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Abstract. We describe a method to show a plane quartic over a
number field has no rational points. The method can be adapted
to show that a curve does not have divisors of degree 1 or 2 and
can be generalized to arbitrary smooth projective curves. Our
approach significantly improves on the applicability over previous
2-cover descent methods by not requiring the computation of the
full S-unit group of the étale algebras involved. We illustrate the
practicality with several examples, including examples where we
determine plane quartics to be of index 2 or 4 when the maximum
local index is strictly smaller.

1. Introduction

We describe a practical method to show that a plane quartic curve
X over a number field k has no rational points, even if it has points
everywhere locally. The strategy can also be used to prove that X has
no k-rational divisors of degree 1 or 2.

More specifically, we compute obstructions that arise from 2-cover
descent. The main innovation over previous work [BS09,BPS16,Cre13,
Cre20] is that we do not need to fully determine S-unit groups of num-
ber fields to obtain unconditional results: we are already able to obtain
nontrivial results by knowing some explicit S-units. Our algorithm
generalizes the one developed in [CS23] for hyperelliptic curves, and
we present a much simplified proof of correctness. Like [BPS16], our
approach can be readily generalized to apply to arbitrary smooth pro-
jective curves, although computational costs rise exponentially with
the genus for non-hyperelliptic curves.

In Section 2 we consider an étale algebra L over a number field k
and a finite set of primes S. In Theorem 2.2 we use Hilbert symbols
to establish a pairing which imposes constraints on the image of the
localization map (

L×

k×L×2

)
S

→
∏
v∈S

L×
v

k×
v L

×2
v

.

coming from S-units of square norm.
1
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In Section 3 we explain how to use this to obtain an obstruction to
rational points and/or divisors. We illustrate the argument here for
rational points on a plane quartic X over a number field k. The 28
bitangents give rise to an L and a map Cf : X(k) → L×/k×L×2 as well
as local versions. For a suitable finite set of primes S, the map factors
through the part unramified outside S,

Cf (X(k)) → (L×/k×L×2)S →
∏
v∈S

Cf (X(kv)).

Given suitable S-units of square norm we may be able to show that
the image of the localization map does not intersect

∏
v∈S Cf (X(kv),

in which case we can conclude that Cf (X(k)) is empty and, hence,
that X(k) is empty. This approach contrasts that of [BPS16] where
one must compute generators for all of (L×/k×L×2)S to obtain the
image in the localization. Both approaches require computing the local
images Cf (X(kv)). In Remark 3.7 we describe several ways to reduce
the number of primes where this is required.

In Section 4 we use our Magma [BCP97] implementation [BC26] on
several plane quartic curves over Q occurring in the literature to prove
they have no rational points. In Section 5 we describe how the meth-
ods can be used to determine the index of a plane quartic and give
examples of curves of index 2 or 4 where the maximum local index is
strictly smaller. Finally, in Section 6 we describe how our obstruction
can be interpreted in terms of finite abelian descent and Brauer-Manin
obstructions.

Acknowledgements: The first author acknowledges support from
Canada’s NSERC, RGPIN-2024-04233. The second author was sup-
ported in part by the Marsden Fund administered by Royal Society Te
Apārangi.

2. Étale algebras

Let L/k be an étale algebra over a number field k. Equivalently,
L ≃

∏m
i=1Ki is a product of finite field extensions Ki/k. Let v be a

prime of k with completion kv. Then Lv := L ⊗k kv decomposes as
the product Lv ≃

∏m
i=1

∏
w|v Ki,w of the completions of the Ki at the

primes of Ki above v. We write k for an algebraic closure of k and
L = L⊗ k.

Definition 2.1. A class in L×
v /L

×2
v is unramified if it is represented

by some ℓv = (ℓi,w) ∈ Lv ≃
∏

Ki,w such that all of the extensions

Ki,w(
√
ℓi,w)/Ki,w are unramified. A class in L×

v /k
×
v L

×2
v is unramified if
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it can be represented by a class in L×
v /L

×2
v that is unramified. For a

finite set of primes S of k, we write (L×/k×L×2)S and (L×/L×2)S for
the subgroups of classes whose images in Lv/k

×
v L

×2
v (resp. in L×

v /L
×2
v )

are unramified at all v ̸∈ S.

