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Abstract

All statistical measurements which represent the values of useful unknown
quantities have a realm that is both finite and discrete. Thus our uncer-
tainties about any measurement can be represented by discrete probability
mass functions. Nonetheless, common statistical practice treats probability
distributions as representable by continuous densities or mixture densities.

Many statistical problems involve the analysis of sequences of observations
that the researcher regards exchangeably. Often we wish to find a joint proba-
bility mass function over X1, X2, . . . , Xn, with interim interest in the sequence
of updated probability mass functions f(xi+1 | Xi = xi) for i = 1, 2, . . . , n−1.

We investigate how well continuous conjugate theory can approximate real
discrete mass functions in various measurement settings. Interest centres on
approximating digital Normal mass functions and digital parametric mixtures
with continuous Mixture Normal and Normal-Gamma Mixture Normal dis-
tributions for such items as E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi).

Digital mass functions are generated by specifying a finite realm of mea-
surements for a quantity of interest, finding a density value of some specified
function at each point, and then normalising the densities over the realm to
generate mass values. Both a digitised prior mixing mass function and digi-
tised information transfer function are generated and used, via Bayes’ Theo-
rem, to compute posterior mass functions. Approximating posterior densities
using continuous conjugate theory are evaluated, and the two sets of results
compared.

Key Words: Digital mass functions; Sequential updating; Bayes’

Theorem; Mixture Normal; Continuous conjugate theory.

1 Introduction

It is well-known that all statistical measurements which represent the values of useful

unknown quantities have a finite and discrete realm of possible measurement val-
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ues. We denote these as R(X) = {x1, x2, . . . , xK}. Thus our uncertainties about any

measurements, if expressed via asserted probability distributions, are represented by

discrete probability mass functions. For various historical reasons, common statisti-

cal practice treats probability distributions as representable by continuous densities

or mixture densities such as the Normal-Gamma mixture-Normal distribution.

If the conditional distribution of X, given µ and σ2, is Normally distributed with

mean µ and variance σ2, and if µ is also distributed Normally with mean µ0 and

variance τ 2, independent of σ2, then conventional conjugate mixture-Normal theory

tells us that, for a single case, the conditional distribution of X given σ2, derived by

f(x | σ2) =

∞
∫

−∞

f(x | µ, σ2)f(µ | σ2)dµ, (1)

is Normal with mean µ0 and variance σ2 + τ 2. The distribution of µ given (X = x),

whose density will be denoted by f(µ | x, σ2), is also Normal. It has mean

x − σ2

σ2+τ2 (x − µ0) and variance σ2τ2

σ2+τ2 . To summarise this situation symbolically,

µ | σ2 ∼ N
(

µ0, τ
2
)

(2)

X | µ, σ2 ∼ N
(

µ, σ2
)

(3)

X | σ2 ∼ N
(

µ0, σ
2 + τ 2

)

(4)

and µ | X = x, σ2 ∼ N

(

x −
σ2

σ2 + τ 2
(x − µ0) ,

σ2τ 2

σ2 + τ 2

)

. (5)

If we are to consider these equations in a Bayesian framework we say that f(µ | σ2)

is the prior density for µ, f(x | µ, σ2) is the information transfer (or likelihood)

function when understood as a function of µ for a fixed value of X, f(x | σ2) is the

predictive density for X and f(µ | X = x, σ2) is the posterior density for µ.

The purpose of this Report is to investigate how well this continuous conjugate

theory, and its extension when σ2 has an inverted Gamma mixture, can approximate

real discrete mass functions when these are representable by digital Normal mass

functions and digital parametric mixtures in various measurement settings. The de-

velopment of large computer memories now allows us to resolve these approximation

questions quite accurately for any range of scenarios we may choose.

Digital Normal mass functions are generated by specifying a finite realm of mea-

surements for a quantity of interest, evaluating a Normal density at each point in
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the realm, and then normalising the density values to generate ‘digitised’ Normal

mass values. Both a digitised prior mixing mass function and a digitised information

transfer function are generated and used, via Bayes’ Theorem, to compute poste-

rior mass functions. Approximating posterior densities using continuous conjugate

theory are evaluated, and the two sets of results compared.

Many statistical problems involve the analysis of sequences of observations that

the researcher regards exchangeably. In many cases it is of interest to find a joint

probability mass function over X1, X2, . . . , Xn, with interim interest in the sequence

of updated probability mass functions f(xi+1 | Xi = xi) for i = 1, . . . , n − 1. The

bold symbol Xi denotes the vector of quantities (X1, . . . , Xi). The lower case xi

is the vector of their realised values, (x1, . . . , xi). In this context we are interested

in the approximate adequacy of the continuous conjugate theory for such items as

E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi).

This Report begins with an extended description of the programming strategy

used to solve a very simplified problem. Once we are clear on the setup and structure

of the procedure we can address more involved mixture problems using a notation

that will have become concise. In Section 2 we consider our problem when the

prior density is fully specified. In Section 3 we consider the same problem when a

hierarchical Bayes model is assessed. Each of these two main Sections begins with

an investigation into how we can construct useful parametric families of discrete

mass functions by ‘digitising’ well-known continuous distributions in the context

of problems that are now conventionally set up as mixture-Normal distributions

(Section 2), or Normal-Gamma mixture-Normal distributions (Section 3). We then

show how we can use Bayes’ Theorem to compute means and variances of posterior

mass functions. We review how conventional conjugate theory is used to gener-

ate approximate posterior densities. Finally, we apply the theories of the previous

subsections to both the mixture-Normal and Normal-Gamma mixture-Normal dis-

tributions. Different parameter values are used to compare results obtained from the

use of digitised distributions and results gathered through the use of conventional

conjugate theory. The final Section contains a summary of the work.

The main achievement of this Report is to formalise a computing strategy that

can be applied to many functional forms. Ware and Lad (2003) apply this compu-

3



tational procedure to various families of extreme value distributions, relying on this

present Report for a more detailed discussion of construction details. We begin with

a complete analysis of the simplest case in all its details.

2 Approximation of Posterior Means and

Variances when a One-Stage Prior

Distribution is Specified

One way of constructing useful parametric families of discrete mass functions is to

‘digitise’ well-known continuous distributions, such as the Normal, in the context

of problems that are now conventionally set up as mixture-Normal distributions

as described above. The construction procedure amounts to evaluating a specified

Normal density over the finite realm of discrete possible values of the measured

quantities, and normalising to make the density values sum to 1. We now consider

how this can work.

2.1 Discrete Mass Functions Characterised as Digitised Nor-

mal Densities

The simplest problem of the form described above arises when the prior density is

fully specified. We assume that the variance parameter of the conditional distribu-

tion of observations is known, and is σ2. We assume that the mean parameter is

unknown, and we assess it as being Normally distributed with mean µ0 and variance

τ 2. In this case we need only work with the probability mass functions f(x | µ, σ2)

and f(µ | σ2), which we want to characterise as digitised Normal densities. We begin

by specifying a finite realm of measurements for a quantity of interest, evaluating

the density at each point in that realm and then normalising the density values to

generate the probability mass function.
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2.1.1 Forming Matrices of Mass Values

To generate the digitised spaces with which we are concerned we start by defining

two realms. One will represent the possible measurement values of X, and will be

denoted R(X). The elements of R(X) are determined by the measuring device used

to identify X. The other realm will represent the location of the digitised mixture

function with parameter µ, and is denoted R(µ). We shall delimit the elements

of R(µ) only to a degree of fineness that really interests us. We must be careful

to ensure that each realm includes every possible value that realistically could be

attained by its subject. We shall specify a general computing structure for such

spaces that will allow a range of specific situations by varying the distance between

the elements within each of the two realms. For the purposes of this Report both

R(X) and R(µ) will be confined to being symmetric about 0.

