January 1986-December 1993; they are shown in Figure 6.

Bagliano and Favero found that a canonical autoregressive model of order 2 adequately

described the series. We follow the procedure of the previous section, refering to our three

series as xt, yt and zt, by first constructing the lagged data vectors for lags 0, 1, and 2 for

each series. The resulting data matrix X is then used to construct the covariance matrix

V̂ from which the sample partial correlations shown in Table 6 are derived. The critical

value for significance at the 5% level is 0.207. Figure 7 shows the appropriate subgraph

of the CIG of the lagged variables constructed using this threshold, with the addition of
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Figure 6: Three monthly Italian monetary time series: (i) the repurchase agreement interest
rate, (ii) the average interest rate held on government bonds, (iii) the average interest rate on
bank loans, shown over the period January 1986 to December 1993.

Table 6: Partial autocorrelations of the lending policy series.

xt yt zt xt−1 yt−1 zt−1 xt−2 yt−2 zt−2

xt 1.000 0.387 0.214 0.449 -0.353 -0.096 0.016 0.167 -0.033
yt 1.000 0.364 -0.224 0.742 -0.393 0.015 -0.140 0.309
zt 1.000 0.200 -0.080 0.876 -0.154 -0.199 -0.598
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two links, zt − xt−1 and zt − yt−2 shown by broken lines. These are included because their

partial autocorelations are very close to the threshold. The series are only of moderate

length so that some additional power for detecting non-zero partial correlations is justified.

The main point to note is the clear absence of a link yt−1 → zt. A moral link would be
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t-1

xt-1 xt

ty

tz

y

z
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t-2y

t-2z

Figure 7: The subgraph of the CIG for the monetary policy series derived from table 6.

expected here unless we assign the direction between contemporaneous variables: yt → zt.

There is no such clear indication of the remaining choice of contemporaneous links. Of the

three possibilities we consider first that with xt → yt and xt → zt. We then fitted the DAG

derived from Figure 7 by assigning these contemporaneous directions and with all the other

links directed from the past to the present. The results indicated that three links could

be removed: yt−1 → xt, zt−2 → yt and xt−1 → zt, the occurrence of the first two of these

in Figure 7 is explained by moralization. The DAG representing this as model A is shown

in Figure 8 and Table 7 shows the likelihood criteria relating to this model. According to

these the model appears to be quite acceptable in comparison with the saturated VAR(2)

model. A further possibility, model B, was investigated by reversing the link between xt

and yt as also shown in Figure 8. It was only possible to remove two links in this case,

so the model has one more link than model A. The likelihood criteria in Table 7 for this

model show that it is also acceptable. The model coefficients are shown on the graphs;

their t values are all in excess of 3.0, except that for the link xt−1 → yt the values for

models A and B are respectively -1.87 and 2.03. Statistical criteria do not show a clear

preference for one model, although economic considerations would strongly favour model

A. Statistical evidence was however strongly against the reversal also of the link xt → zt.
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The main point of economic interest is the influence on the average bank loan rate of the

two other series, and that is the same for both models.

Moralization of both graphs in Figure 8 yields the same CIG, but one which differs

from Figure 7 by having the extra links zt−1 − xt, zt−2 − xt, yt−2 − yt and yt−2 − xt. Only

a careful study, possibly by simulation, would indicate whether we should have expected

to detect these. Our general conclusion though is that study of Figure 7 lead us swiftly to

the specification of a good structural model for these series.
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Figure 8: The subgraphs of the models A and B for the monetary policy series.

Table 7: Comparisons of structural AR models for the monetary policy series.

reduction in increase in relative relative relative
model no. of pars. deviance AIC HIC SIC

A 11 17.14 -4.86 -16.16 -32.83
B 10 14.49 -5.50 -15.78 -30.94

5 Conclusion

We have investigated how conditional independence modeling may be used in the selection

of structural AR models. The example we have presented is the only one which we have

so far investigated, not the pick of the best from a range. The aim has been to identify

parsimonious structure, which may be valuable in various applications of the model. Our

practical experiences suggest that the approach is of considerable value in achieving our
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stated aim. In our example the model supports and quantifies a particular lending channel

hypothesis which is important for monetary policy. The methods we have used are acces-

sible and visually appealing and we hope this work will encourage their wider application

in this context.
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