The norm map NL/k : L → k induces a homomorphism L×/L×2 →
k×/k×2. We write (L×/L×2)N=1 to denote the kernel of this homomor-
phism and (L×/L×2)S,N=1 for its intersection with (L×/L×2)S.
On each factor of Lv ≃

∏m
i=1

∏
w|v Ki,w, the Hilbert symbol defines a

nondegenerate bilinear pairing on the finite dimensional F2-vector space
K×

i,w/K
×2
i,w taking values in {0, 1/2} ⊂ Q/Z. Summing these over the

factors yields a bilinear pairing of finite dimensional F2-vector spaces:

(2.1) ( , )v :
L×
v

L×2
v

× L×
v

L×2
v

→ Q/Z .

Theorem 2.2. Let L/k be an étale algebra over a number field k and
let S be a finite set of primes of k.

(1) The pairings (2.1) induce a bilinear pairing of finite dimensional
F2-vector spaces

⟨ , ⟩S :
∏
v∈S

L×
v

k×
v L

×2
v

×
(

L×

L×2

)
S,N=1

→ Q/Z

by

⟨(ℓv)v∈S,m⟩S =
∑
v∈S

(ℓv, resv(m))v ∈ Q/Z .

(2) The left kernel of the pairing ⟨ , ⟩S is equal to the image of the
restriction map(

L×

k×L×2

)
S

→
∏
v∈S

L×
v

k×
v L

×2
v

.

Proof. We first prove (1). Let v be a prime of k. For ℓ,m ∈ L×
v

we write A(ℓ,m) for the corresponding quaternion algebra over Lv.
The pairing (2.1) equals the invariant of the corestriction to kv, so
(ℓ,m)v = invv CorLv/kv(A(ℓ,m)).
For a ∈ k×

v , the corestriction CorLv/kv(A(a,m)) is the class of the
quaternion algebra A(a,NLv/kv(m)) over kv. If NLv/kv(m) ∈ k×2

v , then
A(a,NLv/kv(m)) has trivial invariant. Thus, the pairing (2.1) induces
a pairing

(2.2) ⟨ , ⟩v : L×
v /k

×
v L

×2
v × (L×

v /L
×2
v )N=1 → Q/Z .

Summing these over the primes in S gives the pairing in the statement.
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Now we prove (2). Let kS/k be the maximal extension unramified
outside S. We consider Galois cohomology of the self-dual Gal(kS/k)-
modules µ2(k) and µ2(L). Their respective Kummer sequences to-
gether with Hilbert’s Theorem 90 give isomorphisms H1(kS/k, µ2) ≃
(k×/k×2)S, and H1(kS/k, µ2(L)) ≃ (L×/L×2)S. Under this identifica-
tion the Poitou-Tate exact sequences for these Gal(kS/k)-modules give
rise to a commutative diagram of linear maps of F2-vector spaces with
exact rows:

(2.3)

(k×/k×2)S
∏

v∈S k
×
v /k

×2
v (k×/k×2)

∗
S 1

(L×/L×2)S
∏

v∈S L
×
v /L

×2
v (L×/L×2)

∗
S ,

i∗ i∗ N∗
L/k

where the ∗ denotes the dual vector space, the vertical maps are induced
by either the inclusion i : µ2(k) → µ2(L) or the norm NL/k : µ2(L) →
µ2, and the second map in the bottom row is given by

(ℓv)v∈S 7→

[
m 7→

∑
v∈S

(ℓv,m)v

]
.

The claimed surjectivity of the map to (k×/k×2)
∗
S follows from the local-

global principle for H2(k, µ2(k)) ≃ Br(k)[2]. For the reader less familiar
with duality theorems in Galois cohomology we note that exactness
of (2.3) can be deduced directly from the well-known Hilbert reciprocity
law.

