
EXTENDING THE LIMITS OF SUPERTREE METHODS

MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

Abstract. Recently, two exact polynomial-time supertree methods have been
developed in which the traditional input of rooted leaf-labelled trees has been
extended in two separate ways. The first method, called RankedTree, allows
for the inclusion of relative divergence dates and the second method, called
AncestralBuild, allows for the inclusion of rooted trees in which some of
the interior vertices as well as the leaves are labelled. The latter is particular
useful for when one has information that includes nested taxa. In this paper,
we present two supertree methods that unite and generalise RankedTree and
AncestralBuild. The first method is polynomial time and combines the
allowable inputs of RankedTree and AncestralBuild. It determines if the
original input is compatible, in which case it outputs an appropriate ‘ranked
semi-labelled tree’. The second method lists all ‘ranked semi-labelled trees’
that are consistent with the original input. While there may be an exponential
number of such trees, the second method outputs the next such tree in the list
in polynomial time.

1. Introduction

Supertree methods are increasingly being used in evolutionary biology for the
construction of evolutionary (phylogenetic) trees. These methods amalgamate a
collection of smaller phylogenetic trees on overlapping sets of species into a single
parent tree. Despite there increasing use, one of the valid criticisms of such meth-
ods is that the input is usually restricted to leaf-labelled trees, thus overlooking
other relevant information. However, two new polynomial-time supertree methods,
RankedTree [3] and AncestralBuild [7], have extended this usual input in
two separate ways. In addition to leaf-labelled trees, the input to RankedTree

allows for the inclusion of relative ancestral divergence dates and the input to An-

cestralBuild allows for the inclusion of trees in which some of the interior as
well as all of their leaves are labelled. The former allows for information such as
whether one divergence event happened before another divergence event to be in-
cluded in the input, while the latter allows for nested taxa (for example, genera
versus species) to be included in the input. Both algorithms were applied to real
data sets in [5]. Both RankedTree and AncestralBuild are exact algorithms
in that either they output a certain type of tree that is consistent with all the data
in the input (the input is ‘compatible’) or they return a statement indicating that

Date: 14 June 2004.
The first author was supported by the New Zealand Institute of Mathematics and its Ap-

plications funded programme Phylogenetic Genomics and the work was conducted while at the
University of Canterbury. The third author was supported by the New Zealand Marsden Fund
(UOC310).

1

2 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

the input is inconsistent. While such algorithms are not entirely satisfactory (as
biological data is often inconsistent), they are necessary steps for constructing more
general supertree methods.

The purpose of this paper is twofold. Firstly, to present an exact polynomial-time
algorithm (called BuildPlus) that combines the allowable inputs of RankedTree

and AncestralBuild. Surprisingly, this is not as straightforward as one might
first expect. If BuildPlus returns an appropriate tree, a natural and informative
subsequent task is to find all such trees that are consistent with the input, so
that one may compare and recognise common features. The second purpose of
this paper is to present an algorithm (called AllBuildPlus) that lists all trees
that are consistent with the original input with the property that each tree is
outputted in polynomial time. In terms of complexity, this is the best possible in
the sense that, as there may be an exponential number of such trees in the size of
the input (see [9]), an algorithm that outputs every such list in polynomial time is
not possible. Previously, this type of listing algorithm has only be done in the case
the input consists of leaf-labelled trees [4, 8, 9]. The rest of this section provides
necessary definitions. The notation and terminology in this paper follows [10].

The name BuildPlus is based on one of the first supertree methods. Originally
designed for relational databases, this method, called Build, is an exact algorithm
that takes as its input a collection of ‘rooted phylogenetic trees’ and determines
if this collection is ‘compatible’ (defined below), in which case it outputs a rooted
phylogenetic tree that ‘displays’ each tree in this collection [1]. The algorithm
BuildPlus extends Build by allowing collections of ‘rooted semi-labelled trees’
and ‘relative divergence dates’ to be included in the input. Moreover, like Build,
the algorithm BuildPlus determines if these collections are ‘compatible’, in which
case it outputs a ‘ranked semi-labelled tree’ that ‘ancestrally displays’ each of the
trees and ‘preserves’ each of the relative divergence dates in these collections. We
describe these notions next.

A rooted semi-labelled tree T (on X) is an ordered pair (T ;φ) consisting of a
rooted tree T with vertex set V and root ρ, and a map φ : X → V with the following
properties:

(i) for all v ∈ V − {ρ} of degree at most two, v ∈ φ(X); and
(ii) if ρ has degree zero or one, then ρ ∈ φ(X).

Rooted semi-labelled trees on X are also called rooted X-trees. The set X is called
the label set of T and is denoted by L(T). The elements of X are the labels of
T . Ignoring the numerals, Fig. 1 shows a rooted semi-labelled tree. A rooted
semi-labelled tree is fully labelled if φ−1(v) is non-empty for all v ∈ V . A rooted
phylogenetic X-tree is a rooted semi-labelled tree on X in which ρ has degree at
least two and φ is a bijection from X into the set of leaves of T . Two rooted
semi-labelled X-trees T1 = (T1, φ1) and T2 = (T2, φ2), where T1 = (V1, E1) and
T2 = (V2, E2), are isomorphic if there exists a bijection ψ : V1 → V2 which induces
a bijection between E1 and E2, and satisfies φ2 = ψ ◦φ1. Intuitively, a rooted semi-
labelled tree is simply a rooted tree in which the leaves as well as some of the interior
vertices are labelled. In evolutionary biology, an interior label represents a taxa at

EXTENDING THE LIMITS OF SUPERTREE METHODS 3

5 5

1

dab f

4 3

2y

x

e, gc

2244

Figure 1. A ranked semi-labelled tree on {a, b, c, d, e, f, g, x, y}.

a taxonomic level higher than that of its descendants. For example, families and
genera are higher taxonomic levels than genera and species, respectively. Observe
that this type of input in BuildPlus allows for the possibility of a leaf of one of the
input trees to represent a taxon that is represented by an interior label of another
tree.

For taxon w, x, y, z ∈ X , a relative divergence date is a statement of the form
div(w, x) < div(y, z) which is interpreted as “the divergence of w and x predates
the divergence of y and z”. The label set of div(w, x) < div(y, z) is {w, x, y, z}.
This type of input could be based, for example, on fossil data or molecular dating
techniques.

A useful partial order ≤T on the vertex set V of T is obtained by setting u ≤T v

if the path from the root of T to v includes u. Observe that the partial order ≤T

has the property that, for every pair of elements, the greatest lower bound exists.
For u, v ∈ V , we call this lower bound the most recent common ancestor of u and
v and denote it by mrcaT (u, v). Extending this partial order to the label set X of
a rooted semi-labelled tree T = (T ;φ), we write a ≤T d if φ(a) ≤T φ(d), in which
case, d is a descendant of a. If, for x, y ∈ X , x is not a descendant of y and y is
not a descendant of x, then we say that x and y are not comparable. Furthermore,
for all x, y ∈ X , we let

mrcaT (x, y) = φ−1(mrcaT (φ(x), φ(y))),

where φ−1 is taken to be the generalised inverse function of φ on sets.