Once we have identified each of these realms we use them to form a matrix of

mass values for f(x | µ, σ2). The matrix has rows corresponding to the candidate X

values and columns corresponding to the possible values for µ. At each grid-point on

our matrix we evaluate f(x | µ, σ2) from the density corresponding to the µ of that

column. In this current setup the value of σ2 is fixed. The columns are normalised

to sum to 1, as later they are used in the computation of the posterior mass function

f(µ | X = x, σ2). Each column is a digital Normal mass function for X conditioned

on the corresponding value of µ.

The second task is to construct a matrix of mass values to represent the prior

mixing mass function. To aid our later computations, matrices f(x | µ, σ2) and

f(µ | σ2) should be the same size. We want to characterise f(µ | σ2) as a digital

N(µ0, τ
2) curve. Note that µ0 and τ 2 are preselected values. At each element

contained in R(µ) we evaluate f(µ | σ2). This vector of density values is then

normalised to produce a digital mass function. Note that the length of the row

vector f(µ | σ2) is equal to the number of columns in matrix f(x | µ, σ2). Finally,

row vector f(µ | σ2) is replicated and tiled to produce a matrix which is the same

size as f(x | µ, σ2). The vector f(µ | σ2) is not removed from the memory of the

computer, as it is required for use further on in our computations.
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2.1.2 The Information Transfer Function

An information transfer function (ITF) is used to update our uncertain knowledge

about Xi+1 given we know that Xi = xi has occurred. The common parlance for

what we call an ITF is a “likelihood function”. We prefer the use of the term

“information transfer function” to accentuate the realisation that there really is no

“true value of µ” to be estimated, only sequential values of X’s to be observed. In

the context of opinions expressed by the exchangeable distribution, the ITF is the

form in which the observation of one X allows us to infer something about the next

— thus the name “information transfer function”. (See pp. 397–999 of Lad (1996)

for further discussion.)

The ITF can be calculated for each potential observation value. Each row of

matrix f(x | µ, σ2) corresponds to the ITF for one candidate X value. Thus for any

observed value of X = x, we merely read the corresponding row of the f(x | µ, σ2)

matrix of mass values as the ITF.

2.1.3 Generating Sequences of Observation Values

We want to generate XN , a vector of length N whose elements represent observations

from a distribution. These observations will be used, via the ITF, to compute such

items as E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi).

To simulate an observation vector we randomly select elements from R(X). For

the purpose of generating observations we assume that µ is known to us. The

variance parameter, σ2, is also a predetermined value. To generate a sequence of

observation values we follow these steps:

1. Extract the column of f(x | µ, σ2) which corresponds to the chosen µ. This is

a mass function characterised as a digitised N(µ, σ2) density. The number of

elements in the mass function is the same as the size of the realm of X.

2. Form a cumulative mass function, F (x | µ, σ2), using the mass function from

the preceding step.

3. Generate UN , a vector of size N consisting of U(0, 1) random variables.
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4. Find the smallest element of R(X) for which F (x | µ, σ2) > Ui is true. This is

Xi. Each element of UN corresponds to a constituent of the cumulative mass

function, and thus to a member of the realm of X.

5. Repeat steps 1–4 until the sequence of observations, XN , is complete.

To this point we have constructed:

(a) R(X), a vector to represent the realm measurement values of X,

(b) R(µ), a vector to represent the realm of the location of the digitised mixture

function with parameter µ,

(c) f(x | µ, σ2), a matrix of mass values whose columns correspond to conditional

probability mass functions for X given different values of µ, and whose rows

correspond to ITF’s for the various observation values of X,

(d) f(µ | σ2), a matrix of mass values with identical rows, each of which designates

a digitised Normal mass function. The size of this matrix is equal to that of

f(x | µ, σ2),

(e) XN , an observation vector whose elements have been generated randomly from

digitised Normal mass function f(x | µ, σ2), where µ has been assumed known.

In the course of this study we shall perform this routine using different values of µ.

Remember that our objective is, via ITF’s, to see how closely continuous conjugate

theory can approximate real discrete mass functions in various measurement settings.

We can do this by comparing the sequential predictive distributions for components

of XN attained through using conjugate theory and through using real digital mass

function computations. We can also compare the posterior means and variances of

the posterior digitised Normal mixtures with approximate values that we compute

using standard conjugate methods. In other words, how do the means and variances

of Xi+1 | (Xi = xi) compare using exact and approximate methods?
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2.2 Computing Posterior Means and Variances of

Posterior Discrete Densities

To find exact values for E (Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi) for the discrete

mass functions characterised as digitised Normal densities we should compute

f
(

xi+1 | Xi = xi, σ
2
)

=
∑

µ

f
(

xi+1 | µ,Xi = xi, σ
2
)

f
(

µ | Xi = xi, σ
2
)

. (6)

The first function in this sum of products of functions does not change. It is always

represented by the columns of the matrix f(x | µ, σ2) we have just discussed. The

second function is the sum of Equations corresponding to (2) and (3) and changes

with each observed value of Xi = xi according to Bayes’ Theorem. This implies

f(µ | Xi = xi, σ
2) =

f(Xi = xi | µ, σ2)f(µ | σ2)
∑

µ
f(Xi = xi | µ, σ2)f(µ | σ2)

for i = 1, 2, . . . , N − 1.

(7)

Bayes’ Theorem is a computational formula for determining posterior probability

distributions conditional upon observing the data Xi = xi. The posterior probability

distribution reflects our revised mixing function over values of µ in light of the

knowledge that Xi = xi has occurred.

To compute E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi) we merely compute the

mean and variance of the appropriate fXi+1
(x | Xi = xi, σ

2) that has been computed

from the observed data. The formulae

E (Xi+1 | Xi = xi) =
∑

x

xfXi+1

(

x | Xi = xi, σ
2
)

(8)

and V (Xi+1 | Xi = xi) =
∑

x

x2fXi+1

(

x | Xi = xi, σ
2
)

−

[

∑

x

xfXi+1

(

x | Xi = xi, σ
2
)

]2

, (9)

are implemented by multiplying the elements of the realm of X (in Equation 9 the

elements of R(X) are squared) element-wise with f(xi+1 | Xi = xi, σ
2) and then

summing the products.

It is easy to find E(X1) and V (X1). The matrices f(µ | σ2) and f(x | µ, σ2) both

reside in the computer via the calculations described in Section 2.1. Use Equation 6

to find f(x1 | σ2) and then apply Equations 8 and 9.
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To find items E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi), where i ≥ 1, we ‘observe’

Xi and use the information this observation gives us to form the ITF and implement

Bayes’ Theorem, thus finding the updated mixing function f(µ | Xi = xi, σ
2). We

are now in position to re-apply Equation 6 and compute the updated predictive

mass function, and thus find E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi) exactly! In

particular, to find E(X2 | X1 = x1) and V (X2 | X1 = x1):

1. Observe X1 = x1.

2. Extract the row corresponding to X1 from the matrix f(x | µ, σ2). This is the

ITF through µ from X1 = x1 to X2.

3. Implement Bayes’ Theorem to update the mixing function, f(µ | X1 = x1, σ
2).

This involves multiplying vectors f(X1 = x1 | µ, σ2) and f(µ | σ2) element-

wise, and normalising.

4. Replicate and tile vector f(µ | X1 = x1, σ
2) to form a matrix which has the

same dimensions as matrix f(x | µ, σ2).

5. Calculate f(x2 | X1 = x1, σ
2), the updated predictive mass function, according

to Equation 6. Matrix f(x | µ, σ2) is multiplied element-wise with the updated

mixing function matrix, and the columns are summed. The resulting vector

has length equal to the size of R(X).

6. Compute E(X2 | X1 = x1) and V (X2 | X1 = x1) using Equations 8 and 9.

Repeat Steps 1–6 as many times as required to obtain E(Xi+1 | Xi = xi) and

V (Xi+1 | Xi = xi).

Note that for the purpose of this Report the term “vector” refers to a one-

dimensional array of size a × 1 × 1 where a > 1. The term “matrix” refers to a

two-dimensional array of size a× b× 1 where a, b > 1. The term “array” refers to a

three-dimensional array of size a × b × c where a, b, c > 1.

2.3 Conventional Conjugate Mixture-Normal Theory

Conventional conjugate mixture-Normal theory tells us that if µ | σ2 ∼ N(µ0, τ
2)

and X | µ, σ2 ∼ N(µ, σ2), then X | σ2 ∼ N(µ0, σ
2 + τ 2). In fact the joint exchange-
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able distribution for the entire sequence of X’s is multivariate Normal:




























X1

X2
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...

XK





























∼ N
































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
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






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µ0

µ0
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µ0


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


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













,




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





















σ2 + τ 2 τ 2 τ 2 · · · τ 2

τ 2 σ2 + τ 2 τ 2 · · · τ 2

τ 2 τ 2 σ2 + τ 2 τ 2

...
...

. . .

τ 2 τ 2 τ 2 σ2 + τ 2

























































. (10)

Which can be written in the form XK ∼ NK(µ01K , σ2IK + τ 21K,K). For any indi-

vidual Xi, the mean is equal to µ0, the variance equals σ2 + τ 2 and the covariance

with any other Xj equals τ 2.

Standard multivariate Normal theory says that we assert XK ∼ NK(µ0,Σ), and

if the K-dimensional vector X is partitioned into two sub-vectors X1 and X2, where

(X1,X2) is any partition of X into its first K1 and remaining K2 components, then

the conditional distribution for X2 | (X1 = x1) is

X2 | (X1 = x1) ∼ NK2

[

µ02 + Σ21Σ
−1

11 (x1 − µ01),Σ22 − Σ21Σ
−1

11 Σ12

]

. (11)

Applying this multivariate Normal result to the exchangeable Normal distribu-

tion tells us that the conditional density for X2 | (X1 = x1) can be assessed as

X2 | (X1 = x1) ∼ NK2











σ2µ0 + τ 2
K1
∑

i=1

x1i

(σ2 + K1τ 2)
1K2

, σ2IK2
+

σ2τ 2

(σ2 + K1τ 2)
1K2,K2











. (12)

For details see the text of Lad (1996, pp. 375–376, 387–388).

In the specific application to our problem involving the forecast of Xi+1 given

(Xi = xi) these general results apply with the partitioned vector X1 equal to the

condition vector (Xi = xi) and the partitioned vector X2 equal to the quantity

Xi+1. The two items that we are most interested in are the posterior conditional

expectation of Xi+1 given the observations (Xi = xi), and the posterior conditional

variance of Xi+1 given the observations (Xi = xi).

The conditional expectation reduces to

E (Xi+1 | Xi = xi) =
(

σ2 + iτ 2
)

−1 (

σ2µ0 + iτ 2x̄i

)

, (13)

where x̄i is the average of the observed Xi. We observe that as the number of

observations increases, the relative weight on the prior mean, and on each individual
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observation value, decreases. However, the relative weight on the observed mean, x̄i,

increases, that is, E (Xi+1 | Xi = xi) → x̄i as i → n. In other words, as the number

of observations increases, the relative importance of any specific observation value

diminishes, but the overall importance of the average of all observations increases.

The conditional variance reduces to

V (Xi+1 | Xi = xi) = σ2 + σ2τ 2(σ2 + iτ 2)−1. (14)

Note that V (Xi+1 | Xi = xi) reduces monotonically towards σ2 as the number of ob-

servations increase. In this application the posterior conditional variance decreases

toward the variance of the ITF as i increases.

2.4 Case 1: X | µ, σ2 ∼ Ndig(µ, 1) and µ | σ2 ∼ Ndig(0, 1)

In the first example we shall consider the case where we have a one-stage prior

mass function. The use of a one-stage prior mass function means that we feel our

uncertain opinion about the conditional distribution of X can be fully specified by

the moments that are described by one distribution, in this case the Normal. We

choose our parameters to be µ0 = 0, σ2 = 1 and τ 2 = 1, so that

µ | σ2 ∼ Ndig(0, 1) (15)

and X | µ, σ2 ∼ Ndig(µ, 1). (16)

We identify realms R(X) and R(µ) as having an interval width of 0.08. R(X) must

cover every possible value that could realistically be generated as a measurement for

X. We shall characterise the standard measurements of X as fully between −4 and

4. We shall also include a few extreme values (±5,±6,±7,±8) to represent possible

extreme measurements. Thus the size of R(X) is 109.

Extreme measurements are often measured more crudely, either because the

measurement device is not calibrated to record extreme observations with the same

degree of fineness as it is for commonly observed values, or because the researchers

may not regard measurement precision to be as important for less common observa-

tion values. An example of this situation is described in Ware and Lad (2003), where

it is not possible to measure extreme observations to the normal level of fineness.
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The elements of R(µ) should cover every value of the mixing location parameter

µ. In this case the realm will have a minimum value of −2 and a maximum value

of 2, with the same spacing in the grid of possibilities as for X, 0.08. Thus the size

of R(µ) is 51.

We shall study the closeness of the conjugate Normal approximation to the pre-

cise computation based on the digitised Normal distribution under three different

observational scenarios. The ‘observed’ X values shall be sampled from mass func-

tions corresponding to the digitised N(0, 1), N(2, 1) and N(4, 1) densities. When

we sample from mass function Ndig(0, 1) we expect the mode of our sampled values

to be equal to the mode of the prior location mixing mass function, µ = 0. When

we sample from mass function Ndig(2, 1), we obtain a sequence of observations that

our prior mixing mass function suggests is unlikely. When we take a sample from

mass function Ndig(4, 1), we obtain a sequence of observations that our prior mixing

mass function suggests is surprising.

2.4.1 Computation of f(x | µ, σ2) and f(µ | σ2)

Our immediate aim is to form matrices f(x | µ, σ2) and f(µ | σ2). The number

of rows in each matrix is equal to the size of R(X), and the number of columns is

equal to the size of R(µ). In this case the size of matrices f(x | µ, σ2) and f(µ | σ2)

is 109 × 51. Matrix f(x | µ, σ2) has rows corresponding to the elements of R(X)

(i.e. from −8 to 8) and columns corresponding to elements of R(µ) (i.e. from −2

to 2). We evaluate density f(x | µ, σ2) at each grid-point, and then normalise the

columns. Each column of f(x | µ, σ2) is a mass function characterised as a digitised

Normal density conditioned on the corresponding value of µ. For example the first

column is Ndig(−2, 1), the second column is Ndig(−1.92, 1), and so on. A bar graph

of each column shows that they look as if they are truncated digital Normal mass

functions. Figure 1 shows two of these columns, corresponding to Ndig(0, 1) and

Ndig(2, 1), as well as the bar graph of the mass function corresponding to a digitised

N(4, 1) density.

The bar graphs of the mass functions appear truncated because the range of

R(X) is less than the range of the non-zero values of the Normal densities that the

mass functions are based on. A bar graph of the 26th column, Ndig(0, 1), does look
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Figure 1: Bar graph of the digitised Normal mass functions evaluated at

(a) µ = 0, (b) µ = 2 and (c) µ = 4. Positive mass values are recorded

for elements of R(X) only. Note that the scale along the y-axis in (c) is

double that of (a) or (b).

as if it has a Normal shape because, although there are no points less than −4 or

greater than 4 included in the computation of the mass function, these values have

negligible mass when µ = 0 and σ2 = 1. A bar graph of the 51st column looks

obviously truncated because R(X) only has elements fully recorded on the interval

from −4 to 4. Observe there is positive mass placed on X = 5 (see Figure 1(b)). This

effect is demonstrated even more clearly by Figure 1(c), a bar graph of Ndig(4, 1),

where it appears the mass function has only been fully recorded on half its range.