The restriction map and the pairing ⟨ , ⟩S give maps

(2.4)

(
L×

k×L×2

)
S

→
∏
v∈S

L×
v

k×
v L

×2
v

→
(

L×

L×2

)∗

S,N=1

.

The bottom row of (2.3) maps surjectively onto (2.4), from which it
follows that (2.4) is an exact sequence. This exactness is equivalent to
the claim that the left kernel of ⟨ , ⟩S is the image of the restriction
map. □

2.1. Finding elements in (L×/L×2)S. The applications we have in
mind concern the image of the first map in (2.4). Because of the exact-
ness we can compute it either as an image or as a kernel. As we explain
below, in either case we end up considering S-units in L×, either in or-
der to represent preimages or to represent classes in (L×/L×2)S,N=1

that constrain the image through the pairing ⟨ , ⟩S.
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We assume that S is a finite set of primes of k including all archimedean
primes and all primes above 2. Then there is an exact sequence

0 →
(
O×

L,S/O
×2
L,S

)
→

(
L×/L×2

)
S
→ Cl(OL,S)[2] → 0 ,

where OL,S =
∏m

i=1OK,S is the product of the rings of S-integers of the
direct factors Ki of L and Cl(OL,S) =

∏m
i=1Cl(OKi,S) is the product of

their ideal class groups [PS97, Proposition 12.6].
Let K be one of the number field factors of L. The index calculus

techniques of Buchmann’s subexponential class- and unit-group algo-
rithm [Buc90] apply to determining O×

K,S. We review them here to
explain how partial information can be extracted from the procedure.
Let T be a set of primes (a ‘factor basis’). Assuming S ⊂ T and setting
U = T \ S, there is an exact sequence

1 −→ O×
K,S −→ O×

K,T

ϕ−→
⊕
p∈U

Zp π−→ Cl(OK,S) ,

where the exponent vector ϕ(α) = (ordp(α))p∈U is called a relation. A
set of elements αi ∈ O×

K,T determines a relation matrix M with the

ϕ(αi) as rows. The left kernel of M determines a subgroup of O×
K,S,

generated by the appropriate power products of the αi. A relation
matrix M also determines a subgroup of O×

K,S/O
×2
K,S, given by the null

space of M ⊗ F2, which can be computed using linear algebra over
F2. Doing this for each direct factor Ki of L, we obtain a basis for a
subgroup of O×

L,S/O
×2
L,S. By computing the norms of the αi, we can find

those linear combinations which lie in the subgroup (O×
L,S/O

×2
L,S)N=1 ⊂

(L×/L×2)S,N=1.
For determining the S-unit group and the class group of OK,S one

takes T large enough to ensure that π is surjective (for example if T
contains all primes up to the Minkowski bound, or one of the bet-
ter bounds known to hold conditionally on GRH), and one generates
enough αi to ensure the relations generate the full unit group. For our
application we only need to sufficiently constrain the image of the first
map in (2.4). We can do so with a relation matrix for which the left ker-
nel of M ⊗F2 is sufficiently large to yield a subgroup of (L×/L×2)S,N=1

that under the pairing ⟨ , ⟩ provides sufficient constraints. We don’t
need surjectivity under π or a proof that our subgroup is of index 1.

3. An obstruction to rational points on plane quartics

Let k be a number field with ring of integers Ok and let X/k be a
smooth quartic curve in P2 defined by

X : g(x, y, z) = 0, with g(x, y, z) ∈ Ok[x, y, z].
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of degree 4. For an extension K/k we denote the base change of X to
K by XK and we write X for the base change of X to k.

We use Pic(X) to denote the group of k-rational divisors on X mod-
ulo principal divisors, and use PicX to denote the k-scheme representing
the Picard functor. We use Pici(X) and PiciX to denote the subgroup
or component corresponding to divisor classes of degree i. For an ex-
tension K of k, the rational points PiciX(K) are divisor classes that
are defined over K, while Pic(XK) consists of classes of divisors that
are defined over K. We note that the natural injective map of sets
Pic(XK) → PicX(K) need not be surjective.