Let T = (T ;φ) be a rooted semi-labelled tree on X , and let r be a map from the
set V of vertices of T into the set of non-negative integers such that if u, v ∈ V and
u <T v, then r(u) < r(v). The pair (T , r) is called a ranked semi-labelled tree and
the map r is called a rank function for T . A ranked semi-labelled tree is shown in
Fig. 1. Now let (T1, r1) and (T2, r2) be two ranked semi-labelled trees on X , and
suppose that T1 is isomorphic to T2 under ψ. Then (T1, r1) and (T2, r2) are ranked
isomorphic if, for all vertices u, v ∈ T1, the following properties are satisfied:

(i) if r1(u) = r1(v), then r2(ψ(u)) = r2(ψ(v)); and
(ii) if r1(u) < r1(v), then r2(ψ(u)) < r2(ψ(v)).

4 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

For nested taxa, the analogue of ‘displays’ (in the case of Build) is ‘ancestrally
displays’. Let T = (T ;φ) be a rooted X-tree. For a subset X ′ of X , the restriction
of T to X ′, denoted T |X ′, is the rooted X ′-tree that is obtained from the minimal
rooted subtree of T that connects the elements in φ(X ′) by suppressing all vertices
of degree two that are not in φ(X ′). Now let T ′ be a rooted semi-labelled tree on
X ′. Then T ancestrally displays T ′ if T ′ may be obtained from T |X ′ by contracting
edges (that is T |X ′ refines T ′, see [10]), and for all x, y ∈ X ′, the following hold:

(i) if x <T ′ y, then x <T y; and
(ii) if x is not comparable to y in T ′ under ≤T ′ , then x is not comparable to

y in T under ≤T .

Note that if T ′ is a rooted phylogenetic tree, then ancestrally displays is equivalent
to the notion of ‘displays’ mentioned above. A collection P of rooted semi-labelled
trees is ancestrally displayed by T if each tree in P is ancestrally displayed by T .

Let div(w, x) < div(y, z) be a relative divergence date. A ranked semi-labelled
tree (T , r) onX preserves div(w, x) < div(y, z) if w, x, y, z ∈ X and r(mrca(w, x)) <
r(mrca(y, z)). A collection D of relative divergence dates is preserved by (T , r) if
each member of D is preserved by (T , r). For a collection P of rooted semi-labelled
trees and a collection D of relative divergence dates, we say that P and D are
compatible if there is a ranked semi-labelled tree (T , r) that ancestrally displays P
and preserves D.

In Section 2, we present BuildPlus and show that it provides a polynomial-time
solution to the following problem:

Problem: Tree Compatibility

Instance: A collection P of rooted semi-labelled tree and a collection D of relative
divergence dates.
Question: Does there exist a ranked semi-labelled tree that ancestrally displays
P and preserves D and, if so, can we construct such a ranked semi-labelled tree?

If a collection P of rooted semi-labelled trees and a collection D of relative diver-
gence dates are compatible, the next step forward is to list all ranked semi-labelled
trees that ancestrally display P and preserve D. In Section 3, we present All-

BuildPlus, a supertree method that takes P and D as its input, and returns all
such ranked semi-labelled trees. Since the number of such trees may be exponential
in the input size, this cannot be achieved in polynomial time; AllBuildPlus runs
in time polynomial in the output size. We show, in Section 4, that AllBuildPlus

can be easily adjusted to have the desirable property that the time between out-
putting one tree in the list and the next, is polynomial in the input size. We remark
here that counting the number of rank semi-labelled trees that ancestrally display
P and preserve D is likely to be computationally hard as it is shown in [2] that, in
general, counting the number of rooted ‘binary’ phylogenetic trees that displays a
given collection of rooted binary phylogenetic trees is #P-complete.

The rest of this section contains some additional preliminaries that are needed
throughout the paper. Firstly, for collections P of rooted semi-labelled trees and

EXTENDING THE LIMITS OF SUPERTREE METHODS 5

D of relative divergence dates, we let L(P) and L(D) denote the union of the label
sets of members of P and D, respectively.

Let T = (T ;φ) be a rooted X-tree. For a vertex u of T , let

C(u) =
⋃

v:u≤T v

φ−1(v).

The set C(u) is called a cluster of T . It follows by the definition of a rooted X-tree
that, for all distinct vertices u and v of T , C(u) 6= C(v). The collection of clusters of
T is denoted by H(T). It is known that T is completely determined by H(T) in the
sense that if H(T) = H(T ′), then T is isomorphic to T ′ (see [10, Theorem 3.5.2]).
Furthermore, T can be efficiently constructed from H(T). Note that if u is a strict
descendant of v then C(u) ⊂ C(v).

The set of clusters of a rooted X-tree induces a special type of set system called
a ‘hierarchy’. In this paper we will call a collection H of non-empty subsets of
X is a hierarchy (on X) if, for all A,B ∈ H, we have A ∩ B ∈ {∅, A,B}. If a
hierarchy H on X contains X , then, up to isomorphism, there is a unique rooted
X-tree T whose set of clusters is H. Furthermore, analogous to the way in which
a rank function is associated to the vertices of a rooted semi-labelled tree, we can
associate a rank function to a hierarchy on X . Let H be a hierarchy on X and let r
be a map from the elements of H (under set inclusion) into the set of non-negative
integers such that if A and B are two members of H and B is a proper subset of A,
then r(A) < r(B). If H contains X , we call (H, r) a ranked hierarchy on X and r

a rank function for H. It follows by the remarks above that ranked hierarchies on
X can be viewed as ranked semi-labelled trees on X . This viewpoint will be freely
used throughout the remainder of the paper.

Lastly, for a ranked hierarchy (H, r) on X and a subset X ′ of X , the restriction
of (H, r) to X ′, denoted (H, r)|X ′, is the ranked hierarchy (H′, r′), where

H′ = {A ∩X ′ : A ∈ H, A ∩X ′ 6= ∅}

and, for all A′ ∈ H′, set

r′(A′) = max{r(A) : A′ = A ∩X ′ and A ∈ H}.

2. BuildPlus

In this section, we present BuildPlus and show that it provides a solution to
Tree Compatibility. We begin by defining a construction for fully labelling the
input and, secondly, a graph that is central to operation of BuildPlus. This graph
contains arcs as well as two types of edges, and extends the analogous graph that
is used in AncestralBuild (see [7]).

Let T = (T ;φ) be a rooted semi-labelled tree on X , where T has vertex set V .
A rooted fully-labelled tree T1 = (T ;φ1) on X1, where X ⊆ X1, is obtained from
T by adding distinct new labels if, for all distinct u, v ∈ V , the following properties
are satisfied:

6 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

x

b g ca a d b f d e

y

x y

Figure 2. A collection P of rooted semi-labelled trees.

x

b g ca a d b f

w1 w2

d e

y

x y

Figure 3. A collection P ′ of rooted fully-labelled trees.

(i) If φ−1(v) is non-empty, then φ−1
1 (v) = φ−1(v).

(ii) If φ−1(v) is empty, then |φ−1
1 (v)| = 1.

(iii) If φ−1(v) is empty, then φ−1
1 (v) 6∈ φ−1

1 (V − {v}).

Loosely speaking, T1 is obtained from T by labelling all non-labelled vertices of T
with exactly one label such that all new labels are distinct. Extending this notion
to a collection P of rooted semi-labelled trees, we say that P1 has been obtained
from P by adding distinct new labels if it has been obtained by adding distinct
new labels to each tree in P so that, for any pair of trees, no two new labels are
the same. For example, the collection P ′ of rooted fully-labelled trees in Fig. 3
has been obtained from the collection P of rooted semi-labelled tress in Fig. 2 by
adding distinct new labels (in particular, w1 and w2).

Now let P be a collection of rooted fully-labelled trees and let D be a collection of
relative divergence constraints. The constraint graph of P and D, denoted G(P ,D),
is the multi-graph that has vertex set L(P)∪L(D), and arc and (partially-labelled)
edge sets that are defined as follows. The blue arc set of G(P ,D) is

{(x, y) : there exists T ∈ P with x, y ∈ L(T) and x <T y},

the red edge set of G(P ,D) is

{{x, y} : there exists T ∈ P with x, y ∈ L(T) and x is not comparable to y under ≤T },

and the blue edge set of G(P ,D) is

{{w, x} labelled yz : div(y, z) < div(w, x) ∈ D}.

Note that a pair of vertices may be joined by more than one blue edge, each corre-
sponding to a different divergence constraint and therefore having a different label.
Now let G be a subgraph of G(P ,D). With regards to G, the in-degree of a vertex
x is the number of arcs directed into x (edges are ignored). A blue component is

EXTENDING THE LIMITS OF SUPERTREE METHODS 7

w1

x

d

a

w2

f

ad

c

g

e

b

y

cy

Figure 4. An example of a constraint graph. Only blue arcs rep-
resenting direct descendants are shown, the blue edges are dashed
with labels, the red edges are omitted.

a maximal connected subgraph of the graph obtained from G by deleting all the
red edges, and considering both the blue edges and blue arcs as undirected edges.
Furthermore, S(G) is the set of vertices of G that have in-degree zero and no in-
cident edges, Er(G) is the set of red edges of G whose end-vertices are in distinct
blue components of G, and Eb(G) is the set of blue edges of G whose labels, yz
say, have the property that either y and z are in distinct blue components, or y or
z is not a vertex of G. To illustrate the constraint graph, let P ′ be the collection
of rooted fully-labelled trees shown in Fig. 3 and let

(1) D = {div(c, y) < div(e, g), div(a, d) < div(b, f)}.

The constraint graphG(P ′,D) is shown in Fig. 4, where for simplicity only blue arcs
representing direct descendants are shown, the blue edges are dashed with labels,
and the red edges are omitted. This example will be extended latter to illustrate
the running of BuildPlus.

For the reader familiar with Build, the algorithm BuildPlus works in a similar
way. In particular, the algorithm attempts to construct a ranked hierarchy on X

(equivalently, a ranked semi-labelled tree onX) that ancestrally displays a collection
P of rooted semi-labelled trees and preserves a collection D of relative divergence
dates beginning with the root and working towards the leaves. Each iteration
either refines the current ranked semi-labelled tree on X or determines that P and
D are not compatible. The basis of this decision is an associated graph which is
always a subgraph of G(P ′,D), where P ′ is a collection of rooted semi-labelled
trees that has been obtained from P by adding distinct new labels. Because the
input to BuildPlus also includes relative divergence dates, an important difference
between Build and BuildPlus is that, as in RankedTree, at each iteration one
must consider all minimal clusters of the currently constructed tree and not just
any one of them.

8 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

We now present BuildPlus.

Algorithm: BuildPlus(P ,D)
Input: A collection P of rooted semi-labelled trees and a collection D of relative
divergence constraints.
Output: A ranked hierarchy (H, r) on L(P) ∪ L(D) that ancestrally displays P and
preserves D, or the statement P and D are not compatible.

begin

Construct a collection P ′ of rooted fully-labelled trees from P by adding distinct
new labels.
k ← 1
G1 ← G(P ′,D)
Let π1 be the partition of the vertex set of G1 induced by the blue components of G1.
if |π1| = 1, then // add root vertex (cluster)
H1 ← {L(P ′) ∪ L(D)}

else // add root vertex plus its children
H1 ← {L(P ′) ∪ L(D)} ∪ π1

r′(L(P ′) ∪ L(D))← 0
end (if-else)
repeat while Gk non-empty

Let G′
k be the graph obtained from Gk by deleting the edges in Er(Gk) and Eb(Gk).

if S(G′
k) is empty, then

return P and D are not compatible and halt

else

Let Gk+1 be the graph obtained from G′
k by deleting the vertices in S(G′

k).
Let πk+1 be the partition of the vertex set of Gk+1 induced by the blue
components of Gk+1.
Hk+1 ←Hk ∪ πk+1

for each subset B in πk which is not in πk+1 do

r′(B)← k // assign rank to finished vertices
end (for)
k ← k + 1

end (if-else)
end (repeat)
H′ ←Hk

(H, r)← (H′, r′)| (L(P) ∪ L(D))
return (H, r)

end.

As an example of the running of BuildPlus, recall the collection P of rooted
semi-labelled trees shown in Fig. 2 and the collection of relative divergence dates (1).
Using the collection P ′ of fully-labelled trees shown in Fig. 3, G1 is shown in Fig. 4
with the red edges missing. Since G1 is a single blue component, π1 = H1 =
{

{a, b, c, d, e, f, g, x, y, w1, w2}
}

. In the first iteration, Er(G1) = ∅, Eb(G1) = ∅, and
S(G′

1) = x. Once x has been deleted, G2 is as shown in Fig. 5, where again only blue
arcs representing direct descendants are shown, the blue edges are dashed with la-
bels, and the red edges are omitted. Hence π2 = {{a, b, d, f, y, w1, w2}, {c}, {e, g}},

EXTENDING THE LIMITS OF SUPERTREE METHODS 9

a, b, d, f, y, w1, w2

d

a

w2

f

ad

c

g

e

c e, g

x 1

d

a

w2

f

ad

w2, b, f

c

w1, a, d

2

1x

w1

yc

y

b

b

y

w1

(a) End of the first iteration.
G2

G3

(b) End of the second iteration.

H2

H3

2

e, g

2

Figure 5. Two iterations of BuildPlus. Only blue arcs repre-
senting direct descendants are shown, the blue edges are dashed
with labels, the red edges are omitted.

and H2 is as shown in Fig. 5. Writing an edge {p, q} as pq, we have that

Er(G2) = {ca, cb, cg, cy, ed, ag, yg, bg}

and

Eb(G2) = {eg},

so S(G′
2) = {y, c, e, g} and π3 =

{

{w2, b, f}, {w1, a, d}
}

. After deleting the vertices
in S(G′

2), we get G3 and H3 as shown in Fig. 5.

Now

Er(G3) = {w1w2, w1b, w1f, w2a,w2d, ab, af, bd, df}

10 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

and

Eb(G3) = ∅.

In this iteration, S(G′
3) = {w1, w2} and G4 has exactly three edges; a blue edge

joining b and f labelled ad, a red edge joining a and d, and a red edge joining
b and f . Thus π4 =

{

{a}, {d}, {b, f}
}

, and the clusters {w1, a, d} and {w2, b, f}
are ranked in this iteration. Cluster {b, f} is ranked in the next iteration, since
a and d are now in separate blue components. This process continues for one
further iteration. It follows that P and D are compatible, and the eventual ranked
semi-labelled tree that is returned by BuildPlus is shown in Fig. 1.

We now show that BuildPlus provides a polynomial-time solution to Tree

Compatibility. We begin with two lemmas. For a rooted semi-labelled tree T ,
let

D(T) = {(a, d) : a, d ∈ L(T) and a <T d}

and

N(T) = {{x, y} : x, y ∈ L(T) and x is not comparable to y under ≤T }.

Lemma 2.1. Let T ′ be a rooted fully-labelled tree on X ′ and let T be a rooted
semi-labelled tree on X, where X ′ ⊆ X. Then T ancestrally displays T ′ if and only
if D(T ′) ⊆ D(T) and N(T ′) ⊆ N(T).

Proof. By definition, it immediately follows that if T ancestrally displays T ′, then
D(T ′) ⊆ D(T) and N(T ′) ⊆ N(T). Therefore, suppose that D(T ′) ⊆ D(T) and
N(T ′) ⊆ N(T). Consider the two rooted semi-labelled trees shown in Fig. 6. For
convenience, we call these trees Type (I) and (II) as shown. To prove the converse,
it suffices to show by [7, Proposition 4.3] that if a, b, c ∈ L(T ′) and T ′|{a, b, c}
is isomorphic to a Type (I) or Type (II) tree, then T |{a, b, c} is isomorphic to a
Type (I) or Type (II) tree, respectively.

Suppose that T ′|{a, b, c} is isomorphic to Type (I) tree. Since T ′ is fully-labelled,
there exists labels y, z ∈ L(T ′) such that y ∈ mrcaT ′(a, b) and z ∈ mrcaT ′(a, c).
Then (z, y), (y, a), (y, b), (z, c) ∈ D(T ′), which implies that (z, y), (y, a), (y, b), (z, c) ∈
D(T). Furthermore, {a, b}, {y, c} ∈ N(T ′) and so {a, b}, {y, c} ∈ N(T). It is
now easily seen that these four 2-tuples in D(T) and two 2-element sets in N(T)
means that T |{a, b, c, y, z} ancestrally displays T ′|{a, b, c, y, z}. It now follows that
T |{a, b, c} is isomorphic to a Type (I) tree. A similar argument shows that if
T ′|{a, b, c} is isomorphic to Type (II) tree as shown in Fig. 6, then T |{a, b, c} is
isomorphic to a Type (II) tree as well. This completes the proof of the lemma. �

The next lemma is an immediate consequence of [6, Lemma 4.2], which is essen-
tially the same statement, but without reference to D.

Lemma 2.2. Let P be a collection of rooted semi-labelled trees and let D be a collec-
tion of relative divergence constraints. Let P ′ be a collection of rooted fully-labelled
trees obtained from P by adding distinct new labels. Then P and D are compatible
if and only if P ′ and D are compatible. Moreover, if (T , r) is a ranked rooted semi-
labelled tree that ancestrally displays P ′ and preserves D, then (T , r)|(L(P)∪L(D))
ancestrally displays P and preserves D.

EXTENDING THE LIMITS OF SUPERTREE METHODS 11

a c

Type (I)

ba

Type (II)

c

b

Figure 6. Two rooted semi-labelled trees.

Theorem 2.3. Let P be a collection of rooted semi-labelled trees and let D be a
collection of relative divergence constraints.

(i) If BuildPlus applied to P and D returns a ranked hierarchy, then this
ranked hierarchy ancestrally displays P and preserves D.

(ii) If BuildPlus applied to P and D returns the statement P and D are not
compatible, then there is no ranked hierarchy that ancestrally displays P
and preserves D.

Proof. By Lemma 2.2, it suffices to prove the theorem for when P is a collection
of rooted fully-labelled trees. To establish (i), suppose that BuildPlus applied
to P and D returns a ranked hierarchy (H, r) on L(P) ∪ L(D). Let (T , r) be the
ranked semi-labelled tree whose ranked hierarchy is (H, r). We first show that T
ancestrally displays P using Lemma 2.1. Let T1 be an element of P , and let a and
b be elements of L(T1). Assume that b <T1

a. Since BuildPlus returns (H, r) and
(b, a) is an arc of G(P ,D), there must be some iteration k in which b and a are in
the same blue component of Gk, and b ∈ S(G′

k). This implies that b <T a. It now
follows that D(T1) ⊆ D(T).

Now assume that a and b are not comparable in T1. Then a and b are connected
by a red edge in G(P ,D). Since BuildPlus returns (H, r), this edge is eventually
deleted, but not until a and b are in separate blue components of some subgraph of
G(P ,D). This implies that in T there is a cluster in which a is an element but b is
not, and there is a cluster in which b is an element but a is not. In particular, a and
b are not comparable in T , and so N(T1) ⊆ N(T). It now follows by Lemma 2.1
that T ancestrally displays T1 and, more particularly, T ancestrally displays P .

To complete the proof of (i), we now show that (T , r) preserves D. Assume that
div(c, d) < div(a, b) is an element of D. Then, in G(P ,D), there is a blue edge
connecting a and b which is labelled cd. Because BuildPlus returns (H, r), this
edge is eventually deleted. Consider the iteration, k say, in which this blue edge is
deleted. Then, in the (k− 1)-th iteration, a and b are in the same blue component
of Gk−1, and either c and d are in separate blue components of Gk−1, or c or d is
not a vertex of Gk−1. In either case, it follows from the description of BuildPlus

that, in (T , r), the most recent common ancestor of c and d has rank k−1, while the

12 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

most recent common ancestor of a and b has rank at least k. Thus (T , r) preserves
div(c, d) < div(a, b) and, more particularly, preserves D.

We now prove (ii). In the proof that follows, we shall view the clusters of T
as the vertices of T . Suppose that there is a ranked semi-labelled tree (T , r) that
ancestrally displays P and preserves D, but suppose that BuildPlus applied to
P and D returns P and D are not compatible. Let k be the iteration at which
this statement is returned by BuildPlus. Let πk = {B1, B2, . . . , Bm} and, for all
i ∈ {1, 2, . . . ,m}, let C(Bi) be the minimal cluster of T that contains Bi. Without
loss of generality, we may assume that r(C(Bi)) ≤ r(C(Bj)) whenever i ≤ j.
Furthermore, suppose that C1, C2, . . . , Cn are the immediate descendants of C(B1)
in T , and let S = B1 −

⋃n

j=1 Cj and C′
j = B1 ∩ Cj .

Now consider G′
k and, in particular, the blue component whose vertex set is

B1. Observe that the sets S,C′
1, C

′
2 . . . , C

′
n partition B1. We next show that S is

non-empty, and that each vertex in S has in-degree zero and no incident edges. To
establish this, first observe that, as (T , r) ancestrally displays P and preserves D,
the following hold in G′

k:

(i) for all i 6= j, there are no blue arcs joining a vertex in C′
i with a vertex in

C′
j ;

(ii) for all i, there are no blue arcs from a vertex in C′
i to a vertex in S;

(iii) for all i, there are no red edges joining a vertex in C′
i to a vertex in S;

(iv) for all i 6= j, there are no blue edges joining a vertex in C′
i with a vertex

in C′
j ; and

(v) for all i, there are no blue edges joining a vertex in C′
i with a vertex in S.

The fact that (i)—(iii) hold is easily seen. To see that (iv) holds, suppose that there
is a blue edge in G′

k that joins a vertex a in C′
i to a vertex b in C′

j , and it is labelled
cd. Because of the existence of this blue edge, c and d are in some common block Bi

of πk. Since (T , r) preserves D and, by choice of B1, we have r(C(B1)) ≤ r(C(Bi))
for all i, it follows that i = j, and so (iv) holds. A similar argument shows that (v)
also holds. Now, either exactly one of S,C′

1, C
′
2 . . . , C

′
n is non-empty in which case,

by choice of C(B1), this must be S, or at least two of S,C′
1, C

′
2 . . . , C

′
n are non-

empty. For the latter case, as B1 is a connected blue component of G′
k, it follows

by (i), (ii), (iv), and (v) that the only way this can happen is if S is non-empty and,
for each C′

i of C′
1, C

′
2 . . . , C

′
n that is non-empty, there is a blue arc from a vertex in

S to a vertex in C′
i. In both cases, S is non-empty. Moreover, if x is an element in

S, then, by (ii), (iii), and (v), x has in-degree zero and no incident edges. But this
means that S(G′

k) is non-empty, contradicting the assumption that, at iteration k,
BuildPlus returns P and D are not compatible. This completes the proof of (ii),
and therefore the proof of the theorem. �

Proposition 2.4. Let P be a collection of rooted semi-labelled trees and let D be
a collection of relative divergence dates. Then the running time of BuildPlus

applied to P and D is polynomial in n and m, where n = |L(P) ∪ L(D)| is the
number of labels in the input, and m = |P| + |D| is the number of constraints in
the input. In particular, the running time is at most O((nm)3).

EXTENDING THE LIMITS OF SUPERTREE METHODS 13

Proof. Let P ′ be a collection of fully-labelled trees that is constructed from P by
adding distinct new labels. In any tree in P , since the only possible vertices that
are labelled with a new label are either the root vertex or a vertex of degree at least
three, the number of such interior vertices is at most one less than the number of
leaves. The number of new labels is at most nm, and constructing P ′ can be done
in time O(nm). Thus to establish the proposition, it suffices to show the running
time of BuildPlus is O(n′2nm), where n′ = |L(P ′) ∪ L(D)|.

In terms of running time, the most expensive parts of BuildPlus are the con-
struction of G(P ′,D) and, at each iteration k, finding Er(Gk), Eb(Gk), S(G′

k), and
πk+1. Since G(P ′,D) has n′ vertices, and we can easily determine whether a given
pair of vertices are connected by each type of edge from the input, G(P ′,D) can be
constructed in time O(n′2nm). Since Gk is a subgraph of G(P ′,D), we can deter-
mine the blue components in time O(n′2) and thus also compute Er(Gk), Eb(Gk),
S(G′

k), and πk+1 in time O(n′2). Furthermore, provided we do not return P and
D are not compatible, each iteration of BuildPlus, successively considers proper
subgraphs of the graph considered in the previous iteration and these subgraphs
always have at least one less vertex. Thus the number of iterations is at most n′.
The proposition now follows. �

3. Listing All Consistent Ranked Hierarchies

The supertree method BuildPlus is useful to determine whether a collection
P of rooted semi-labelled trees and a collection D of relative divergence dates are
compatible. However, if this is the case, then care should be exercised in the
way in which the ranked hierarchy returned by BuildPlus is used. This ranked
hierarchy is simply one example of a ranked hierarchy that is consistent with the
constraints inferred by P and D. It is possible for there to be others, some of
which may be quite structurally different. Such a situation gives rise to an interest
in algorithms that return all ranked hierarchies that ancestrally display P and
preserve D. In this section we present such an algorithm. This ‘listing’ algorithm
is called AllBuildPlus.

Since the number of ranked hierarchies that are consistent with P and D may be
exponential in the size of the input, we cannot hope to always list such hierarchies
in polynomial time. However, the running time of AllBuildPlus is polynomial
in the size of the output. More precisely, the running time of AllBuildPlus is
bounded by p(n,m)N for some polynomial p, where n = |L(P) ∪ L(D)|, m =
|P|+ |D|, and N is the number of ranked hierarchies in the output. While such an
algorithm has been exhibited for instances where the input is just a collection of
phylogenetic trees [4, 8, 9], no algorithm handles input of semi-labelled trees and
relative divergence dates. The algorithm AllBuildPlus permits both types of
input.

To describe AllBuildPlus, we need some further definitions. Throughout these
preliminaries, we will always assume that P and D are compatible collections of
rooted semi-labelled trees and relative divergence dates. Strictly speaking, the

14 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

P =
a d b d c f

D = {div(d, f) < div(d, e)}

1

2

3

ba c d e f

4

3

(H, r)
(H−, r−)

abc
2∗

1

3

4∗

de 4∗

f

Figure 7. A ranked hierarchy (H, r) consistent with constraints
P and D, and its reduced form (H−, r−).

output returned by AllBuildPlus applied to P and D is, in fact, a set of so-
called ‘reduced hierarchies’. This is not a significant change, since the set of all
consistent ranked hierarchies can be easily obtained from this set and, moreover, it
has the possibility of significantly speeding up the running time of the algorithm.
We begin these preliminaries by defining a reduced hierarchy.

Let (H, r) be a ranked hierarchy that ancestrally displays P and preserves D.
Informally, the reduced hierarchy (H−, r−) is the hierarchy formed by truncating
each branch of (H, r) at the highest point below-which the constraints inferred by
P and D have no further influence (see Fig. 7). Formally, the reduced hierarchy
(H−, r−) of (H, r) with respect to constraints P and D is defined as follows. Let U
be the set of maximal elements U in H such that, for all a, b ∈ U , a and b satisfy
the following conditions:

(i) for all trees T in P , {a, b} is not a subset of L(T);
(ii) for all constraints div(c, d) < div(e, f) in D, {c, d} 6= {a, b}; and
(iii) for all constraints div(c, d) < div(a, b) in D, the rank of the minimal ele-

ment of H containing c and d is strictly less than r(U).

For each U ∈ U , let HU be the set of elements H ∈ H for which there exists some
div(c, d) < div(a, b) ∈ D with a, b ∈ U and c, d ∈ H . Set kU to be

kU = max {{r(H) : H ∈ HU} ∪ {r(H) : H ∈ H and U is a proper subset of H}}+1.

Now set

H− = H− {H ′ ∈ H : H ′ is a proper subset of U for some U ∈ U},

and, for all H ∈ H−, set

r−(H) =

{

r(H), if H 6∈ U ;

k∗U , if H ∈ U .

EXTENDING THE LIMITS OF SUPERTREE METHODS 15

def

defabc

(H3, r3) (H−
2 , r

−
2)

1 1

2

cab

Figure 8. The 3-truncation (H3, r3) of (H, r), and the 2-
truncation of (H−, r−).

Remarks.

(i) The value kU is the minimal value that could be assigned to U such that
(H−, r−) is a ranked hierarchy preserving D.

(ii) The star denotes that any possible sub-hierarchy of U , with any ranking
starting at at least kU , will also ancestrally display P and preserve D.

(iii) When dealing with reduced hierarchies, statements such as “all elements
of rank at most k” will be taken to include all elements, starred or not;
the star is simply a flag to highlight the cluster.

(iv) Every minimal element of a reduced hierarchy (leaf) is ranked and starred.
(v) As mentioned above, AllBuildPlus applied to P and D returns the set

of all reduced hierarchies that ancestrally display P and preserve D. Fur-
thermore, the advantage of returning the set of reduced hierarchies over
the appropriate set of ranked hierarchies is that there may be many fewer,
and no information is lost in doing this. For example, if the original data
forced 10 mammals to be in one cluster, but then offered no further in-
formation as to the substructure, there would be more than 231 possible
ranked sub-hierarchies of mammals (see [10], Proposition 2.3.4). How-
ever, AllBuildPlus simply produces a reduced hierarchy in which the
set of mammals is flagged to indicate there is no further restriction on the
structure or ranking of these mammals.

In addition to reduced hierarchies, AllBuildPlus makes use of ‘truncated hi-
erarchies’. For a ranked hierarchy (H, r), the truncated hierarchy (Hk, rk) is the
ranked hierarchy with

Hk = {H ∈ H : r(H) ≤ k − 1} ∪ {H ∈ H : H is maximal such that r(H) ≥ k}

and, for all H ∈ Hk, rk(H) = r(H) if r(H) ≤ k − 1. To illustrate, two truncated
hierarchies are shown in Fig. 8, where (H, r) and (H−, r−) are as shown in Fig. 7.

Before describing AllBuildPlus formally, we first give a brief and informative
description of the algorithm. LetR be the set of reduced hierarchies that ancestrally
display P and preserve D. As in BuildPlus, we first construct a set P ′ of fully-
labelled trees from P by adding distinct new labels. Intuitively, AllBuildPlus

works by essentially computing a rooted tree, TR say, whose vertices consist of
truncated hierarchies. This computation starts with the root, which is the ranked
hierarchy consisting of the set L(P ′)∪L(D) and the null rank function, and works

16 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

its way towards the leaves of TR. The set of leaves of TR is precisely the set of
reduced hierarchies that ancestrally display P and preserve D. Suppose P is a
path v1v2 · · · vkvk+1 from the root of TR to a leaf (H, r). Then k is the maximum
rank of a set in (H, r) and, for all i ∈ {1, 2, . . . , k}, vi corresponds to (Hi, ri).
The construction of TR is breadth first construction, as opposed to a depth first
construction. The advantages of the latter are discussed in the next section. Lastly,
AllBuildPlus uses a subroutine called Augment. For each interior vertex of TR,
this subroutine is used to identify each of its immediate descendants. A further
discussion of Augment is given after the description of AllBuildPlus.

Algorithm: AllBuildPlus(P ,D)
Input: A collection P of rooted semi-labelled trees and a collection D of relative
divergence dates.
Output: The set of reduced hierarchies R on L = L(P) ∪ L(D) that ancestrally
display P and preserve D.

begin

Construct a set P ′ of fully-labelled trees from P by adding distinct new labels.
Construct G(P ′,D).
Let L′ = L(P ′)− L(P).
k ← 1
R ← ∅
R1 ← {({L ∪ L′}, r1)}, where r1 is the null function
repeat while Rk is non-empty
R← R∪ {(H, r) ∈ Rk : for all H ∈ H, r(H) is defined}
R′

k ← {(H, r) ∈ Rk : there exists H ∈ H, r(H) is undefined}
Rk+1 ←

⋃

(H,r)∈R′

k

Augment((H, r), k)

k ← k + 1
end (repeat).
return {(H, r) : there exists (H′, r′) ∈ R, (H, r) = (H′, r′)|L}.

end.

We next describe Augment. Given a truncated hierarchy (H, r) in which the
maximum rank of a set is k − 1, Augment determines the possible choices for
extending this ranked hierarchy so that the maximum rank of a set is k and each
resulting hierarchy still leads to a reduced hierarchy that is consistent with P and
D. To do this, it makes use of the following graph. Let G(H, r) be the subgraph of
G(P ′,D) that has vertex set

V = {x : there exists H ∈ H such that x ∈ H , r(H) is undefined},

and edge and arc sets defined as follows. Let π be the partition of V induced by
the minimal elements of H. The red edge set of G(H, r) consists of those red edges
{a, b} in G(P ′,D) such that a and b are in the same block of π. Likewise, the
blue edge set of G(H, r) consists of those blue edges {a, b} labelled cd in G(P ′,D)
such that c and d are in the same block of π. Lastly, the blue arc set of (H, r)
consists of those blue arcs in G(P ′,D) both of whose endpoints are in V . The set
of unconstrained vertices W (H, r) ⊆ V is the union of those minimal elements in
H in which every member is an isolated vertex in G(H, r) and no member labels a
blue edge in G(H, r). Furthermore, S(G(H, r)) is the set of vertices in V −W (H, r)

EXTENDING THE LIMITS OF SUPERTREE METHODS 17

with in-degree zero and no incident edges. Intuitively, the edge set of G(H, r) is the
subset of edges and arcs of G(P ′,D) corresponding to constraints not yet satisfied.
This subgraph is used for assigning the rank k∗ to all unconstrained elements of
H; computing the set S(G(H, r)) of labels that could be of rank k; and, for each
subset S of S(G(H, r)), computing the possible maximal subsets of rank at least
k + 1 which do not fail any constraints.

In the description of Augment, we write π ≤ π′ if π and π′ are two partitions
on the same set and π′ refines π.

Algorithm: Augment((H, r), k)
Input: A ranked hierarchy (H, r) and an integer k.
Output: A set Q of ranked hierarchies, each of which is a rank one extension of (H, r).

begin

Q ← ∅
G← G(H, r)
W ←W (H, r)
for each subset S of S(G) that contains S(G) ∩ L′ do

GS ← G− (S ∪W)
Let π be the partition of V (G) induced by the minimal elements of H.
Let πS be the partition of V (GS) induced by the blue components of GS .
for each partition π′ of V (GS) with π|V (GS) ≤ π′ ≤ πS and π′ 6= π do

HS,π′ ← H∪ {A : A is a block of π′}
rS,π′(A)← r(A) if A ∈ H
for each subset B in π which is not in π′ do

rS,π′(B)← k

end (for)
for each minimal element H in H which is a subset of Wdo

rS,π′(H)← k∗

end (for)
Q ← Q∪ (HS,π′ , rS,π′)

end (for)
end (for)
return Q

end.

Theorem 3.1 shows that AllBuildPlus does indeed return the desired set of
reduced hierarchies. The running time of AllBuildPlus is considered after the
proof of this theorem.

Theorem 3.1. Let P and D be compatible collections of rooted semi-labelled trees
and relative divergence dates, respectively. Then the set returned by AllBuild-

Plus when applied to P and D is exactly the set of reduced hierarchies that ances-
trally display P and preserve D.

Proof. In order to establish Theorem 3.1, we show that

18 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

(i) every reduced hierarchy that is consistent with P and D is in the set
returned by AllBuildPlus; and

(ii) every hierarchy in the set returned by AllBuildPlus is consistent with
P and D, and is in reduced form.

To prove (i), let (H, r) be a reduced hierarchy that ancestrally displays P and
preserves D, and suppose that the maximum rank of a set in H is t. Let (H′, r′)
be the ranked hierarchy on labels L ∪ L′ obtained from (H, r) as follows. For each
x ∈ L′, x appears in a unique tree Tx in P ′. Let Dx be the set of labels in L that are
descendants of x in Tx, and let Nx be the set of labels in L that are not comparable
to x in Tx. Then Hx is the maximal element of H which contains Dx, but contains
no member of Nx. Set H′ = {H ∪ {x : Hx ⊆ H} : H ∈ H}, and r′(H ′) = r(H ′|L)
for H ′ ∈ H′. Since (H, r) displays P , (H′, r′) is well defined and displays P ′ (and
preserves D). Also (H′, r′)|L = (H, r).

We will show that, for each i ≤ t, (H′
i, r

′
i) is in the set Ri constructed by

AllBuildPlus at iteration i−1. Furthermore, at iteration t+1 of AllBuildPlus,
(H′, r′) is added to the set R. We prove the first part by induction on i. If i = 1,
then, as (H′

1, r
′
1) is the ranked hierarchy consisting of the set L ∪ L′ and the null

rank function, it is clear that the first part holds.

Now suppose that k is an integer with k ≤ t and that the first part holds
for all i such that i < k. Then (H′

k−1, r
′
k−1) in Rk−1. By exhibiting a suitable

choice of S and π′, we will show that (H′
k, r

′
k) is in the set returned by Aug-

ment((H′
k−1, r

′
k−1), k − 1). For the rest of this part of the proof we will denote

G(H′
k−1, r

′
k−1) by G and W (H′

k−1, r
′
k−1) by W , as we are only interested in the

computation of Augment((H′
k−1, r

′
k−1), k − 1),

Let Lk−1 be the set of elements a in L∪L′ such that the minimal element of H′

containing a has rank k − 1, and consider G. Since (H′, r′) is consistent with P ′

and D, each element in Lk−1 is a vertex of G with in-degree zero and no incident
edges. Furthermore, those elements in (H′, r′) ranked (k − 1)∗ are subsets of W ,
and so every such element is ranked (k − 1)∗ in every member of the set returned
by Augment((H′

k−1, r
′
k−1), k − 1). Let S = Lk−1 −W . Then, by the construction

of (H′, r′), S satisfies S(G) ∩ L′ ⊆ S ⊆ S(G).

Let π′ be the set of maximal elements in (H′, r′) with rank at least k. Since
π in the computation of Augment((H′

k−1, r
′
k−1), k − 1) is the partition of V (G)

induced by the set of minimal elements in H′
k−1, it follows that π is the set of

maximal elements in H′ with rank at least k − 1. Therefore π′ is a refinement of
π|V (GS).

To see that πS is a refinement of π′, suppose that there are elements x and y

such that x and y are in separate blocks of π′, but are in the same block of πS in
the computation of Augment((H′

k−1, r
′
k−1), k − 1). Since x and y are in the same

block of πS , they must be in the same blue component of GS . It is easily seen that
without loss of generality, we may assume that x and y are either joined by a blue
edge or a blue arc in GS . Since x and y are in separate blocks of π′, we now deduce
that if x and y are joined by a blue edge in GS , then (H′, r′) does not preserve an

EXTENDING THE LIMITS OF SUPERTREE METHODS 19

element in D, while if x and y are joined by a blue arc, then it does not display one
of the ancestor relationships in D(P ′). This gives a contradiction, hence πS is a
refinement of π′. Furthermore, π′ 6= π. For otherwise, if π′ = π, then we must have
Lk−1 = ∅. This implies that the ranked semi-labelled tree associated with (H′, r′)
must contain an unlabelled vertex v which has rank k − 1, and this vertex must
have at least two immediate descendant vertices. The cluster associated with v is
in π, but the clusters associated with its immediate descendant vertices are in π′;
a contradiction.

We now deduce that with the above choice of S and π′, the ranked hierarchy
(HS,π′ , rS,π′) is a member of Augment((H′

k−1, r
′
k−1), k − 1), and HS,π′ = H′

k and
rS,π′ = r′k. By induction, it now follows that at iteration t, the ranked hierarchy
(H′

t+1, r
′
t+1) is in the set Rt+1 computed by AllBuildPlus. Since the maximum

rank of any element in (H′, r′) is t, (H′
t+1, r

′
t+1) = (H′, r′). Finally, since every

element of H′ is ranked, (H′, r′) is added to R in iteration t + 1. As (H′, r′)|L =
(H, r), this completes the proof of (i).

To prove (ii), first observe that the proof of Theorem 2.3 may be easily adapted to
show that any ranked hierarchy produced by AllBuildPlus ancestrally displays
P and preserves D. Thus to establish (ii), it remains to show that AllBuildPlus

returns only reduced hierarchies. Suppose that (H, r) is a ranked hierarchy that is
returned by AllBuildPlus, but it is not reduced; that is (H, r) 6= (H−, r−). Let
k be the least integer such that there is an element H− ∈ H− with r−(H−) = k∗,
but r(H−) 6= k∗. Now (Hk, rk) = (H−

k , r
−
k). By (i)-(iii), in the definition of reduced

hierarchy,H− ⊆W at the appropriate stage of the computation of AllBuildPlus,
and so r(H−) is set to k∗. This contradiction completes the proof of (ii). �

We now turn our attention to the running time of AllBuildPlus. First, we
bound the running time of Augment in terms of the size of its output.

Lemma 3.2. Let P ′ be a collection of rooted fully-labelled trees and let D be a
collection of relative divergence dates. Let n′ = |L(P ′)∪L(D)| and m = |P ′|+ |D|.
Let (H, r) be a truncated hierarchy in the set Rk that is obtained in the computa-
tion of AllBuildPlus(P ′,D). Then the running time of Augment((H, r), k) is
bounded by p(n′,m)|Q|, where p(n′,m) is a polynomial in n′ and m, and Q is the
set returned by Augment((H, r), k).

Proof. As G(P ′,D) has n′ vertices, it is clear that G(H, r) can be constructed in
polynomial time in n′ and m. Furthermore, determining W (H, r) and S(G(H, r))
can also be done in polynomial time in n′ and m. Now, for each choice of S and π′,
the time taken to construct HS,π′ is polynomial in n′ and m, since we only consider
each element of π′ of which there are at most n′. Also, the time taken to construct
rS,π′ is polynomial in n′ and m, since we only consider each element of HS,π′, of
which there are at most 2n′. Finally, each distinct choice of S and π′, clearly yields
a distinct element of Q. Hence the running time of Augment((H, r), k) is bounded
by p(n′,m)|Q| for some polynomial p in n′ and m. �

Proposition 3.3. Let P be a collection of rooted semi-labelled trees, let D be a
collection of relative divergence dates. Then the running time of AllBuildPlus

20 MAGNUS BORDEWICH, GARETH EVANS, AND CHARLES SEMPLE

applied to P and D is bounded by p′(n,m)|R|, where p′ is a polynomial, n = |L(P)∪
L(D)|, m = |P|+|D|, and R is the set of reduced hierarchies that ancestrally display
P and preserve D.

Proof. As for BuildPlus, since n′ = |L(P)∪L(D)| is at most nm+n, it is sufficient
to show that the running time is bounded by p′′(n′,m)|R|. It is easily checked that
each of the preliminaries in AllBuildPlus can be done in time polynomial in n′

and m. The repeat loop in AllBuildPlus is used to compute Rk from Rk−1 and,
as the maximum rank of any set in a reduced hierarchy in R is 2n′, this repeat is
done at most 2n′ times. In each repeat, the algorithm scans every member of Rk

to determine if it is complete, in which case it is assigned to R, or incomplete, in
which case it is assigned to R′

k and Augment is called. This takes time at most
n′m|Rk| plus the time for calls to Augment. Since |Rk| ≤ |R|, the total time for
the repeat loop is at most 2n′2m|R| plus the time for calls to Augment.

It is clear that the subroutine Augment is called only once for each non-leaf
vertex (Hk, rk) in the tree TR, since the corresponding truncated hierarchy appears
in only one of the sets Rk during the computation of AllBuildPlus. Also, there
is a unique element (Hk−1, rk−1) ∈ Rk−1 such that (Hk, rk) is in the set returned by
Augment((Hk−1, rk−1), k). Now, by Lemma 3.2, the running time of Augment

for a vertex of TR with l descendants is bounded by p(n′,m)l for some polynomial
in n′ and m. Hence the total running time for all calls to Augment is bounded
by p(n′,m)|TR|, where |TR| is the number of vertices in TR. Since TR has |R|
leaves and has depth at most 2n′, this is bounded by 2p(n′,m)n′|R|. We deduce
that the total running time of AllBuildPlus applied to P and D is bounded by
(2p(n′,m)n′ + 2n′2m)|R| = p′(n,m)|R| for some polynomial p′ in n and m. �

4. Listing Hierarchies with Polynomial Delay

In the this section we describe briefly how AllBuildPlus can be easily modified
to output the reduced hierarchies that ancestrally display P and preserve D one at
a time (rather than all together as in AllBuildPlus), so that the time to produce
the first reduced hierarchy, and the time delay between producing one reduced
hierarchy and the next, is bounded by a polynomial in |L(P)∪L(D)| and |P|+ |D|
only. Note that it may still take an exponential amount of time to produce the
entire list of reduced hierarchies.

Recall that AllBuildPlus is effectively a breadth first search of the tree TR,
where R is the set of reduced hierarchies that ancestrally display P and preserve
D. In order to generate the elements of R with only a polynomial time delay
between each output, it is necessary to convert the algorithm to a ‘depth first
search’. In other words, rather than computing the entire set Rk at each stage of
AllBuildPlus, the algorithm would pick one element from Rk and then compute
an appropriate descendant of that in TR. Once a leaf of TR had been reached, the
algorithm would backtrack as far as necessary up the tree to find a vertex with a
descendant not yet considered. By following TR down this new branch until a leaf
is reached, and then repeating the process, the algorithm eventually visits every

EXTENDING THE LIMITS OF SUPERTREE METHODS 21

leaf of TR. The time taken to find the first leaf is the same as the time BuildPlus

takes to run, and hence polynomial in the input size. It requires at most 2n times
as much time and memory to keep track of the path taken through TR, and which
vertices had alternative descendants. Hence the backtracking can be achieved in
polynomial time, and computing the path down a new branch has the same time
bound as computing the original path, which was polynomial. Therefore the delay
between returning one member of R and the next is polynomial in the size of P
and D.

References

[1] A. V. Aho, S. Yehoshua, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions, SIAM J.
Comput. 10 (1981) 405–421.

[2] M. Bordewich and C. Semple, Counting consistent phylogenetic trees is #P-complete, Ad-
vances in Applied Mathematics 33 (2004) 416–430.

[3] D. Bryant, C. Semple and M. Steel, Supertree methods for ancestral divergence dates and
other applications, In: Phylogenetic Supertrees: combining information to reveal the Tree of
Life, O. Bininda-Emonds, Ed., Computational Biology Series, Kluwer, (2004), pp. 129–150.

[4] M. Constantinescu and D. Sankoff, An efficient algorithm for supertrees, J. Classif. 12 (1995)
101–112.

[5] P. Daniel, W. Hordijk, R. D. M. Page, C. Semple, and M. Steel, Supertree algorithms for
ancestral divergence dates and nested taxa, Bioinformatics, 20 (2004) 2355–2360.

[6] P. Daniel and C. Semple, Supertree algorithms for nested taxa, In: Phylogenetic supertrees:
combining information to reveal the Tree of Life, O. Bininda-Emonds, Ed., Computational
Biology Series, Kluwer, (2004), pp. 151–171.

[7] P. Daniel and C. Semple, A class of general supertree methods for nested taxa, SIAM J.
Discrete Math., in press.

[8] M. P. Ng and N. C. Wormald, Reconstruction of rooted trees from subtrees, Discrete Appl.
Math. 69 (1996) 19–31.

[9] C. Semple, Reconstructing minimal rooted trees, Discrete Appl. Math., 127 (2003) 489–503.
[10] C. Semple and M. Steel, Phylogenetics, Oxford University Press, 2003.

School of Computing, University of Leeds, Leeds, United Kingdom

E-mail address: magnusb@comp.leeds.ac.uk

Biomathematics Research Centre, Department of Mathematics and Statistics, Uni-

versity of Canterbury, Christchurch, New Zealand

E-mail address: c.semple@math.canterbury.ac.nz, gee16@student.canterbury.ac.nz

