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Abstract

Partially ordered sets are investigated from the point of view of Bishop’s
constructive mathematics. Unlike the classical case, one cannot prove
constructively that every nonempty bounded above set of real numbers
has a supremum. However, the order completeness of R is expressed con-
structively by an equivalent condition for the existence of the supremum,
a condition of (upper) order locatedness which is vacuously true in the
classical case. A generalization of this condition will provide a definition
of upper locatedness for a partially ordered set. It turns out that the
supremum of a set S exists if and only if S is upper located and has a
weak supremum—that is, the classical least upper bound. A partially
ordered set will be called order complete if each nonempty subset that
is bounded above and upper located has a supremum. It can be proved
that, as in the classical mathematics, Rn is order complete.

1 Introduction

Classically, a partially ordered set X is said to be order complete if each
nonempty subset of X that is bounded above has a supremum. In this case, each
nonempty subset that is bounded below has an infimum. Order completeness
plays a crucial role in the classical theory of ordered vector spaces. The most
extensive part of the classical theory deals with order complete Riesz spaces
and, furthermore, several important classical results are based on the Dedekind
completeness of R. The main goal of this paper is to provide a constructive
definition of order completeness for arbitrary partially ordered sets. Our set-
ting is Bishop’s constructive mathematics [4, 5], mathematics developed with
intuitionistic logic,1 a logic based on the strict interpretation of the existence
as computability. One advantage of working in this manner is that proofs and

1 We also assume the principle of dependent choice [8], which is widely accepted in con-
structive mathematics. For constructivism without dependent choice see [15].

1



results have more interpretations. On the one hand, Bishop’s constructive math-
ematics is consistent with the traditional mathematics. On the other hand, the
results can be interpreted recursively or intuitionistically [3, 8, 16].

If we are working constructively, the first problem is to obtain appropriate
substitutes of the classical definitions. The classical theory of partially ordered
sets is based on the negative concept of partial order. Unlike the classical
case, an affirmative concept, von Plato’s excess relation [14], will be used as a
primary relation. Throughout this paper a partially ordered set will be a set
endowed with a partial order relation obtained by the negation of an excess
relation. To develop a constructive theory, the classical supremum; that is, the
least upper bound, is too weak a notion. We will use a stronger supremum
[2], a generalization of the usual constructive supremum of a subset of R [4].
Although this supremum is classically equivalent to the least upper bound, we
cannot expect to prove constructively that its existence is guaranteed by the
existence of the least upper bound [12].

Having described the general framework, let us examine the notion of order
completeness. When working constructively, we have to get over a main dif-
ficulty: the least–upper–bound principle is no longer valid. However, we have
a constructive counterpart [5, 12]: a nonempty subset of R that is bounded
above has a supremum if and only if it satisfies a certain condition of (upper)
order locatedness. As pointed out by Ishihara and Schuster [11], this equiva-
lence expresses constructively the order completeness of the real number line.
Furthermore, the definitions of upper and lower locatedness were extended by
Palmgren [13] to the case of a dense linear order. According to [13], a set X
endowed with a dense linear order is order complete if each nonempty subset of
X that is bounded above and upper located has a least upper bound. Equiv-
alently [13, Theorem 3.10], each nonempty subset that is bounded below and
lower located has a greatest lower bound. It can be proved that upper located-
ness and the existence of the weak supremum (least upper bound) are sufficient
conditions for the existence of the supremum and, as a consequence, that the
two definitions of order completeness for dense linear orders are equivalent.

We will present generalizations for arbitrary partially ordered sets of the
definitions of upper and lower locatedness and we will use them to obtain a gen-
eral constructive definition of order completeness. In accordance with classical
mathematics (see also [13, Theorem 3.10] for the constructive linear case), we
will prove (Section 5) the equivalence between the description of order complete-
ness with upper locatedness and suprema and the one with lower locatedness
and infima. We will also give a definition of incompleteness which is not merely
the negation of completeness and we will prove constructively that C[0, 1], a
standard classical example of an Archimedean Riesz space that is not order
complete, satisfies this definition. In Section 6 we will prove that a Cartesian
product of n order complete sets is order complete. As a consequence we obtain
the order completeness of Rn.
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2 Partially ordered sets

We will briefly recall the constructive definition of linear order and we will use
a generalization of it, von Plato’s excess relation [14], for the definition of a
partially ordered set.

Let X be a nonempty2 set. A binary relation < (less than) on X is called
a linear order if the following axioms are satisfied for all elements x and y:

L1 ¬(x < y ∧ y < x),

L2 x < y ⇒ ∀z ∈ X (x < z ∨ z < y).

The linear order < on X is said to be dense if for each pair x, y of elements
of X such that x < y, there exists z in X with x < z < y. An example is the
standard strict order relation < on R, as described in [4]. For an axiomatic
definition of the real number line as a constructive ordered field, the reader is
refered to [6] or [7]. A detailed investigation of linear orders in lattices can be
found in [9].

The binary relation � on X is called an excess relation if it satisfies the
following axioms:

E1 ¬(x � x),

E2 x � y ⇒ ∀z ∈ X (x � z ∨ z � y).

We say that x exceeds y whenever x � y. Clearly, each linear order is an excess
relation. As shown in [14], we obtain an apartness relation �= and a partial order
≤ on X by the following definitions:

x �= y ⇔ (x � y ∨ y � x) ,

x ≤ y ⇔ ¬(x � y).

An equality = and a strict partial order < can be obtained from the relations
�= and ≤ in the standard way:

x = y ⇔ ¬ (x �= y) ,

x < y ⇔ (x ≤ y ∧ x �= y) .

If an apartness and a partial order are considered as basic relations, the
transitivity of strict order cannot be obtained. (A proof based on Kripke models
is given by Greenleaf in [9].) In contrast, an excess relation as a primary relation
enables us to prove this property. Moreover, it is straightforward to see that

(x ≤ y ∧ y < z) ∨ (x < y ∧ y ≤ z) ⇒ x < z.

Given an excess relation �, we can define its dual excess relation � by

x � y ⇔ y � x.

2 By “nonempty” we mean “inhabited”: that is, we can construct an element of the set.
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Both excess relations lead to the same apartness and therefore to the same
equality. The partial order and the strict partial order obtained from � are the
relations ≥ and >, defined as expected:

x ≥ y ⇔ y ≤ x,

x > y ⇔ y < x.

From now on, a partially ordered set will be a nonempty set endowed
with a partial order relation induced, as above, by an excess relation. Note that
the statement ¬(x ≤ y) ⇒ x � y does not hold in general. For real numbers, it
is equivalent to Markov’s principle:

if (an) is a binary sequence such that ¬∀n(an) = 0, then there exists
n such that an = 1.

Although this principle is accepted in the recursive constructive mathematics
developed by A.A. Markov, it is rejected in Bishop’s constructivism. For further
information on Markov’s principle, see [10].

To end this section, let us consider an example. Let X be a set of real–valued
functions defined on a nonempty set S, and let � be the relation on X defined
by f � g if there exists x in S such that g(x) < f(x). Clearly, this is an excess
relation whose corresponding partial order relation is the pointwise ordering of
X . When S = {1, 2, . . . , n}, we may view the set of all real–valued functions on
S as the Cartesian product Rn.

3 Suprema and infima

As in the classical case, a nonempty subset S of a partially ordered set X is said
to be bounded above if there exists an element b of X such that a ≤ b for all
a in S. In this case, b is called an upper bound for S. A bounded below
subset and a lower bound are defined similarly, as expected. The subset S
will be called unbounded above if for each x ∈ X there is an element a in S
that exceeds x. Similarly, S is said to be unbounded below if for each x ∈ X
there exists a ∈ S such that x � a.

The definition of join of two elements of a lattice [14] can be easily extended
to a general definition of the supremum [2]. Consider an excess relation � on
X , a nonempty subset S of X , and s an element of X . We say that s is a
supremum of S if s is an upper bound of S and

(x ∈ X ∧ s � x) ⇒ ∃a ∈ S (a � x).

It can be easily observed that the above definition is a generalization of the
constructive definition of supremum of a subset of R [4]. The classical least
upper bound will be called the weak supremum. In other words, an upper
bound w of S is a weak supremum of S if

(∀a ∈ S (a ≤ b)) ⇒ w ≤ b.
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If S has a (weak) supremum, then that (weak) supremum is unique. We
denote by sup S and w–supS the supremum and the weak supremum of S,
respectively, if they exist. The infimum inf S and the weak infimum w–inf S
are defined similarly, as expected. Since each (weak) infimum with respect to the
excess relation � is a (weak) supremum with respect to the dual relation �, we
will obtain dual properties for (weak) supremum and (weak) infimum. Most of
the results will be given for the suprema, without mentioning the corresponding
counterparts for infima.

It is straightforward to prove that s is the weak supremum of S whenever
s = sup S. Although the converse implication is classically true, this is not
the case from a constructive standpoint. Indeed, it can be proved [12, Example
4.14] that for real numbers, this implies the limited principle of omniscience
(LPO):

for every binary sequence (an), either an = 0 for all n, or else an = 1
for some n.

This principle is false both in intuitionistic and recursive mathematics [8] and
is not accepted in Bishop’s constructive mathematics.

Let us examine now the classical least–upper–bound principle: each nonempty
subset of R that is bounded above has a supremum. Clearly, this statement en-
tails LPO and therefore is essentially nonconstructive. Even if we consider the
weak supremum rather than supremum, we cannot expect to prove it construc-
tively. Indeed, it can be easily shown that the existence of the weak supre-
mum for each nonempty set of real numbers that is bounded above entails an-
other nonconstructive principle, the weak limited principle of omniscience
(WLPO):

for every binary sequence (an), either an = 0 for all n, or it is
contradictory that an = 0 for all n.

Nevertheless, there are appropriate constructive substitutes of the least–
upper–bound principle for both suprema. Let us consider a set X endowed with
a dense linear order and S a nonempty subset of X . Following Palmgren [13],
we will say that S is upper located if for all x, y in X with x < y, either
y is an upper bound of S or there exists a in S with x < a. This suggests
us a weaker version of locatedness: S is weakly upper located if for each
pair x, y of elements of X with x < y, either y is an upper bound of S or it is
contradictory for x to be an upper bound of S. When X is the real number set,
sup S exists if and only if S is bounded above and upper located [5, Proposition
4.3]. Similarly, the weak supremum of S exists if and only if S is bounded above
and weakly upper located [12, Lemma 4.9]. In the next section we will extend
these notions to the general case of partially ordered sets.

4 Order locatedness

We will introduce a general definition of upper locatedness. As a main result of
this section, we will prove that for an arbitrary subset S of a partially ordered
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set, supS can be computed if and only if S is upper located and has a weak
supremum.

Let S be a nonempty subset of the partially ordered set X . We will say that
S is upper located if for each pair x, y of elements of X with y � x, either
there exists an element a of S with a � x or there exists an upper bound b of
S with y � b. The subset S is weakly upper located if for all x, y in X such
that y exceeds x, either it is contradictory for x to be an upper bound of S or
there exists an upper bound b of S with y � b. Lower located and weakly
lower located sets are defined correspondingly. When X is a linear order, we
could replace the relation � by >. If, in addition, the linear order is dense, this
definition of upper locatedness is equivalent to the one given in Section 3.

Let us consider now several examples. The set X and the subsets {a}, a ∈ X
are both upper located and lower located. Each subset of X that is unbounded
above is upper located and, needless to say, each subset that is unbounded below
is lower located.

Proposition 4.1. Let S be a nonempty subset of the partially ordered set X.
Then S has a supremum if and only if it is upper located and its weak supremum
exists.

Proof. Let s be the supremum of S and x, y, a pair of elements of X such that
y exceeds x. Then either y � s or s � x. In the former case, y exceeds an upper
bound of S, namely, s and in the latter one, there exists an element of S that
exceeds x.

Conversely, assume that S is upper located and let w be the weak supremum
of S. We will prove that w = supS. To this end, let x be an element of X
such that w � x. If b is an upper bound of S, then the condition w � b is
contradictory to the definition of weak supremum. Since S is upper located, it
follows that there exists a in S that exceeds x. By the definition of supremum,
it follows that w = supS.

As a consequence, to define the order completeness of R we can use either
suprema, as in [11] or, equivalently, weak suprema [13]. In the next section
we will extend the definition of order completeness to the general case of an
arbitrary partially ordered set.

Proposition 4.1 shows that the existence of sup S is a sufficient condition
for the upper locatedness of S. Similarly, the existence of the weak supremum
entails weakly upper locatedness.

Proposition 4.2. If S has a weak supremum, then S is weakly upper located.

Proof. Let x, y be elements of X such that y � x. If y exceeds the weak supre-
mum w, we have nothing to prove. If w � x, suppose that x is an upper bound
of S. Since w is the weak supremum of S, it follows that w ≤ x, contradictory
to w � x.
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5 Order completeness

The partially ordered set X is said to be order complete or Dedekind com-
plete if each nonempty subset of X that is upper located and bounded above
has a weak supremum. In this case the weak supremum is actually a supremum
(Proposition 4.1). Proposition 4.3 in [5] guarantees the order completeness of
R. We will prove in Section 7 that for each n, Rn is complete.

Since each subset of X is classically upper located, this definition of Dedekind
completeness is classically equivalent to the traditional one. As in the classi-
cal case, we can use lower locatedness, instead of upper locatedness to define
Dedekind completeness. For a dense linear order this was proved by Palmgren.
Our next result is the generalization of [13, Theorem 3.10].

Proposition 5.1. The partially ordered set X is Dedekind complete if and only
if each nonempty subset of X that is lower located and bounded below has a weak
infimum.

Proof. Let us assume that X is Dedekind complete and consider a nonempty
subset S that is bounded below. We will prove that inf S exists. As in the
classical proof, we will consider the nonempty set B of the lower bounds of S.
To prove that B is upper located, let x and y be elements of X with y � x.
Since S is lower located, it follows that either there exists a ∈ S with y � a
or there exists a lower bound b of S with b � x. Therefore either y exceeds an
upper bound of B, namely, a or there exists an element of B that exceeds x
and, as a consequence, B is upper located.

Let s be the supremum of B. We will prove that s is the infimum of S. If
s � a for some a in S, then, according to the definition of supremum, there
exists b ∈ B with b � a, a contradiction. Therefore s ≤ a for all a in S. Let
us consider now an element z in X with z � s. Since S is lower located, either
z � a for some a in S or there exists an element of B that exceeds s. The latter
condition is contradictory, so s = inf S. The converse implication can be proved
in a similar way.

We will say that X is order incomplete or Dedekind incomplete if
there exists a subset S of X that is nonempty, upper located and bounded
above, but does not have a supremum. Clearly, this is classically equivalent to
the negation of order completeness. However, to prove constructively that a
partially ordered set is Dedekind incomplete, it is not sufficient to show that its
order completeness is contradictory.

In the classical functional analysis, the vector space C[0, 1] consisting of
all continuous real–valued functions on the compact interval [0, 1], a vector
space endowed with the pointwise ordering, is the standard example of an
Archimedean Riesz space that is not Dedekind complete. (For background infor-
mation about Riesz spaces, the reader is refered to [17]. Constructive definitions
of ordered vector spaces and Riesz spaces, can be found in [2].)

To prove that C[0, 1] is Dedekind incomplete let us consider, as in the clas-
sical proof [1], the sequence (fn), n ≥ 3, of the continuous functions fn on [0, 1]
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that satisfy:

fn(x) =

⎧⎨
⎩

1 if 0 ≤ x ≤ 1
2 − 1

n ,

0 if 1
2 ≤ x ≤ 1,

and fn is linear on [12 − 1
n , 1

2 ]. Clearly, the set S = {fn : n ≥ 3} is bounded
above by the function e defined by e(x) = 1 for all x. Since S does not have
a weak supremum, let alone the supremum, it is sufficient to prove that S is
upper located.

Let f and g be two elements of C[0, 1] such that g � f , that is, f(x0) < g(x0)
for some x0. It follows that there exist x1 and x2 in [0, 1] such that x1 < x2

and f(x) < g(x) whenever x1 ≤ x ≤ x2. Either x1 < 1/2 or 1/2 < x2.3 In the
former case, either f(x1) < 1 or g(x1) > 1. If f(x1) < 1, then there exists n
with fn(x1) = 1 > f(x1) hence fn � f . If g(x1) > 1, then g � e. Consider now
the case x2 > 1/2. If f(x2) < 0, then fn � f for all n. If g(x2) > 0, then we
can find an upper bound h of S with h(x2) = 0. Consequently, if g exceeds f ,
then either fn � f for some n or there exists an upper bound u of S, namely, e
or h such that g � u. This ensures that S is upper located.

6 The product order

We will show that the Cartesian product X1 × · · · × Xn is order complete with
respect to the standard product order if and only if each Xi is order complete.
As a consequence, Rn is order complete.

A Cartesian product of partially ordered sets can be ordered in a natural
way. Let X = X1 × X2 × · · · × Xn be the Cartesian product of the nonempty
sets X1, X2, . . . , Xn and for each i ∈ {1, 2, . . . , n} consider an excess relation
�i on Xi. Define the relation � on X by

(x1, x2, . . . , xn) � (y1, y2, . . . , yn) if ∃i ∈ {1, 2, . . . , n} (xi �i yi).

Since all the relations �i are excess relations, it is straightforward to see that
this relation � on X also satisfies the axioms of an excess relation. The general
method described in Section 2 leads to the following definitions of apartness,
equality, partial order and strict partial order on the Cartesian product, as in
the classical case:

(x1, x2, . . . , xn) �= (y1, y2, . . . , yn) if ∃i ∈ {1, 2, . . . , n} (xi �=i yi);
(x1, x2, . . . , xn) = (y1, y2, . . . , yn) if ∀i ∈ {1, 2, . . . , n} (xi =i yi);
(x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn) if ∀i ∈ {1, 2, . . . , n} (xi ≤i yi);
(x1, x2, . . . , xn) < (y1, y2, . . . , yn) if ∀i ∈ {1, 2, . . . , n} (xi ≤i yi) ∧

∃j ∈ {1, 2, . . . , n} (xj <j yj).

3 The law of trichotomy: ∀a ∈ R (a < 0 ∨ a = 0 ∨ a > 0) entails LPO. Nevertheless, the
property L2 of a linear order is a useful constructive substitute.
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The notation of the relations is self-explanatory. From now on, the Cartesian
product of the partially ordered sets X1, X2, . . . , Xn will be considered ordered
by an excess relation as above. For each i, 1 ≤ i ≤ n, let us consider the
projection πi of X = X1 × X2 × · · · × Xn onto Xi, defined by

πi(x1, x2, . . . , xn) = xi.

The next result enables us to calculate the (weak) supremum of a subset S of
X by computing the (weak) suprema of the projections πi(S), and vice versa.

Lemma 6.1. Let X1, X2, . . . , Xn be partially ordered sets, let S be a subset
of X = X1 × X2 × · · · × Xn that is nonempty and bounded above, and let
s = (s1, s2, . . . , sn) be an element of X. Then, the following statements hold.

(i) s = sup S ⇔ ∀i ∈ {1, 2, . . . , n} (si = supπi(S)).

(ii) s = w–sup S ⇔ ∀i ∈ {1, 2, . . . , n} (si = w–sup πi(S)).

Proof. (i) Clearly, s is an upper bound for S if and only if for each i, si is an
upper bound of πi(S). Assuming that s = sup S, we prove that s1 = sup π1(S).
For each x1 ∈ X1 with s1 �1 x1 we have to find an element a1 ∈ π1(S) such
that a1 �1 x1. If s1 �1 x1, then s � (x1, s2, . . . , sn) so there exists a =
(a1, a2, . . . , an) ∈ S with a � (x1, s2, . . . , sn). It follows that either a1 �1 x1 or
else aj �j sj for some j ≥ 2. Since s is an upper bound for S, the latter case
is contradictory, so a1 �1 x1 and s1 = sup π1(S). Similarly, si = sup πi(S) for
each i ≥ 2.

To prove the converse implication, let us assume that for all i, si = sup πi(S).
Consider x = (x1, x2, . . . , xn) ∈ S with s � x—that is, sj �j xj for some
j. Since sj = sup πj(S), there exists aj ∈ πj(S) such that aj �j xj . If for
each i �= j, we pick ai in πi(S), then a = (a1, a2, . . . , an) ∈ S and a � x.
Consequently, s = sup S.

(ii) This can be proved in a similar way.

Lemma 6.2. Let S be a nonempty subset of X = X1 × X2 × · · · × Xn that is
bounded above. Then S is upper located if and only if each projection πi(S) is
upper located.

Proof. Assuming that S is upper located, we prove that π1(S) is upper lo-
cated. Consider an element a = (a1, . . . , an) of S and b = (b1, . . . , bn) an
upper bound of S. If x1 and y1 are elements of X1 such that y1 �1 x1, then
(y1, a2, . . . , an) � (x1, b2, . . . , bn). It follows that either there exists an upper
bound b′ = (b′1, . . . , b

′
n) of S with (y1, a2, . . . , an) � b′ or else there exists an

element a′ = (a′
1, . . . , a

′
n) of S that exceeds (x1, b2, . . . , bn). In the former case,

b′1 is an upper bound of π1(S) and y1 exceeds b′1. In the latter a′
1 is an element

of π1(S) that exceeds x1. This proves the upper locatedness of π1(S) and the
other projections are proved to be upper located in a similar way.

Conversely, assume that each projection of S is upper located and let x =
(x1, . . . , xn) and y = (y1, . . . , yn) be elements of S such that y exceeds x. It
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follows that yi �i xi for some i and, since Xi is upper located, either there
exists an upper bound bi of πi(S) with yi �i bi or there exists an element
a = (a1, . . . an) in X such that ai �i xi. In the former case, taking into account
that S is bounded above, we can easily construct an upper bound b of S such
that y exceeds b. In the latter a exceeds x and this ensures that S is upper
located.

Note that a similar result can be obtained for weakly upper located sets.

Proposition 6.3. The partially ordered set X = X1 × X2 × · · · × Xn is order
complete if and only if for each i, 1 ≤ i ≤ n, Xi is order complete.

Proof. Suppose first that X is order complete and let S1 be a nonempty subset
of X1 that is upper located and bounded above. For each i, 2 ≤ i ≤ n, pick an
element ai ∈ Xi. Then, according to Lemma 6.2, the set S1 ×{a2}× · · · × {an}
is upper located. This subset of X is also bounded above hence its supremum
exists. By Lemma 6.1, the supremum of S1 exists and this guarantees the order
completeness of X1.

The converse implication is a consequence of Lemma 6.1 and Lemma 6.2.

7 An example: Rn

We will investigate a specific example: the Cartesian product Rn of n copies
of R. Since R is order complete, the following result is a direct consequence of
Proposition 6.3.

Corollary 7.1. For each positive integer n, Rn is order complete with respect
to the standard product order.

The partially ordered set L is said to be a lattice if for each pair x, y of
elements of L, both sup{x, y} and inf{x, y} exist. Since R is a lattice,4 it follows
from Lemma 6.1 that Rn is a lattice. We will prove equivalent conditions for
the existence of the supremum of a subset of Rn.

Proposition 7.2. If S is a nonempty subset of Rn, then the following condi-
tions are equivalent.

(1) The supremum of S exists.

(2) There exists an element s ∈ Rn such that s is an upper bound of S and
for each x ∈ Rn with x < s, at least an element a of S exceeds x.

(3) The set S is bounded above and upper located.

(4) The set S is bounded above, and for all x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Rn with xi < yi for each i ∈ {1, . . . , n}, either y is an upper bound of
S or there exists a in S such that a � x.

4 However, it cannot be proved constructively that for each pair x, y of real numbers, either
sup{x, y} = x or else sup{x, y} = y.
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(5) The projections πi(S) are bounded above and upper located.

Proof. To avoid cumbersome notation, we will assume that n = 2. First we
prove that (3) entails (4). Let x = (x1, x2) and y = (y1, y2) be elements of R2

such that x1 < y1 and x2 < y2. Pick an element a = (a1, a2) of S and consider
the elements z = (y1, a2) and w = (a1, y2). Both z and w exceed x and hence
either there exists an element of S that exceeds x or we can construct the upper
bounds (b1, b2) and (b′!, b

′
2) of S with z � (b1, b2) and w � (b′!, b

′
2). In the latter

case, b1 < y1 and b′2 < y2 and, as a consequence, y is an upper bound of S.
To prove that (4) entails (5), consider an upper bound (b1, b2) of S. If α and

β are two real numbers with α < β, set x = (α, b2) and y = (β, b2 + 1). Then
either y is an upper bound of S or there exists a = (a1, a2) in S with a � x.
In the former case, β is an upper bound of π1(S) and in the latter, α < a1.
Consequently, π1(S) is upper located.

The order completeness of R and Lemma 6.1 guarantee the equivalence
between (5) and (1). According to Corollary 7.1, (1) and (3) are equivalent.
Furthermore, it is straightforward to observe that (1) entails (2). It remains to
prove the implication (2) ⇒ (1). To this end, we prove that s = sup S whenever
s satisfies (2). Let x be an element of Rn such that s exceeds x. Therefore
s ∧ x < s.5 It follows that there exists an element a of S with a � s ∧ x.
The last condition is equivalent to a ∧ (s ∧ x) < a and, as a ∧ s = a, to
a∧x < a. Consequently, there exists an element a of S such that a � x; whence
s = sup S.

Note that for n ≥ 2 the condition in the left–hand side of (4) in the preceding
proposition cannot be replaced by the weaker condition x < y.

Proposition 7.3. Let n ≤ 2 be an integer, and S a nonempty subset of Rn

that is bounded above. If, for all x and y in Rn with x < y, either y is an upper
bound of S or else there exists a in S such that a � x, then LPO holds.

Proof. If S satisfies the hypothesis, then supS exists. Let s = (s1, . . . , sn) be
the supremum of S and take an arbitrary real number α. If x = (α, s2, . . . , sn)
and y = (α, s2 + 1, . . . , sn + 1), then x < y and either y is an upper bound of
S, or else we can find an element a = (a1, . . . , an) in S that exceeds x. In the
former case α is an upper bound of π1(S) hence s1 ≤ α. In the latter case, either
α < a1 or else sj < aj for some j ≥ 2. Since s = sup S, the latter condition is
contradictory. Consequently, for each real number α, either α ≥ s1 or α < s1.
This property entails LPO.

We obtain corresponding results for the weak infimum. The proofs are sim-
ilar and hence omitted.

Proposition 7.4. For a nonempty subset S of Rn, the following conditions are
equivalent.

(1) The weak supremum of S exists.
5 We use the lattice notation y ∧ z for inf{y, z}.
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(2) There exists s ∈ Rn such that s is an upper bound of S and

s � x ⇒ ¬(∀a ∈ S (a ≤ x)).

(3) There exists s ∈ Rn such that s is an upper bound of S and

¬(s ≤ x) ⇒ ¬(∀a ∈ S (a ≤ x)).

(4) There exists s ∈ Rn such that s is an upper bound of S and

¬¬(∀a ∈ S (a ≤ x)) ⇒ (s ≤ x).

(5) There exists s ∈ Rn such that s is an upper bound of S and

x < s ⇒ ¬(∀a ∈ S (a ≤ x)).

(6) There exists s ∈ Rn such that s is an upper bound of S and

¬¬(x < s) ⇒ ¬(∀a ∈ S (a ≤ x)).

(7) There exists s ∈ Rn such that s is an upper bound of S and

¬¬(∀a ∈ S (a ≤ x)) ⇒ ¬(x < s).

(8) The set S is bounded above and weakly upper located.

(9) The set S is bounded above, and for all x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Rn with xi < yi for each i ∈ {1, . . . , n}, either y is an upper bound of
S or it is contradictory for x to be an upper bound of S.

(10) The projections πi(S) are bounded above and weakly upper located.

Proposition 7.5. Let n ≤ 2 be an integer, and S a nonempty subset of Rn

that is bounded above. If, for all x and y in Rn with x < y, either y is an
upper bound of S or else it is contradictory that x be an upper bound of S, then
WLPO holds.

We end with an equivalent condition for the existence of the (weak) supre-
mum of a subset of Rn that is bounded above and below.

Proposition 7.6. Let S be a nonempty subset of Rn that is bounded above and
below.

(i) The supremum of S exists if and only if, for all x and y in Rn with y � x,
either y � a for all a in S or else there exists a in S such that a � x.

(ii) The weak supremum of S exists if and only if, for all x and y in Rn with
y � x, either y � a for all a in S or it is contradictory that x is an upper
bound of S.
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Proof. We will prove only (i), the proof of (ii) being similar. The supremum of
S exists if and only if S is upper located. If b is an upper bound of S such that
y � b and a is an arbitrary element of S, then either y � a or a � b. The latter
is contradictory, so y exceeds each element of S.

Conversely, let b = (b1, . . . , bn) an upper bound of S, and let m = (m1, . . . , mn)
be a lower bound. If α and β are real numbers with α < β, then (β, m2, . . . , mn) �
(α, b2, . . . , bn). It follows that either (β, m2, . . . , mn) � a for all a in S or
else there exists an element a = (a1, . . . an) in S such that (a1, . . . , an) �
(α, b2, . . . , bn). In the former case, β is an upper bound of π1(S); and in the
latter, there exists a1 in π1(S) with α < a1. Consequently, we see that sup π1(S)
exists and, similarly, we can prove that sup πi(S) exists for each i. This proves
the existence of supS.
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