We identify X with its image in Pic1X . For a subscheme Y ⊂ PiciX
we introduce a shorthand for the intersection:

Y (K)′ := Y (K) ∩ Pici(XK).

In what follows we mainly consider Y = X and Y = PiciX .
The 28 bitangents to X form a k-scheme ∆ = Spec(L), where L is

an étale k-algebra of degree 28. We write k(X ×∆) for the k-algebra
of rational functions on X ×∆. Given a bitangent δ ∈ ∆(k), let βδ ∈
Div(X) denote its set of contact points, viewed as a divisor of degree
2 on X. These piece together to give a divisor β ∈ Div(X ×∆). Fix a
linear form ux+vy+wz with u, v, w ∈ OL defining the generic bitangent
and a nonzero linear form h ∈ k[x, y, z]. Then f := (ux+vy+wz)/h ∈
k(X ×∆)× is a function whose divisor is div(f) = 2β−κX ×∆, where
κX is a canonical divisor on X. Algorithms for computing these data
from the quartic form g(x, y, z) as well as the discriminant of g(x, y, z)
are described in [BPS16, Section 12].

Lemma 3.1. The function f ∈ k(X ×∆)× defines, functorially in the
extension K/k, homomorphisms

Cf : Pic(XK) →
(L⊗K)×

K×(L⊗K)×2
,

sending the class of a divisor D =
∑

P∈X(K) nPP ∈ Div(XK) with

support disjoint from the zeros and poles of f to the class of f(D) =∏
P f(P )nP in (L⊗K)×/K×(L⊗K)×2.

Proof. The rule in the statement defines a homomorphism on the sub-
group of Div(XK) of divisors with support disjoint from the support
of f . Using Weil reciprocity one checks that f(D) depends only on the
class of D in Pic(XK). Since every divisor on XK is linearly equivalent
to one whose support is disjoint from the support of f , the homomor-
phism extends in a unique way to Pic(XK). See [BPS16, 6.3.2] and
[Cre20, Lemma 4.3] for more details. □
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Definition 3.2. Let i ≥ 0, let S be a finite set of primes of k,
and let b1, . . . , bn ∈ O×

L,S be elements of square norm and let B ⊂
(L×/L×2)S,N=1 be the subgroup they generate. For Y ⊂ PiciX we de-
fine

VB,S(Y ) :=

{
(ℓv) ∈

∏
v∈S

L×
v

k×
v L

×2
v

:
∀ b ∈ B , ⟨(ℓv), b⟩S = 0, and

∀ v ∈ S , ℓv ∈ Cf (Y (kv)
′)

}
.

Theorem 3.3. With the notation of Definition 3.2, assume that for
all v /∈ S the image of Cf : Y (kv)

′ → L×
v /k

×
v L

×2
v is unramified. Then

Cf (Y (k)′) ⊂ VB,S(Y ), and hence Y (k)′ is empty if VB,S(Y ) is empty.
Furthermore, if VB,S(X) = ∅ then X(k) = ∅.

Proof. By assumption the image of Cf : Y (k)′ → L×/k×L×2 is unram-
ified outside S. By Theorem 2.2 we have the following commutative
diagram of set maps whose bottom row is an exact sequence of F2-
vector spaces:

Y (k)′
∏
v∈S

Y (kv)
′

(
L×

k×L×2

)
S

∏
v∈S

L×
v

k×
v L

×2
v

(
L×

L×2

)∗

S,N=1

.

Cf ∏
Cf

∏
resv

The second map in the bottom row is induced by ⟨ , ⟩S. It follows that
the image of any x ∈ Y (k)′ in

∏
v∈S

L×
v

k×v L×2
v

must lie in VB,S(Y ). Hence,

if VB,S(Y ) = ∅, then we must have Y (k)′ = ∅.
Note that points onX are the unique effective representatives in their

degree 1 divisor class, so X(k) = X(k)′, giving us the last claim. □

Algorithm 3.4.
Input: g ∈ Ok[x, y, z], the k-algebra L, a set S, b1, . . . , bn ∈ O×

L , and
Y as in Definition 3.2.
Output: The set VB,S(Y ).

(1) Compute bases for V =
∏

v∈S L
×
v /k

×
v L

×2
v andW =

∏
v∈S(L

×
v /L

×2
v )N=1

as well as a function representing the map L× →
∏

v∈S L
×
v /L

×2
v .

(2) Find the matrix representing the pairing ⟨ , ⟩S : V ×W → Q/Z
of Theorem 2.2 with respect to these bases.

(3) For each i = 1, . . . , n, find the image of bi in W and its orthog-
onal complement V i ⊂ V with respect to the pairing.

(4) Let V0 =
⋂n

i=1 V
i.



8 NILS BRUIN AND BRENDAN CREUTZ

(5) For each v ∈ S compute the image Iv of Cf : Y (kv)
′ → L×

v /k
×
v L

×2
v .

(6) Return VB,S(Y ) = V0 ∩
∏

v∈S Iv.

Remark 3.5. We comment on various steps in the algorithm

(1) This is a standard operation. For instance, in Magma this is
accomplished with pSelmerGroup. The Norm map L×

v /L
×2
v →

k×
v /k

×2
v can be computed by taking norms of elements repre-

senting the basis elements.
(2) We compute Hilbert symbols between pairs of basis elements.

(3), (4) These steps reduce to linear algebra over F2.
(5) We use the algorithm of [BPS16, 12.6.7].

Remark 3.6. If S contains all real or dyadic primes, all primes of bad
reduction for the model g(x, y, z) = 0, and all primes below primes
of bad reduction for the model ux + vy + wz = 0 of the generic bi-
tangent, then by [BPS16, Lemma 12.13] we have that the image of
Cf : Pic(X) → L×/k×L×2 lies in the unramified outside S subgroup.
Thus, Theorem 3.3 applies and Algorithm 3.4 may allow one to com-
pute that Y (k)′ is empty.

Remark 3.7. In practice one can often find a smaller set S than that
mentioned in Remark 3.6. Moreover, if the subgroup B is unramified
at some prime v ∈ S, then it may be possible to avoid computing the
full local image at v in Step 5 of the algorithm.

(1) The linear form ux+ vy + wz ∈ OL[x, y, z] with divisor 2β ×∆
(the generic bitangent) is only determined up to scaling by an element
of L×. The map Cf in Lemma 3.1 depends on the choice of scalar, but
the restriction of Cf to Pic0(XK) does not. By factoring the OL-ideal
⟨u, v, w⟩ and finding generators for principal ideals supported on its
prime factors one may be able to scale ux+ vy + wz so that the ideal
generated by its coefficients contains fewer or smaller primes.

(2) If v is an odd prime such that the Tamagawa number of the Jaco-
bian J = Pic0X is odd, then the image of Cf : Pic0(Xkv) → L×

v /k
×
v L

×2
v is

unramified. This follows from [BPS16, Lemma 7.1 and Lemma 10.5(a)].
For such primes it follows that for any i ≥ 0, the image of Pici(Xkv)
is contained in a coset of the unramified subgroup of L×

v /k
×
v L

×2
v . In

particular, one can check if the image is unramified by computing the
image of a single divisor class.

(3) Suppose v is an odd prime such that the Tamagawa number is
odd and the subgroup B ⊂ (L×/L×2)S is unramified at v. In this case it
is not necessary to compute the full image of Cf : Y (kv)

′ → L×
v /k

×
v L

×2
v .

Indeed, B is orthogonal to the unramified subgroup and Cf (Y (kv)
′) is

contained in a coset of this. So the pairings ⟨Cf (xv), resv(b)⟩v in (2.2) do
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not depend on xv ∈ Y (kv)
′. This means that VB,S(X) is either empty

or its image in L×
v /k

×
v L

×2
v is the entire image Cf (Y (kv)

′). Knowing the
image of a single point in Y (kv)

′ will allow us to distinguish these cases.
Particularly for large primes where computing the local image may be
expensive, this can dramatically improve efficiency of the algorithm.

3.1. Generalization to arbitrary curves. