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Abstract

We investigate a simple model that generates random partitions of the leaf set of a tree. Of particular

interest is the reconstruction question: what number k of independent samples (partitions) are required to

correctly reconstruct the underlying tree (with high probability)? We demonstrate a phase transition for k as

a function of the mutation rate, from logarithmic to polynomial dependence on the size of the tree. We also

describe a simple polynomial-time tree reconstruction algorithm that applies in the logarithmic region. This

model and the associated reconstruction questions are motivated by a Markov model for genomic evo-

lution in molecular biology.
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1. Introduction

A central question in evolutionary biology is the following: how much information about

historical relationships between species can be recovered from the genes they carry? In this paper

we investigate an aspect of this question using a simple model, which we refer to as the random

cluster model. This model is closely related to branching processes [1], and may be defined

equivalently in terms of percolation, infinite state Potts models or random cluster models on trees.

See e.g. [2–5] for basic background in statistical physics.
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The model may be viewed as an �infinite state� Poisson process model where states are never

re-visited in their evolution in a tree. For this model we are interested in how much data is

required to reconstruct the underlying tree. We show that, provided the process is mildly con-

servative (namely, the probability of a state change on any edge is at most 1
2
) one requires just

OðlogðnÞÞ independent samples to reconstruct a tree with n leaves. Furthermore this bound is

optimal, and there is a simple and fast algorithm for reconstructing this tree from the data.

However when the process is less conservative, a phase transition occurs beyond which a poly-

nomial number of samples is provably required for certain families of trees.

The structure of this paper is as follows. We begin by describing precisely the random cluster

model, and we then summarize our main results in Theorem 1.1. We then describe the relevance of

this model and our results to molecular systematics and to earlier results for other tree-based

Markov models. In Section 2 we establish our result for the logarithmic region, and describe

explicitly the constants involved, as well as providing a valid polynomial-time tree reconstruction

method. In Section 3 we deal with the polynomial region.

1.1. The main result

Throughout this paper X is a finite set and we will let n ¼ jX j. A phylogenetic X -tree (or more,

briefly, a phylogenetic tree) is a tree T having leaf set X , and for which the interior vertices are

unlabelled and of degree at least 3. If in addition each interior vertex has degree exactly 3 we say

that T is trivalent. An example of a phylogenetic X -tree is shown in Fig. 1(a).

Two phylogenetic X -trees T and T
0 are regarded as equivalent if the identity map on X ,

regarded as a bijection from the set of leaves of T to the leaves of T0 extends to a graph iso-

morphism between the two trees. Thus, for example, there are precisely three trivalent (and one

non-trivalent) phylogenetic X -trees for any set X of size 4.

We now consider the following random process on a phylogenetic treeT. For each edge e let us

independently either cut this edge – with probability pðeÞ – or leave it intact. The resulting dis-

connected graph (forest) G partitions the vertex set V ðTÞ of T into non-empty sets according to

the equivalence relation that u � v if v and v are in the same component of G. This model thus

generates random partitions of V ðTÞ, and thereby of X by connectivity, and we will refer to these

partitions as v and v, respectively. An example of such a partition v is given in Fig. 1(b). For an

element x 2 X we will let vðxÞ denote the equivalence class containing x. We call the resulting

probability distribution on partitions of X the random cluster model with parameters ðT; pÞ where
p is the map e 7! pðeÞ.

(a) (b)

Fig. 1. (a) A trivalent phylogenetic X -tree T for X ¼ f1; 2; . . . ; 7g. (b) For the random cluster model, cutting the edges

of T that are marked by a cross induces the character v on X given by v ¼ ff1; 3g; f2; 4; 5g; f6g; f7gg.
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In keeping with the biological setting we will call an arbitrary partition v of X a character (on

X ). Let PðvjT; pÞ denote the probability of generating a character v under the random cluster

model with parameters ðT; pÞ. We say a subset C of the set EðTÞ of edges ofT is a cutset for v on

T if the partition v of X equals that induced by the components of ðV ðTÞ;EðTÞ � CÞ. Then
PðvjT; pÞ ¼

X

C

Y

e2C
pðeÞ

Y

e2EðTÞ�C

ð1� pðeÞÞ; ð1Þ

where the summation is over all cutsets C for v on T. Note that the number of terms in the

summation described by Eq. (1) can be exponential with jX j. However by modifying the well-

known dynamic programming approach for computing the probability of a character on a tree

according to a finite state Markov process [6] one can compute PðvjT ; pÞ in polynomial time in

jX j.
Suppose we generate a sequence P ¼ ðv1; . . . ; vkÞ of k such independent characters on X where

the generating pair ðT ; pÞ is unknown. We wish to reconstruct T with probability at least 1� �
from P.

The following theorem describes how the value of k is related to the size of T and properties

of p.

Theorem 1.1. Let 0 < a6 b < 1 and 0 < � < 1 be fixed constants. Consider the random cluster

model on any collection of the parameters ðT; pÞ where T is a trivalent phylogenetic tree, and

a6 pðeÞ6 b for all edges e of T. Let k be the number of characters generated i.i.d. under this model,

and kminð�Þ be the minimal k such that the tree can be correctly reconstructed from the characters

with probability at least 1� �. Then, if n denotes the number of leaves of T.

i(i) kminð�Þ grows logarithmically with n if b < 1
2
. In particular, if

kP
ð1� bÞ4

að1� 2bÞ4
log

n2

�

� �
;

then the tree can be reconstructed correctly with probability 1� �. Furthermore, there is a

polynomial-time (in n) algorithm for reconstructing T from the generated characters.

(ii) kminð�Þ can grow polynomially with n if a > 1
2
. In particular, for all h, if

k6
�ð1� aÞh

6

n

3

� �� log2ð2�2aÞ
; ð2Þ

then there exists a distribution on trivalent phylogenetic X -trees, such that if T is drawn

according to the distribution, pðeÞ ¼ a, for all edges of the trees, and characters are generated by

ðT; pÞ, then the probability of correctly reconstructing T given the k characters is bounded

above by �þ 3�3�2h .

Remark 1.2. We note that given a prior distribution P on the space of phylogenetic trees, the

probability of reconstruction is well defined, once we assume that p is determined by T. Indeed,

given k characters v1; . . . ; vk the best reconstruction algorithms will return the tree ðT; pÞ that

maximizes
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P½ðT; pÞjv1; . . . ; vk� ¼
P½ðT; pÞ�

Z
P½v1; . . . ; vkjðT; pÞ�;

where Z is a constant independent of the tree. This follows from the Neyman–Pearson Lemma.

We now describe a motivation for this model from biology, and the relation of our results to

some earlier work.

1.2. Relevance of the random cluster model to molecular systematics

In molecular phylogenetics the set X typically corresponds to the set of extant species (or genes)

under study. Biologists seek to reconstruct a rooted tree that describes the evolution of these

species from a common ancestor. The extant species under study are generally regarded as the

leaves of the tree, and since speciation is usually regarded as a bifurcating process, the tree is

viewed as a rooted binary tree with leaf set X . If we now suppress the root vertex of this tree we

obtain a trivalent phylogenetic X -tree. This last step is not just a technical convenience – it is turns

out that most models of genetic evolution (and consequently most tree reconstruction methods)

can work just as naturally on unrooted trees as on rooted trees. Thus, a main goal of phylogenetic

analysis is the reconstruction of trivalent phylogenetic X -tree by comparing genetic differences

between the species in X .

Markov models are now standard for modeling the evolution of aligned genetic sequence data.

Furthermore, these models are routinely used as the basis for phylogenetic tree reconstruction

using techniques such as maximum likelihood [7]. In these models the state space (the set of

possible values each character can take) is small – typically 4 for DNA sequence data (but

occasionally 2 for purine–pyrimidine data, or 20 for amino acid sequences). For such models the

subsets of the vertices of a phylogenetic tree T that are assigned particular states do not generally

form connected subtrees of T (in biological terminology this is because of �homoplasy� – the

evolution of the same state more than once in the tree). Consequently, the random cluster model is

not an appropriate model for these characters.

However increasingly there is interest in genomic characters such as gene order where the

underlying state space may be very large [8–11]. For example, the order of k genes in a signed

circular genome can take any of 2kðk � 1Þ! values. In these models whenever there is a change of

state – for example a re-shuffling of genes by a random inversion (of a consecutive subsequence

of genes) – it is likely that the resulting state (gene arrangement) is a unique evolutionary event,

arising for the first time in the evolution of the genes under study. Indeed Markov models for

genome rearrangement such as the (generalized) Nadeau–Taylor model [9,12] confer a high

probability that any given character generated is homoplasy-free on the underlying tree, pro-

vided the number of genes is sufficiently large relative to jX j [13]. In this setting the random

cluster model is the appropriate (limiting case) model, and may be viewed as the phylogenetic

analogue of what is known in population genetics as the �infinite alleles model� of Kimura and

Crow [14].

This leads then to the following question, which is of both theoretical and practical interest:

how many characters are required to reconstruct a phylogenetic tree correctly? More precisely,

suppose the phylogenetic tree T is trivalent, and the probability of a net substitution on each
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edge of the tree lies in the interval ½a; b� where 0 < a6 b < 1, and that we wish to reconstruct all

such trees with probability at least 1� � for some � > 0. Let k be the required number of

characters.

The random cluster model is the second model showing a phase-transition in this number k of

characters needed for reconstruction. It is conjectured in [15] and proved in [16] that for tree-

based Markov models based on the two state symmetric model

• k depends polynomially on n ¼ jX j for values of b above a certain critical value of 1
2

1� 1ffiffi
2

p
� �

.

• Below that value and under some technical conditions, k depends logarithmically on n.

Theorem 1.1 shows that the situation with the random cluster model differs in two respects.

Firstly, the critical value is 1/2 instead of 1
2

1� 1ffiffi
2

p
� �

. This corresponds to the fact that in statistical

physics models on the binary tree, the critical value for the extremality of the free measure or the

Ising model is 1
2

1� 1ffiffi
2

p
� �

, see [17–19], while the critical value for uniqueness of Gibbs measure, or

the critical value for percolation is 1/2, see [4,5]. In [20] it is shown that for any Markov model, if

the mutation rate is high then k depends polynomially on n.

The second respect in which the random cluster model differs from the symmetric two state

model, is that for the random cluster model, the dependence of k on a has exponent �1 rather

than �2, see [16,21,22].

2. The case pmax <
1
2

We begin this section by introducing some useful terminology.

We will mostly use a; b; c; . . . to denote vertices of the tree, x; y; z; . . . to denote leaves of the tree,

and u; v;w; . . . to denote interior vertices of the tree.

A quartet tree is a trivalent phylogenetic X -tree for jX j ¼ 4. We can represent any quartet tree

by the notation xyjwz where x, y are leaves that are adjacent to one interior vertex, while w, z are

leaves that are adjacent to the other interior vertex.

For any trivalent phylogenetic X–tree, T let QðTÞ denote the set of quartet trees induced byT

by selecting subsets of X of size 4. It is a fundamental result that T is uniquely determined by

QðTÞ [23].
Suppose that T is a trivalent phylogenetic X–tree. We say that T displays a quartet tree xyjwz

(respectively, a set Q of quartet trees) if xyjwz 2 QðTÞ (respectively, if Q � QðTÞ). For example

the tree T in Fig. 1(a) displays the quartet tree 12j47.
For any three distinct vertices a, b, c of T let medða; b; cÞ denote the median vertex of the triple

a, b, and c; that is, the unique vertex of T that is shared by the paths connecting a and b, a and c

and b and c.

A collection Q of quartet trees is a generous cover of T if Q � QðTÞ and if, for all pairs of

interior vertices u; v there exists a quartet tree xx0jyy 0 2 Q for which u ¼ medðx; x0; vÞ and

v ¼ medðu; y; y0Þ. This concept is illustrated in Fig. 2. Note that if Q is a generous cover of a

trivalent phylogenetic X -tree then jQjP n� 2

2

� �
.
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Given a sequence C ¼ ðv1; v2; . . . ; vkÞ of characters on X , let

QðCÞ ¼ fxx0jyy 0 : 9i 2 f1; . . . ; kg : viðxÞ ¼ viðx0Þ 6¼ viðyÞ ¼ viðy0Þg:
Consider a random cluster model on a phylogenetic X -tree T. Recall that pðeÞ denotes the

probability that edge e is cut, and suppose that pmin :¼ minfpðeÞg > 0 and pmax :¼ maxfpðeÞg < 1
2
.

We write qðeÞ ¼ 1� pðeÞ, so qmax ¼ maxfqðeÞg < 1 and qmin ¼ minfqðeÞg > 1
2
.

For any interior vertex v of T, and any neighbour a of v, denote by aðv; aÞ the probability that

there is a simple path a0 ¼ v, a1 ¼ a; . . . ; an, such that an is a leaf, and such that none of the edges

on this path are cut.

Lemma 2.1. Let v be an interior vertex and a a neighbour of v, then aðv; aÞP gðqminÞ ¼ 2qmin�1

qmin
.

Proof. The proof is by induction. If a is a leaf, then

aðv; aÞ ¼ qðfv; agÞP qmin P gðqminÞ;
as needed. Otherwise, let b and c be the neighbours of a different than v. Then

aðv; aÞ ¼ qðv; aÞ 1ð � ð1� aða; bÞÞð1� aða; cÞÞÞP qminðaða; bÞ þ aða; cÞ � aða; bÞaða; cÞÞ:
The function Z þ Y � ZY is increasing in Z; Y 2 ½0; 1�. Therefore, by the induction hypothesis

aðv; aÞP qmingðqminÞð2� gðqminÞÞ ¼
2qmin � 1

qmin

¼ gðqminÞ;

as needed.

Finally, let b :¼ pmingðqminÞ4 > 0. h

Lemma 2.2. Consider the random cluster model on a trivalent phylogenetic X -tree T, with asso-

ciated parameter b > 0, and let C denote a sequence of k characters generated i.i.d. under this model.

Provided

kP
1

b
log

n2

�

� �

then, with probability at least 1� �, QðCÞ is a generous cover of T.

Proof. For any pair of interior vertices u, v, the probability that a character v generated under this

model satisfies viðxÞ ¼ viðx0Þ 6¼ viðyÞ ¼ viðy0Þ for some x; x0; y; y 0 2 X with u ¼ medðx; x0; yÞ and

v ¼ medðx; y; y0Þ is at least b. Consequently, the probability that QðCÞ is not a generous cover for

T is at most n2ð1� bÞk (since the number of pairs of interior vertices of T is
n� 2

2

� �
< n2). The

remainder now follows by standard algebra, together with the bound 1
� logð1�bÞ 6

1
b
. h

Fig. 2. A quartet xx0jyy 0 for the pair fu; vg.
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Recall that a cherry of T is a pair of leaves that are adjacent to the same vertex.

Lemma 2.3. Suppose that Q is a set of quartet trees on X , and that T is a trivalent phylogenetic

X -tree. Suppose that fx; yg is a cherry of T. Construct a graph Gxy on vertex set X � fx; yg with an

edge between w, z precisely if xyjwz 2 Q. Then,

ii(i) If Gxy is connected, then any phylogenetic X -tree that displays Q has fx; yg as a cherry.

i(ii) If Q is a generous cover for T, then Gxy is connected.

(iii) If Q is a generous cover for T, then fx0; y0g is a cherry of T if and only if Q does not contain a

quartet of the form x0wjy 0z.

Proof. For part (i), first note that any phylogenetic X -tree that displays both quartet trees xx0jyy 0
and xx0jyy00 also displays xx0jy 0y00 [23,24]. Thus, if Gxy is connected, and if a phylogenetic X -tree T0

displays Q, then T
0 also displays fxyjwz : w; z 2 X � fx; yg; w 6¼ zg. This implies that fx; yg is a

cherry of T0.
For part (ii), we use induction on jX j. The result certainly holds for jX j6 4 so suppose that

jX j ¼ k > 4 and that fx; yg is a cherry of T. Since T is trivalent there exists another cherry of T,

say fw;w0g. LetT0 be the trivalent phylogenetic tree obtained fromT by deleting leaves w, w0 and
all edges adjacent to w, w0 from T. Let Q0 be obtained from Q by deleting any quartet tree of the

form stjww0, and replacing all quartet trees of the form twjzz0 and tw0jzz0 by tujzz0 where u 62 X

denotes the unique neighbour of w and w0. Then T
0 still has the cherry fx; yg and Q

0 is a generous

cover for T
0 so by the induction hypothesis the associated graph G0

xy on the vertex set

ðX � fw;w0gÞ [ fug is connected. Now in Gxy there exists an edge connecting w and w0 (since
xyjww0 2 Q, as Q is a generous cover for T). Together with the connectivity of G0

xy it follows that

Gxy is connected, as required.

For part (iii), the �only if� direction follows immediately from the assumption thatT displays Q.

For the �if� direction, suppose that fx0; y0g is not a cherry of T. Then if u and v denote the vertices

ofT that are adjacent to x0 and y0 we have u 6¼ v and the assumption that Q is a generous cover for

T implies the existence of a quartet tree x0wjy0z 2 Q, as required. h

Theorem 2.4. Suppose that Q is a generous cover of a trivalent phylogenetic X -treeT. ThenT is the

only phylogenetic X -tree that displays Q.

Proof.We use induction on n ¼ jX j. The result certainly holds for n ¼ 4 so suppose that it holds for

n ¼ mP 4 and that jX j ¼ mþ 1. Select a cherry fx; yg, say, for T. Suppose that T0 is a phylo-

genetic X -tree that displays Q. Combining parts (i) and (ii) of Lemma 2.3 fx; yg is a cherry of T0.
Let Q0 be obtained from Q by deleting any quartet tree of the form xyjzz0, and replacing all quartet

trees of the form yzjz0z00 or xzjz0z00 by uzjz0z00, where u 62 X denotes the unique neighbour of x and y.

Let eT be the tree obtained fromT by deleting x, y and all edges adjacent to x, y fromT. Define
eT 0 similarly. Then Q

0 is a generous cover of both eT and eT 0, so, by the induction hypothesis,
eT ffi eT 0. Now, since fx; yg is a cherry of T and of T0 this implies that T0 ffi T, thereby estab-

lishing the induction step, and completing the proof. h
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It follows from Theorem 2.4 and Lemma 2.2 that sequences of characters of length

k ¼ ð1� bÞ4

að1� 2bÞ4
log

n2

�

� �
¼ Oðlog nÞ;

suffice to reconstruct the underlying tree with probability at least 1� �. We thus obtain the first

part of Theorem 1.1. Furthermore, this can be achieved by a polynomial-time algorithm. Indeed,

there is a particularly simple recursive algorithm for reconstructing any trivalent phylogenetic

X -tree T from any generous cover of T which goes as follows.

The first step is to find a cherry. This is done in the following manner. We find a pair of leaves x,

y such that Q contains no quartet xx0jyy0. By Lemma 2.3(iii) such x, y is indeed a cherry. We now

wish to reconstruct a tree on the set of leaves X 0 ¼ X � fx; yg [ fug where u denotes the unique

neighbour of both x and y. This is done by replacing Q by Q
0 as in Theorem 2.4.

Remark 2.5. It is easy to generalize the above results to trees where all the interior degrees are at

least 3. In the general case we define a generous cover as follows. We say that Q is a generous cover

of a phylogenetic X -tree T if

• for all interior vertices u, v of T and

• all a, a0 neighbours of u; b, b0 neighbours of v, such that none of a, a0, b, b0 lies on the path con-

necting u and v,

there exists a quartet xx0jyy 0 2 Q such that

• x is at the end of a simple path u; a; . . . ; x,
• x0 is at the end of a simple path u; a0; . . . ; x0,
• y is at the end of a simple path v; b; . . . ; y,
• y0 is at the end of a simple path v; b0; . . . ; y 0.

The proofs that a logarithmic number of samples suffices to obtain a generous cover with high

probability and that a generous cover uniquely determine the tree are similar (the error bound

n2ð1� bÞk is now replaced by n4ð1� bÞk).

3. Lower bounds

In this section we establish lower bounds on the number k of characters needed for recon-

struction. First, we prove a logarithmic lower bound which holds for all trees and all values of p

bounded strictly between 0 and 1. This will establish that kminð�Þ grows at least logarithmically in n

in the first part of Theorem 1.1. Then in Section 3.2 we describe lower bounds that will establish

the second part of Theorem 1.1.

Note that a logarithmic lower bound on k for tree-based Markov models on a fixed state space

is guaranteed by trivial counting arguments [25]. However these arguments do not apply when the

size of state space is infinite, or finite but variable with jX j. Indeed it has recently been shown that

for any trivalent phylogenetic X -tree T there is an associated set of four characters CT for which
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T is the only phylogenetic X -tree that can generate CT with positive probability under a random

cluster model [13,26]. Thus it is reasonable to ask whether Oð1Þ characters might suffice to

reconstruct T under the random cluster model, at least for certain restrictions on p in the

parameter pair ðT; pÞ. Proposition 3.4 excludes this possibility.

In this section we also prove a polynomial lower bounds for �deep� trees, where pmin > 1=2 –

thus establishing the second part of Theorem 1.1. The proof follows a general principle already

demonstrated in [16,20]. It says that if the mutual information between the root and level n

decays exponentially, then for �deep� trees, a polynomial number of samples are needed for

reconstruction.

We will also encapsulate the following idea from [20].

Lemma 3.1. Let ðT1; p1Þ; . . . ; ðTm; pmÞ be a sequence of phylogenetic X -trees. Consider the fol-

lowing model for generating k characters. Choose one of the trees ðTi; piÞ uniformly at random with

probability 1
m
and then generate all k characters according to the random cluster model on ðTi; piÞ.

Assume that k partitions C0 ¼ ðv1; . . . ; vkÞ are generated via the random cluster model on one of

the above trees ðT0; pÞ and let C0 ¼ ðv1; . . . ; vkÞ denote the induced characters.

Let Z ¼ ZðC0;T0; pÞ be a random variable defined in terms of ðT0; pÞ and the partitions C0 and
assume that there exists a subset I ¼ IðZðC0;T0; pÞÞ � f1; 2; . . . ;mg such that

P½ðTi; piÞjZ;C0� ¼
1
jIj if i 2 I;
0 otherwise:

�
ð3Þ

Then the probability of reconstructing the tree given the k characters is at most E
h

1
jIj

i
.

Proof. Assume that in the reconstruction process in addition to C
0 one is also given the value of

the random variable Z. Clearly, this does not decrease the reconstruction probability.

From (3) it follows that conditioned on Z, all the trees ðTi; piÞ for i 2 I are equally likely. It now

follows that the reconstruction probability is at most E
h

1
jI j

i
. h

We now turn to some definitions. Given a phylogenetic X -tree T and a set of edges F � E of

T, we write T=F for the tree obtained from T by contracting all the edges in F . We call T=F a

factor tree of T. Similarly, we write ðT; pÞ=F for the tree ðT=F ; p0Þ, where p0ðeÞ ¼ pðeÞ for all

edges e of T=F .
We let Eo be the set of interior edges ofT, i.e. the set of edges e ¼ ðu; vÞ where neither u or v are

leaves of T. Finally, we say that a phylogenetic tree T displays a sequence C ¼ ðv1; v2; . . . ; vkÞ of
characters if T displays (as defined earlier) the quartet trees QðCÞ. This is equivalent to requiring

that, for each character v 2 C, the subtrees of T connecting fx 2 X : vðxÞ ¼ ag are vertex disjoint

across all a 2 vðX Þ.

Proposition 3.2. Let T be a trivalent phylogenetic X -tree and E � Eo. The number of trivalent

phylogenetic X -trees which have T=E as a factor is at least 3jEj.

Proof. For kP 2 let BðkÞ ¼Qk�2

i¼1 ð2i� 1Þ, the number of trivalent phylogenetic X -trees for a given

set X of size k [27]. It is easy to see that if T is a phylogenetic X -tree where all the interior degrees

are at least 3, then the number of trivalent phylogenetic X -trees which haveT as a factor, f ðTÞ, is
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exactly
Q

w BðdðwÞÞ, where the product is taken over all interior vertices of w of T and dðwÞ is the
degree of w in T.

We also note that if d1 P 3 and d2 P 3, then Bðd1 þ d2 � 2ÞP 3Bðd1ÞBðd2Þ.
We now prove the claim by induction on jEj. The claim is trivial when jEj ¼ 0 or 1. For the

induction step, assume that the claim holds for sets up to size jEj � 1 and let e 2 E. By the

induction hypothesis, f ðT=ðE � fegÞÞP 3jEj�1. Let u and v be the endpoints of e in the tree

T=ðE � fegÞ, and dðuÞ, dðvÞ their degrees in that tree. By contracting e, the vertices u, v are

replaced by a single vertex of degree dðuÞ þ dðvÞ � 2. Therefore

f ðT=EÞ ¼ f ðT=ðE � fegÞÞBðdðuÞ þ dðvÞ � 2Þ
BðdðuÞÞBðdðvÞÞ P 3f ðT=ðE � fegÞÞP 3jEj;

as needed. h

3.1. Logarithmic lower bounds

We will shortly present a result (Proposition 3.4) which implies that kminð�Þ grows at least

logarithmically in the first part of Theorem 1.1, thereby completing the proof of the first part of

that theorem. First we state the following lemma.

Lemma 3.3. Consider a phylogenetic X -tree T. Given k partitions C ¼ ðv1; . . . ; vkÞ of V ðTÞ, let
C ¼ ðv1; . . . ; vkÞ be the induced characters at the leaves and

F ¼ fe ¼ fu; vg 2 Eo
: 816 j6 k; vjðuÞ ¼ vjðvÞg ð4Þ

Then any phylogenetic X -tree T
0 that has T=F as a factor, displays C.

Proof. The proof follows from the fact that T=F displays C. h

Proposition 3.4

i (i) Consider the random cluster model on a trivalent phylogenetic X -tree ðT; pÞ. Then for all posi-

tive integer t, k and 1 > � > 0, if
X

e2Eo

qðeÞk > 2 logðt=�Þ; ð5Þ

then with probability at least 1� �, given k generated characters, ðv1; . . . ; vkÞ, there are t distinct
trivalent phylogenetic X -trees that display ðv1; . . . ; vkÞ.

(ii) Condition (5) holds whenever

k6
logðn� 3Þ � logð2 logðt=�ÞÞ

� log qmin

; ð6Þ

(iii) For all � > 0 and all t positive integer, if the prior probability on trees is the uniform distribution

over all trivalent phylogenetic X -trees, where pðeÞ ¼ p for all edges, and if k satisfies (6) then the

probability of correctly reconstructing the tree is bounded above by �þ 1
t
.
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Proof. Part (i): We will show that with probability at least 1� �, the set F in (4) is of size at least

log tP log t= log 3. This will imply the first claim by Lemma 3.3 and Proposition 3.2.

Note that the size of F can be written as
P

e2Eo Ye, where P½Ye ¼ 1� ¼ qðeÞk and where Ye are

independent 0=1 random variables. Letting Y ¼
P

e2Eo Ye, we see that

E½Y � ¼
X

e2Eo

qðeÞk: ð7Þ

By standard large deviation results (see, for example [28] [Theorem A.1.13]), for s > 0,

P½Y 6 E½Y � � s�6 exp

�
� s2

2E½Y �

�
:

Therefore, if s2 P � 2E½Y � log �, then P½Y 6 E½Y � � s�6 �. In order to obtain jF jP log t, with

probability at least 1� �, it suffices that

E½Y � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðlog �ÞE½Y �

p
P log t: ð8Þ

This is equivalent to

ffiffiffiffiffiffiffiffiffi
E½Y �

p
 

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log �

2

r !2

P log t � log �

2
;

which holds if

E½Y �P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log �

2

r 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log t � log �

2

r !2

: ð9Þ

From the inequality ðxþ yÞ2 6 2ðx2 þ y2Þ, for x; y > 0, it is easy to see that (9) and thereby (8)

holds whenever

E½Y �P 2
� log �

2

�
þ log t � log �

2

�
¼ 2 log t � 2 log �:

The sufficiency of (5) to establish the claim of part (i) now follows, in view of (7).

Part (ii): Condition (6) implies (5), since for any trivalent tree on n leaves, jEoj ¼ n� 3.

Part (iii): We use Lemma 3.1. Given the k partitions C ¼ ðv1; . . . ; vkÞ of V ðTÞ, we define the

random variable Z as T=F . Let mP 1 be the number of trivalent phylogenetic X -trees that have

the factor T=F .
Note that if T=F is not a factor of T0 then P½ðT0; pÞjZ;C� ¼ 0, while if T=F is a factor of T0,

then

P½ðT0; pÞjZ;C� ¼ P½ðT0; pÞ�P½Z;CjðT0; pÞ�
P½Z;C� ¼ P½ðT0; pÞ�ð1� pÞkjF jP½CjðT; pÞ=F �

P½Z;C� ¼ 1

m
: ð10Þ

(The last equality follows from the fact that the penultimate quantity in (10) is the same for all

trees T0 having T=F as a factor.)
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By Lemma 3.1 the reconstruction probability is at most E½1=m�. By the parts (i) and (ii) of

Proposition 3.4 it follows that

E½1=m�6 P½mP t�
t

þ P½m < t�6 1

t
þ �;

as required. h

3.2. Polynomial lower bounds

We will shortly present a result (Proposition 3.7) that establishes the second part of Theorem

1.1, after we have introduced some further lemmas. We will again use the notion of factor tree. We

now assume that the tree is trivalent and that pmin >
1
2
.

Lemma 3.5. Consider a phylogenetic X -tree T. Given k partitions C ¼ ðv1; . . . ; vkÞ of V ðTÞ, let
G ¼ fe ¼ fu; vg 2 Eo

: 816 j6 k;8x a leaf ; vjðxÞ 6¼ vjðuÞ and vjðxÞ 6¼ vjðvÞg ð11Þ
Then any phylogenetic X -tree T

0 that has the factor T=G0 for G0 � G, displays the sequence C of

induced characters.

Proof. The claim will follow once we show that T=G0 displays C. We may couple the process on

T and on T=G0 in such a way that for all partitions and all edges e which belong both to T and

T=G0 an edge is cut in T if and only if it is cut in T=G0. Note that using this coupling, the

characters on X that are induced by the partitions of V ðTÞ by restriction to the leaves of T and

T=G0 coincide. h

Lemma 3.6. Let G0 � E be a set of edges of a trivalent phylogenetic X -tree T. Given k characters,

the probability that G0 � G is at least

1� 2k
X

e2G0
ð2qmaxÞdðeÞ; ð12Þ

where dðeÞ is the distance of e to the set of leaves ofT, i.e., for e ¼ fu; vg, dðeÞ is the minimum of the

distance of u to the set of leaves of T and the distance of v to the set of leaves of T.

Proof. We assume that qmax < 1=2, as bound (12) is trivial if qmax P 1=2.
Given a fixed edge e ¼ fu; vg, let Lu be the set of leaves that are connected to u via a path not

containing v. Define Lv similarly.

The expected number of leaves x such that vðuÞ ¼ vðxÞ or vðvÞ ¼ vðxÞ in a partition v of V ðTÞ is
given by

X

x2Lu
P½vðuÞ ¼ vðxÞ� þ

X

x2Lv
P½vðvÞ ¼ vðxÞ�6

X

x2Lu
qdðx;uÞmax þ

X

x2Lv
qdðx;vÞmax ; ð13Þ

where dðx; x0Þ is the graph metric distance between x and x0. Since 2qmax < 1, the sum
P

x2Lu q
dðx;uÞ
max

becomes smaller if an element x 2 Lu is replaced by two elements x1, x2 with dðx1; uÞ ¼
dðx2; uÞ ¼ dðx; uÞ þ 1. A similar statement holds for Lv.
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It therefore follows, that both sums in the right hand side of (13) are maximized when

jLuj ¼ jLvj ¼ 2dðeÞ and for all x 2 Lu (x 2 Lv) it holds that dðx; uÞ ¼ dðeÞ (dðx; vÞ ¼ dðeÞ).
From (13) we now obtain that the expected number of leaves x such that vðuÞ ¼ vðxÞ or

vðvÞ ¼ vðxÞ is bounded by 2ð2qmaxÞdðeÞ.
Therefore if we let s denote the size of the set

fði; e ¼ fu; vg; xÞ : 16 i6 k; e 2 G0; x a leaf and viðuÞ ¼ viðxÞ or viðvÞ ¼ viðxÞg
then the expected value of s is at most 2k

P
e2G0ð2qmaxÞdðeÞ. In particular, with probability at least

that given by (12), s is zero, in which case G0 � G. h

Recall that an r-level 3-regular tree is a tree Tr having an interior vertex that is separated from

each leaf by exactly r edges. Fig. 3 shows an example of such a tree for r ¼ 3. Note that, for an

r-level 3-regular tree has n ¼ 3� 2r�1 leaves. We let Gr;h be the set of edges of Tr at distance at

least r � h� 1 from the set of leaves. Finally, we let Tr;h ¼ Tr=Gr;h.

Proposition 3.7

i(i) Let rP 1,hP 1, and T a trivalent phylogenetic X -tree, which has the factor Tr;h. Suppose we

generate a sequence C of k characters using T under the random cluster model. Then with prob-

ability at least 1� �, there exists at least 33�2h distinct trivalent phylogenetic X -trees that display

C, where

� ¼ 3� 2hþ1kð2qmaxÞr�h�1 ð14Þ
(ii) If we assume furthermore that the prior probability on trees is the uniform distribution over all

X -trees that have Tr;h as a factor and that pðeÞ ¼ p for all edges, then the probability of correctly

reconstructing the tree is bounded by

6k

ð1� pÞh
n

3

� �log2ð1�pÞþ1

þ 3�3�2h :

Note that part (ii) of Proposition 3.7 implies the second part of Theorem 1.1.

Proof. Part (i): Let G0 be the set of edges of T at distance at least r � h� 1 from the set of leaves.

By Lemma 3.6, G0 � G with probability at least 1� �, where G is defined in (11). Since the size of

Fig. 3. A 3-level 3-regular tree.
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G0 is 3� 2h, it follows from Proposition 3.2, that there exist at least 33�2h distinct trivalent phy-

logenetic X -trees which have the factor T=G0 ¼ Tr;h. By Lemma 3.5, all those trees display C.

This completes the proof of part (i).

Part (ii): Let A be the following event defined on the space of trees which have Tr;h as a factor,

where trees are chosen uniformly at random.

• For all leaves x, all edges e ¼ fu;wg of T which are not edges of Tr;h and all characters vj for

16 j6 k, it holds that vjðxÞ 6¼ vjðuÞ and vjðxÞ 6¼ vjðwÞ.

We now apply Lemma 3.1 with the random variable Z where Z takes the value 1 if A holds and

the valueT if A does not hold (whereT is the tree that generated the sequence). We let I have the

same meaning as in Lemma 3.1.

Note that P½ðT0; pÞjZ;C;Ac� ¼ 1 if T0 ¼ T. Moreover, by coupling the cut events on the edges

of Tr;h for all trees T
0 which have Tr;h as a factor, it follows that P½ðT0; pÞjZ;C;A� has the same

value for all trees that have Tr;h as a factor. Moreover there are at least 33�2h such trees.

We therefore conclude from Lemma 3.1, that the probability of reconstruction is bounded by

E
1

jIj

� �
¼ P½Ac�E 1

jI j jA
c

� �
þ P½A�E 1

jIj jA
� �

6P½Ac� þ 3�3�2h ;

which by part (i) of Proposition 3.7 is bounded by

3� 2hþ1kð2� 2pÞr�h�1 þ 3�3�2h ¼ 6k

ð1� pÞh
n

3

� �log2ð1�pÞþ1

þ 3�3�2h ;

as needed. h

Remark. It can be shown that, in the case pmin >
1
2
polynomial dependence of k on n is is not just

necessary, but also sufficient for the correct reconstruction of trivalent phylogenetic trees (with

high probability).
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