There are extreme elements with noticeable positive mass recorded at X = 5, 6, 7.

The prior mixing mass function is characterised as Ndig(0, 1). To form matrix

13
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Figure 2: Magnitude of error in E(X | µ, σ2) using continuous conjugate

methods rather than actual digital computations. Note that these errors

are calculated directly from f(x | µ, σ2).

f(µ | σ2) evaluate the standard Normal density for each constituent element of

R(µ), and normalise. We now have f(µ | σ2), a 1 × 51 vector. Replicate and tile

this vector so that it becomes a matrix with 109 rows.

2.4.2 Computation of Conditional Moments for f(x | µ, σ2)

To compute conditional moments for the columns of f(x | µ, σ2) we use the formulae,

E(X | µ, σ2) =
∑

x

xf
(

x | µ, σ2
)

(17)

and V
(

X | µ, σ2
)

= E(X2 | µ, σ2) −
[

E
(

X | µ, σ2
)]2

. (18)

The expected value for each column of matrix f(x | µ, σ2) can be computed using

Equation 17. The expected values are symmetric about 0 and range from near −2,

for E(X | µ = −2), to near 2, for E(X | µ = 2). Figure 2 shows the magnitude of

error in E(X | µ, σ2) when using continuous conjugate approximations rather than

the actual computed values obtained using digital mass functions.
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The calculation of E(X | µ = 2) produces a value of 1.95 (2dp) compared to the

continuous conjugate approximation of E(X | µ = 2) = 2. This is because, although

R(X) is symmetric, the 51st column of the f(x | µ, σ2) matrix, f(x | µ = 2, σ2 = 1)

is not. The 51st column of f(x | µ, σ2) is symmetric about µ within the range

[0, 4]. Beyond this range there are more components of R(X) below 0 than above 4.

Consequently, the positive mass on f(X < 0 | µ = 2) is greater than the mass

on f(X > 4 | µ = 2), and so E(X | µ = 2) < 2. In contrast the conjugate ap-

proximation specifies complete symmetry about µ = 2. Thus when Equation 17 is

computed the actual digital calculation is smaller than the conjugate approxima-

tion. In fact the conjugate approximation will always be larger absolutely than the

digital computation, except for E(X | µ = 0), when the conjugate approximation

and digital computation are equal. Figure 2 illustrates that as |µ| decreases towards

0, |E(X | µ, σ2) − µ| decreases. This is because as µ decreases the range of values

in R(X) that are symmetric about µ increase.

Values of V (X | µ, σ2) range even more widely over the possible values of µ,

as is shown in Figure 3. Whereas the conjugate continuous specification is of a

variance constant over the different values of µ, the digitised conditional moments

have smaller variances when located about µ values away from 0. As with the

conditional expectation, this is because, as we move away from 0, the number of X

values: (a) for which the mass of N(µ, 1) is non-negligible, and (b) are not included

in R(X), increases.

2.4.3 Case 1A: Observations Generated from XN ∼ Ndig(0, 1)

Case 1A: Digital Mass Functions. Now that matrices f(x | µ, σ2) and f(µ | σ2)

have been computed we are in position to consider the three examples. We begin

with observations generated from Ndig(0, 1). We generated 25 observations using

the procedure described in Section 2.1.3. In this case the mean of the prior mix-

ing function is equal to the mean of the mass function we used to generate our

observations.

We want to find the series of items E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi).

Section 2.2 has detailed how this process can be undertaken: use Bayes’ Theorem to

update the prior mixing function, compute the updated predictive mass function and
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Figure 3: Values of V(X | µ, σ2) obtained using digital computation

(marked by “∗”) and conjugate approximation (marked by “−−”). Note

that continuous conjugate theory specifies constant variance over all val-

ues of µ, while digital computations show the variance is dependent on µ.

then calculate the conditional moments. This process can be repeated as many times

as required, which in this case is until we have found values for E(Xi+1 | Xi = xi)

and V (Xi+1 | Xi = xi) for i = 0, . . . , 24.

Case 1A: Conjugate Theory. A study of Equation 10 shows that the distribu-

tion of XN can be written in the form

XN ∼ N


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














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. (19)

16



It follows from Equations 13 and 14 that the posterior mean of the (i + 1)th obser-

vation, conditional on observing the first i observations is

E (Xi+1 | Xi = xi) =

∑

i
xi

i + 1
. (20)

The posterior variance of the (i+1)th observation, conditional on observing the first

i observations is

V (Xi+1 | Xi = xi) =
i + 2

i + 1
. (21)

Case 1A: Results. Figure 4 shows the result of a typical example for the case

where 25 observations are generated via a digitised N(0, 1) density. In this case the

prior mixing function is the same as the conditional distribution of observations, X25,

so it is not surprising that the conditional expectation of the digital computations

and the conjugate approximations are very similar. The only slight disparity occurs

for the first few observations. The conditional expectations are plotted in the top

panel of Figure 4.

The two different conditional variances we calculate are very similar for i ≥ 5.

The first few conditional variances have larger values for the conjugate approxima-

tion than they do for the digital computation. The value of V (X1) is 1.760, but

conjugate theory approximates it as 2. If R(µ) had have been wider, that is, con-

tained more extreme elements, then we could reasonably expect the digital mass

value and conjugate approximation to be closer. As i increases the two types of

conditional variance modelled become more similar.

We have just investigated the case where the conditional distribution of observa-

tions is the same as the mode of the prior mixing mass function. We have seen that

the actual digital mass values of conditional moments, and the estimates obtained

through conventional conjugate theory for the same conditional moments, are very

similar.

2.4.4 Case 1B: Observations Generated from XN ∼ Ndig(2, 1).

Case 1B: Digital Mass Functions. Now we shall consider a case where ob-

servations are generated from XN ∼ Ndig(2, 1), where 2 is one of the endpoints of

R(µ). We construct simulated observation vector XN in a similar way to Case 1A,
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Figure 4: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X25 ∼ Ndig(0, 1).

the difference being that the conditional distribution of observations is now char-

acterised as a digital Normal density with parameters µ = 2 and σ2 = 1. In this

case we observe 100 values of X, rather than 25, because both E(Xi+1 | Xi = xi)

and V (Xi+1 | Xi = xi) take longer to stabilise when µ = 2. We find a series of

posterior mass functions, predictive mass functions and items E(Xi+1 | Xi = xi)

and V (Xi+1 | Xi = xi) as described in Case 1A.

Case 1B: Conjugate Theory. A study of Equation 10 shows that the distribu-

tion of X100 can be written in the form X100 ∼ N100 (2, I100 + 1100,100). It follows
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Figure 5: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X100 ∼ Ndig(2, 1).

from Equations 13 and 14 that both the posterior mean and variance of the (i+1)th

observation, conditional on observing the first i observations, are the same as in

Case 1A, viz:

E (Xi+1 | Xi = xi) =

∑

i
xi

i + 1
(22)

and V (Xi+1 | Xi = xi) =
i + 2

i + 1
. (23)

Case 1B: Results. The conditional expectation of E (Xi+1 | Xi = xi) is plotted

in the upper panel of Figure 5 for a typical example when 100 observations are

19



generated from a digitised N(2, 1) distribution. The equivalent conditional vari-

ance is shown in the lower panel of Figure 5. The generating value of µ has been

selected as one of the most extreme possibilities of R(µ). There is a larger differ-

ence between the conditional expectations calculated using digital mass functions

and conventional conjugate theory than in Case 1A. It is of the order of 0.1 rel-

ative to the actual expectation of approximately 1.9. The approximate values of

E (Xi+1 | Xi = xi) obtained by conjugate theory are always higher than the equiv-

alent computed digital values. A corresponding observation can be made for the

values of V (Xi+1 | Xi = xi). The actual conditional variance is approximately 0.9

and the relative difference is about 0.1.

2.4.5 Case 1C: Observations Generated from XN ∼ Ndig(4, 1).

Case 1C: Digital Mass Functions. Our final example in this Section consid-

ers the case where observations are generated from Ndig(4, 1). Notice that 4, the

generating value of µ, is outside the range specified for R(µ). The purpose of this

example is to see how closely the continuous approximation and digital computation

cohere when the generating value of µ has been selected to be far from our prior

specification of µ. The observation vector is generated, and a series of updated

mixing functions, updated predictive mass functions and items E(Xi+1 | Xi = xi)

and V (Xi+1 | Xi = xi) are found, as in the two previous examples. In this case 250

observations were generated.

Case 1C: Conjugate Theory. A study of Equation 12 shows that the formulae

for E(Xi+1 | Xi = xi), and V (Xi+1 | Xi = xi) are the same as in the previous two

examples.

Case 1C: Results. A typical sequence of observations generated from a digitised

N(4, 1) distribution are shown in Figure 6. As we expect, the most commonly

selected elements of R(X) are those close to 4. In the sequence of 250 observations

we only observe (Xi > 4) on 9 occasions. Because the (non-digitised) N(4, 1) density

is symmetric about 4 it is reasonable to expect that the number of times we observe

Xi = 3 and Xi = 5, and the number of times we observe Xi = 2 and Xi = 6 will be
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Figure 6: Timeplot demonstrating the sequence of observations

X250 ∼ Ndig(4, 1).

approximately the same. In this case we observe Xi = 3 on 9 occasions compared

to Xi = 5 on 8 occasions.We observe Xi = 2 and Xi = 6 once each.

Figure 7 shows the conditional expectation and variance for a typical example

when we have 250 observations. E (Xi+1 | Xi = xi) is plotted in the upper panel of

Figure 7. It shows a large difference between the conjugate approximation (which

is approximately 3.3) and the actual digital computation (≈ 1.95). The limit of

the conjugate approximation approaches the arithmetic mean of the i observations

as i → ∞, so a value of ≈ 3.3 is not surprising considering the observed Xi (see

Figure 6). The actual computed value of E (Xi+1 | Xi = xi) will never be larger

than 2, because the updated mixing function has positive mass only for elements of

R(µ). Since vector f (xi+1 | Xi = xi, σ
2) has positive mass only from [−2, 2], when

E (Xi+1 | Xi = xi) is computed the maximum value it can attain is 2.

The sequence of items V (Xi+1 | Xi = xi) obtained when XN ∼ Ndig(4, 1) are

similar to those obtained when XN ∼ Ndig(2, 1). As in Case 1B the conjugate ap-

proximation of V (Xi+1 | Xi = xi) is larger that the digital computation by approxi-
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Figure 7: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X250 ∼ Ndig(4, 1).

mately 0.1 relative to the real variance of 0.9. The similarity between the conditional

variance for Case 1B and Case 1C is reflected in the similarity between the lower

panels of Figure 5 and Figure 7.

We have seen that when recorded observations are similar to what the researcher

expected they would be, the actual digital values of the conditional moments are

similar to the conjugate approximation. When a researcher observes values they

find surprising, the continuous approximations are some distance from the actual

conditional moments. Next we shall investigate the similarity of posterior means

and variances when a two-stage prior distribution is specified.
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3 Approximation of Posterior Means and

Variances when a Two-Stage Prior

Distribution is Specified

So far in this Report we have considered how well conventional conjugate mixture-

Normal theory can approximate real discrete mass functions, represented by digital

Normal mass functions, when the prior distribution is fully specified. In this Section

we shall extend this approach and investigate how well Normal-Gamma mixture-

Normal conjugate theory approximates measurements obtained through the use of

real discrete mass functions when they are representable by digital Normal mass

functions and digital Gamma mass functions.

If we assert that the precision of the X observations, π, has a Gamma distribution

with parameters α and β, the conditional distribution of µ, given π, is a Normal

distribution with mean µ0 and precision τπ, and that X, conditioned on µ and π,

is distributed Normally with mean µ and precision π. Then using an extension of

Equation 1, the density for X can be derived by

f(x) =

∞
∫

−∞

∞
∫

−∞

f(x | µ, π)f(µ | π)f(π)dµdπ (24)

=

∞
∫

−∞

f(x | µ)f(µ)dµ. (25)

Conventional conjugate theory tells us that, for a single case, X has a general

t-distribution with location parameter µ0, scale parameter

τα/(1 + τ)β and shape parameter 2α. To summarise this situation symbolically,

π ∼ Γ(α, β) (26)

µ | π ∼ N (µ0, τπ) (27)

X | µ, π ∼ N (µ, π) (28)

and X ∼ t (2α, µ0, τα/(1 + τ)β) . (29)

Under a Bayesian framework we say f(π) is the prior density for π, f(µ | π) is the

prior density for µ, f(x | µ, π) is the ITF and f(x) is the predictive density for X.

f(π) and π are often called the hyperprior and hyperparameter respectively. This

form of distribution is known as an hierarchical Bayes model.
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In the previous section the one-stage prior, f(µ | σ2), was used. That is, we

assumed the spread was known, and had the value σ2, but that the location of the

prior was unknown, and was distributed Normally with parameters µ0 and τ 2. Now

we are including an additional level of prior modeling by assuming that both the lo-

cation, conditioned on the spread and represented by µ, and the spread, represented

by π, of the observations are unknown, and placing a prior distribution on each of

them. We assess the distribution of µ | π as in Case 1, but now we also need to

assess the distribution of π. This is an example of a two-stage prior distribution.

Notice that a major difference in this Section is that we now parameterise the

Normal distribution by its precision, π, rather than its variance, σ2 ≡ π−1. The only

time in the remainder of Section 3 that we shall refer to variance is in the calculation

of item V (Xi+1 | Xi = xi).

3.1 Discrete Mass Functions Characterised as Digitised Nor-

mal and Digitised Gamma Densities

This Section will involve working with probability mass functions f(x | µ, π) and

f(µ | π), which are characterised as digitised Normal densities, and f(π), which

is characterised as a digitised Gamma density. To compute the predictive mass

function of X we follow a procedure similar to that described in Section 2. In that

case we worked with the mass functions f(x | µ, σ2) and f(µ | σ2), and created two

matrices of equal dimensions. Now we need to consider three mass functions. To

account for the extra mass function we shall represent f(x | µ, π), f(µ | π) and f(π)

in array form. The three arrays constructed will be of equal size

Before we can form the three arrays needed to undertake the required computa-

tions we must define realms for X, µ and π.

3.1.1 Forming Arrays of Mass Values

To generate the digitised space we are interested in, we first identify realms R(X),

R(µ) and R(π), which represent the possible measurement values of X, and mixing

possibilities for µ and π respectively. The specification of R(X) and R(µ) has been

discussed previously. R(π) will represent the spread of the digitised mixture function
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with parameter π, and should include every value of π that could be relevant to its

subject.

After identifying the three realms of interest, we form an array of mass values

for f(x | µ, π). The array will have height corresponding to the candidate X val-

ues, width corresponding to the candidate µ values and depth corresponding to the

possible values for π. Evaluate density f(x | µ, π) at each grid-point. Normalise the

columns for later use, when they will aid in the computation of the posterior mass

function f(µ | X = x, π).

Arrays f(µ | π) and f(π) also have height corresponding to the size of R(X),

width corresponding to the size of R(µ) and depth corresponding to the size of R(π).

To construct f(µ | π), form a matrix whose dimensions correspond to candidate µ

and π values. Evaluate density f(µ | π) at each grid-point. Replicate and tile the

matrix until it is the same size as f(x | µ, π). Note that every plane corresponding

to a member of R(X) will be identical.

To construct array f(µ) a similar method is used. First, evaluate f(π) for each

element of R(π). The resulting vector represents a mass function characterised as

a digitised Gamma density. Replicate and tile the vector along both the X and µ

dimensions. Values in this array will vary in the π dimension only. All three arrays

will now be the same size.

3.1.2 Generating Sequences of Observation Values

A vector of length N containing observation values is generated by following the

sequence of steps outlined in Section 2.1.3. The only difference is that the mass

function the X’s are drawn from is parameterised by µ and π, rather than by µ

and σ2. To this point we have constructed realms R(X), R(µ) and R(π), arrays

f(x | µ, π), f(µ | π) and f(π) and XN , a vector containing N observation values.

3.2 Computing Posterior Means and Variances of

Posterior Discrete Densities

To find exact values for E (Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi) for the discrete

mass functions characterised as digitised Normal and digitised Gamma densities, we
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compute

f (xi+1 | Xi = xi) =
∑

µ

∑

π

f (xi+1 | µ,Xi = xi, π) f (µ, π | Xi = xi) , (30)

which is an extension of Equation 6. The first function in this sum of products does

not change. It is always represented by array f(x | µ, π). The second function is a

combination of Equations 26, 27 and 28. After each observed value of (Xi = xi), it

is updated via Bayes’ Theorem, a consequence of which is

f(µ, π | Xi = xi) =
f(Xi = xi | µ, π)f(µ, π)

∑

µ

∑

π
f(Xi = xi | µ, π)f(µ, π)

for i = 1, 2, . . . , N − 1.

(31)

Before we can implement Bayes’ Theorem we must calculate the joint mass

function for (µ, π). It is widely known that

f(µ, π) = f(µ | π)f(π). (32)

Thus to obtain f(µ, π) we merely multiply array f(µ | π) element-wise with array

f(π). Once f(µ, π) is found we follow similar steps to those outlined in Section 2.2

on page 9:

1. Observe Xi = xi.

2. Extract the matrix corresponding to Xi from array f(x | µ, π). This is the

ITF through µ and π from Xi = xi to Xi+1.

3. Implement Bayes’ Theorem and thus obtain the updated mixing function,

matrix f(µ, π | Xi = xi). Replicate and tile this matrix so it has the same size

as array f(x | µ, π).

4. Calculate f(xi+1 | Xi = xi) by Equation 30.

5. Compute E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi).

Repeat steps 1–5 as many times as required.
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3.3 Conventional Conjugate Normal-Gamma

Mixture-Normal Theory

A multivariate Normal distribution that treats the components of X independently

can be identified by parameters µ and π. The density function for a vector of

quantities X ∈ RK is

f(x) =
∫

∞

−∞

∫

∞

−∞

(2Π)−K/2 πK/2exp

[

−π
K

∑

i=1

(xi − µ)2 /2

]

dM (µ, π) , (33)

where Π denotes the real number pi. We use the capital letter Π for the real number

pi, rather than the usual lower case letter, in an attempt to avoid confusion with the

mixing parameter π = (σ2)−1. We say f(x) is a mixture of conditionally independent

Normal densities with mixing parameters µ and π and mixing distribution function

M , and it is denoted by X ∼ M-NK (µ, π).

The product of a conditional density function and a marginal density is a joint

density function. If the conditional density function, denoted (µ | π), is Normal with

parameters µ0 and τπ, and if the marginal density, π, is Gamma with parameters α

and β, then the joint density function for (µ, π) is

f(µ, π) ∝ (τπ)1/2 exp
[

−τπ (µ − µ0)
2 /2

]

πα−1exp (−βπ) ((µ, π) ∈ (R,R+)),

(34)

and we say the joint density is a member of the Normal-Gamma family of distribu-

tions, denoted (µ, π) ∼ NΓ (µ0, τ, α, β).

Suppose the components of X are regarded exchangeably and that

X ∼ M-NK(µ, π) with M(µ, π) specified as NΓ (µ0, τ, α, β). If X is partitioned into

X1 and X2, of sizes K1 and K2 respectively, then X2 | (X1 = x1) ∼ M-NK2
(µ, π),

with the conditional mixing function M(µ, π | X1 = x1) in the Normal-Gamma form

NΓ

[

τµ0 + K1x̄K1

τ + K1

, τ + K1, α +
K1

2
, β +

(

K1

2

)

s2

K1
+

τK1 (x̄K1
− µ0)

2

2 (K1 + τ)

]

, (35)

where x̄K1
is the arithmetic mean of X1 and s2

K1
is the average squared difference,

K−1
1

∑K1

i=1 (xi − x̄)2. For details see the text of Lad (1996, pp. 395–397, 408–412).

In this application involving the forecast of Xi+1 given (Xi = xi), we are inter-

ested in the case when X1 = (Xi = xi) and X2 = Xi+1. The conditional expectation

reduces to

E(Xi+1 | Xi = xi) =
τµ0 + ix̄i

τ + i
. (36)
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Initially the conditional expectation depends solely on µ0, but as i increases the

weighting given to µ0 steadily decreases. E(Xi+1 | Xi = xi) will be increasingly

strongly influenced by the arithmetic mean of the observed quantities. As more

observations are recorded each individual observation, and the prior mean, will be

less influential, but the arithmetic mean of the observed quantities will be more

influential.

The conditional variance is

V (Xi+1 | Xi = xi) =
(τ + i + 1)

[

2β + is2
i + τi (x̄i − µ0)

2 / (i + τ)
]

(τ + i) [2α + i − 2]
. (37)

The conditional variance is initially equal to the prior variance, β(1 + τ)/τ(α − 1).

As i → ∞, V (Xi+1 | Xi = xi) → s2
i , where s2

i is the average squared difference of the

conditioning observations from their mean. That is, as the number of observations

increases, each individual observation becomes less important, but the overall im-

portance of s2
i increases in determining the predictive variance for the next quantity

Xi+1.

3.4 Case 2: π ∼ Γdig(2, 2), µ | π ∼ Ndig(0, π) and

X | µ, π ∼ Ndig(µ, π)

The examples in this Section consider the case where we have a digitised two-stage

prior mass function. We shall study the closeness of the conjugate Normal-Gamma

mixture-Normal approximation to the precise computation based on the digitised

Gamma and digitised Normal distributions under different scenarios. Parameters

are chosen to be α = 2, β = 2, µ0 = 0 and τ = 1, so that

π ∼ Γdig(2, 2) (38)

µ | π ∼ Ndig(0, π) (39)

and X | µ, π ∼ Ndig(µ, π). (40)

The ‘observed’ X’s shall be sampled from mass functions corresponding to digitised

Normal distributions with parameters µ = 0, 2, 4 and π = 0.25, 0.4, 1. Note that the

µ values we shall use are the same as in Case 1.

We identify realms R(X), R(µ) and R(π) as having as interval width of 0.08.

We characterise the standard measurements of X as fully between −6 and 6, with
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summary extreme values (±7,±8,±9,±10) to represent possible extreme measure-

ments. The size of R(X) = 159. The realm of µ has the same endpoints as in Case

1, −2 and 2, meaning the size of R(µ) is 51. R(π) should cover every reasonable

value of interest for the mixing spread parameter π. In this case the realm of π will

have a minimum value of 0.4 and a maximum value of 2. Thus the size of R(π) is

21.

3.4.1 Computation of f(x | µ, π), f(µ | π) and f(π)

Before we can compute any of our desired items we must form arrays f(x | µ, π),

f(µ | π) and f(π). All three arrays will be size 159 × 51 × 21. The only array

whose entries are all distinct is f(x | µ, π). Entries along its height, which we call

the X-axis, correspond to elements of R(X). Elements along its width, the µ-axis,

correspond to the elements of R(µ) and elements along its depth, the π-axis, cor-

respond to the elements of R(π). A combination of any single element from R(µ)

and any single element from R(π) will have a related vector of mass values, corre-

sponding to each element of R(X). Each of these mass functions is characterised as

a digitised N(µ, π) density. For example, if the value of µ is chosen to be −2 and

the value of π is chosen to be 0.4, then the corresponding mass function, denoted

by the values along the X-axis, is characterised as a digitised Normal density with

mean −2 and precision 0.4. If we move one place along the µ-axis, to µ = −1.92,

the corresponding mass function is characterised as a digitised Normal density with

mean −1.92 and precision 0.4.

To construct array f(µ | π), first form a matrix of size 51 × 21. The values

along the µ-axis correspond to elements of R(µ). This has length 51. Values along

the π-axis correspond to elements of R(π). This has length 21. At each grid-

point evaluate the mass of a N(0, π) distribution at value µ. Normalise along the

dimension corresponding to R(µ). Replicate and tile the matrix along the X-axis

until it has height 109.

Array f(µ) is constructed from a mass function which corresponds to a digitised

Gamma(2, 2) density. The mass function is evaluated for each member of R(π), and

is then replicated and tiled along both the X-axis and µ-axis.
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3.4.2 Case 2A: Observations Generated from XN ∼ Ndig(0, 1)

Case 2A: Digital Mass Functions Now that arrays f(x | µ, π), f(µ | π) and

f(π) have been computed we are in a position to consider our examples. We gener-

ate 500 observations from Ndig(0, 1) and find the sequence of items E(Xi+1 | Xi = xi)

and V (Xi+1 | Xi = xi) by following the steps described in Section 3.2 for

i + 1 = 1, . . . , 500.

Case 2A: Conjugate Theory It follows from Equations 36 that the posterior

mean of the (i + 1)th observation, conditional on observing the first i observations,

is

E(Xi+1 | Xi = xi) =
ix̄i

i + 1
. (41)

As i increases, the conditional expectation tends toward the arithmetic mean of Xi.

Equation 37 implies that the posterior variance of the (i + 1)th observation,

conditional on observing the first i observations, is

V (Xi+1 | Xi = xi) =
4 + is2

i + ix̄2
i / (i + 1)

(i + 1)
. (42)

As the number of observations increase we expect V (Xi+1 | Xi = xi) to tend to s2
i .

Case 2A: Results. Figure 8 shows the result of a typical example when

X500 ∼ Ndig(0, 1). The mode of the prior distribution is the same as the mode

of the conditional distribution of observations X. Consequently it is not surpris-

ing that the conditional expectations for the digital computations and conjugate

approximation are almost identical for all values of i.

The two conditional variances are closely linked. Neither conditional variance

decreases monotonically, unlike in Case 1. Notice how similar the fluctuations in

V (Xi+1 | Xi = xi) are. The difference between the digital computation and the

conjugate approximation steadily decreases until they are almost identical whenever

i > 150.

3.4.3 Case 2B: Observations Generated from XN ∼ Ndig(0, 0.4)

Case 2B: Digital Mass Functions. The items required, E (Xi+1 | Xi = xi) and

V (Xi+1 | Xi = xi), can be found in the manner outlined in Case 2A.
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Figure 8: Conditional Expectations and Variances of the Digital Mass

Function (blue line) and Conventional Conjugate Theory (red line) when

X500 ∼ Ndig(0, 1). The conditional expectations are indistinguishable.

Case 2B: Conjugate Theory. A study of Equations 36 and 37 show the condi-

tional posterior mean and variance remain the same as in Case 2A.

Case 2B: Results. Figure 9 shows the result of a typical example when µ = 0,

π = 0.4 (equivalent to σ2 = 2.5) and n = 5000. As in Case 2A, the conditional

expectations for the digital computations and conjugate approximation are almost

identical for all values of i. Interestingly, the conjugate approximation of the condi-

tional expectation appears to be slightly more unstable than the digital computation,

most noticeably when 2000 < i. Notice that the conjugate approximation fluctuates
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Figure 9: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X5000 ∼ Ndig(0, 0.4).

slightly above and below the digital computation, which seems to be constant.

The two conditional variances are similar. Note that when i < 1000 the con-

jugate approximation fluctuates considerably more than the digital computation.

The conditional variance of the digital computation appears to reach stability at

i ≈ 3000. The variance of the conjugate approximation is larger than the variance

of the digital computation before stability is reached. The approximate variance

decreases gradually until by i ≈ 4250 the two conditional variances are very similar,

nevertheless the conjugate approximation remains slightly larger.
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3.4.4 Case 2C: Observations Generated from XN ∼ Ndig(0, 0.25)

For Case 2C the observations are generated from a mass function characterised as a

Normal density with mean equal to zero, which is also the value of the prior mean.

The generating value of π is 0.25, which is outside the range of R(π). If a researcher,

who had specified the same prior mixture mass function as we have, observed these

values, they would notice that the observations were centred around 0, which is as

they would expect, but would be surprised by how widely the data was spread.

The result of a typical example when µ = 0, π = 0.25 and n = 5000 is shown in

Figure 10. As in the previous two cases, the conditional expectation for the digital

computation and conjugate approximation are almost identical for all values of i.

The two conditional variances are quite different. Due to the range of R(π),

the conditional variance of the digital computation cannot take a value higher than

2.5. Remember that σ2 = 2.5 is equivalent to π = 0.4. Although the observa-

tions are selected from a digitised Normal density with π = 0.25 (≡ σ2 = 4),

the conditional variance of the conjugate approximation stays slightly below 4,

V (Xi+1 | Xi = xi) ≈ 3.8. This is because R(X), the realm that contains all possible

X values, is only fully specified on [−6, 6]. Thus the selection of X is likely to contain

few values where X < −6 or X > 6. Consequently the 5000 observations sampled

are likely to contain fewer members a long way away from the mean than they would

if X was fully specified over a larger range. Thus the conjugate approximation is

smaller than 4.

Suppose this example were to be repeated with observations drawn from a digi-

tised Normal density with µ = 0 and π < 0.25. By the above reasoning we expect

that there will be an even larger difference between π, the approximated conditional

variance, and the computed conditional variance.

3.4.5 Case 2D: Observations Generated from XN ∼ Ndig(2, 1)

Figure 11 shows the result of a typical example when 500 observations are selected

from a digitised Normal with µ = 2 and π = 1. We observe results similar to those

from Case 2A. After an initial period of instability the two conditional expectations

are very similar. The conditional variances are also very similar, again after initial
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Figure 10: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X5000 ∼ Ndig(0, 0.25).

instability.

3.4.6 Case 2E: Observations Generated from XN ∼ Ndig(2, 0.4)

In Case 2E, 5000 observations are drawn from a mass function characterised as a

digital N(2, 0.4) density. Figure 12 shows the conditional expectations stabilise to

the same value. Again the conjugate approximation is more unstable than the digital

computation.

The conjugate approximation of the conditional variance is slightly larger than
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Figure 11: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X500 ∼ Ndig(2, 1).

the digital computation. As the precision increases relative to µ, we expect to see

more of a difference between the two conditional variances. Since we expect the

range of possible X values specified by conjugate theory to be beyond the range in

which R(X) is fully specified.

3.4.7 Case 2F: Observations Generated from XN ∼ Ndig(2, 0.25)

Figure 13 shows the results of a typical case when the generating values of µ and

π are 2 and 0.25 respectively. The number of observations drawn is 5000. The two
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Figure 12: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X5000 ∼ Ndig(2, 0.4).

conditional expectations are both similar, and are approximately equal to 1.9. In

this case the mean of the conditional distribution of observations is 2, but both the

computed and approximated conditional values of E (Xi+1 | Xi = xi) are less than 2.

This is because the range of R(X) means it is unlikely there will be any observations

greater than 6, in fact P (X > 6) = 0.0009 (4dp). Whereas we are comparatively

more likely to observe a value of Xi less than −2 since P (X < −2) = 0.0243 (4dp).

The approximation of the conditional variance is larger than the variance at-

tained through digital computations, and both are less than 4. The computed

conditional variance is approximately 2.5, as expected considering the maximum
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Figure 13: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X5000 ∼ Ndig(2, 0.25).

value of R(µ) is 2.5. The conjugate approximation gives a conditional variance of

3.6, significantly less than the approximation of 3.9 attained in Case 1C. The two

components of the conjugate approximation of V (Xi+1 | Xi = xi) whose value will

alter from Case 2C to Case 2F are s2
i and x̄i, both of these components will have

lower values in Case 2F than Case 2C. Thus is because, although π = 0.25 in both

cases, the number of distinct elements of R(X) that we could reasonably expect to

observe is smaller in this case, as discussed in the paragraph above.
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Figure 14: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X500 ∼ Ndig(4, 1).

3.4.8 Case 2G: Observations Generated from XN ∼ Ndig(4, 1)

Figure 14 shows the result of a typical example when 500 observations were generated

from a digitised Normal mass function with parameter values of µ = 4 and π = 1.

The generating value of µ is not an element of R(µ). Thus, if a researcher specified

the prior mixture mass function considered in this Section, they would be surprised

by the location of this set of observations.

The values of the conditional expectations are unsurprising. The two expecta-

tions have both reached stability more quickly than in either Case 2A or Case 2D.
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E (Xi+1 | Xi = xi) for the conjugate approximation is just below 4, the mean of the

conditional distribution of X values. The computed expectation is practically 2, the

maximum value of R(µ).

An interesting point to note is that in Case 1C, where we dealt with a one-stage

prior and R(X) was fully specified on [−4, 4], observations were also selected from

a Ndig(4, 1) mass function. The conjugate approximation was approximately 3.3.

Now R(X) is fully specified on [−6, 6], thus the observations drawn will have larger

variance. If we were to rerun Case 2G with R(X) fully specified on [−4, 4], we would

obtain the conjugate approximation E (Xi+1 | Xi = xi) = 3.32.

The conditional variance is much larger than it was in Case 2D, when

XN ∼ Ndig(2, 1). To see how V (Xi+1 | Xi = xi) changes as µ increases,

V (X10000 | X9999 = x9999) was calculated for cases when observations were generated

for selected digitised N(µ, 1) distributions. Results are listed in Table 1.

The approximated conditional variance decreases increasingly rapidly as µ in-

creases. This is expected because as µ increases the possibility that an observation

value could come from part of R(X) that is not fully specified increases. If we were

to plot a bar graph of observations drawn from Ndig(2, 1) they would appear as if

they are drawn from a Normal mass function, but if we were to plot the observations

from Ndig(4, 1), the bar graph would be clearly truncated. This idea was investigated

as part of Section 2.4.1, see Figure 1 for illustration.

In contrast the digitally computed conditional variance increases as µ increases.

V (Xi+1 | Xi = xi) is close to one when µ = 2. As µ increases from 2.3 to 3.3 the

increase is particularly rapid. When µ = 3.3 the conditional variance has become

as large as the elements of R(µ) and R(π) will allow it to.

3.4.9 Case 2H: Observations Generated from XN ∼ Ndig(4, 0.4)

Case 2H, where 5000 observations are generated from Ndig(4, 0.4), produces similar

results to Case 2G. The computed conditional expectation is still approximately 2,

but the approximate expectation has dropped to 3.75, reflecting the non-symmetrical

nature of the observations about 4 due to the smaller precision, see Section 2.4.5 for

comments and Figure 16 for illustration.

The lower panel of Figure 15 demonstrates that the computed conditional vari-
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µ Digital Computation Conjugate Approximation

of Conditional Variance of Conditional Variance

2.0 1.0553 1.0269

2.1 1.0592 1.0271

2.2 1.0593 1.0264

2.3 1.0721 1.0044

2.4 1.1395 1.0039

2.5 1.2296 1.0035

2.6 1.3743 1.0018

2.7 1.5300 1.0240

2.8 1.6200 1.0024

2.9 1.7901 1.0008

3.0 1.9743 0.9972

3.1 2.1567 0.9944

3.2 2.3486 0.9895

3.3 2.4052 0.9855

3.4 2.4052 0.9789

3.5 2.4052 0.9682

3.6 2.4052 0.9616

3.7 2.4052 0.9495

3.8 2.4052 0.9366

3.9 2.4052 0.9057

4.0 2.4052 0.8910

Table 1: Digital computations and conjugate approximations of

V (X10000 | X9999 = x9999) when X9999 ∼ Ndig(µ, 1).

ance is slightly smaller than 2.5, the maximum value allowable by R(π). The ap-

proximate variance has dropped to approximately 1.9.

3.4.10 Case 2I: Observations Generated from XN ∼ Ndig(4, 0.25)

The conditional expectation and variance of a typical example when 5000 obser-

vations are generated from Ndig(4, 0.25) are similar to results from Case 2H, as

shown in Figure 16. A researcher who had specified the prior mass functions,

f(µ | π) ∼ N(0, π) and f(π) ∼ Γ(2, 2), would be very surprised to observe this data.

For the conjugate conditional approximation E (Xi+1 | Xi = xi) ≈ 3.5 and

V (Xi+1 | Xi = xi) ≈ 2.8. Neither of these values are surprising considering the
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Figure 15: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X5000 ∼ Ndig(4, 0.4).

range of observations values that are likely to be observed.

4 Summary

In this Report we have investigated how well continuous conjugate theory can ap-

proximate real discrete mass functions in various measurement settings We have

described a procedure for assessing the value of conjugate continuous approxima-

tions in real problems where mixture digital mass functions can be specified.

Well known continuous distributions were digitised, and the means and variances
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Figure 16: Conditional Expectations and Variances of the Digital Mass

Function (solid blue line) and Conventional Conjugate Theory (dashed

red line) when X5000 ∼ Ndig(4, 0.25).

of their posterior mass functions computed. Conventional conjugate theory was used

to approximate the means and variances of posterior densities. Our interest has cen-

tred on how well digital Normal mass functions and digital parametric mixtures are

approximated by continuous mixture-Normal and Normal-Gamma mixture-Normal

distributions for such items as E(Xi+1 | Xi = xi) and V (Xi+1 | Xi = xi).

We have observed that when the researcher records observation values that are

similar to what they have expected to observe, the discrete digital calculations and

continuous approximations are very similar. That is, if the mode of the observations

is close to the mode of the prior mixing mass function, and if the variance is small
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relative to the range of R(X), the actual calculations and the approximations are

almost indistinguishable. When a researcher records observations they would be

surprised by, for example, the cases when we defined the generating value of µ

to be close to the extremities of R(µ), the continuous approximations are larger

(absolutely) than the digital calculations. When observations are such that the

researcher is really surprised, the approximated conditional moments do not work

at all well.
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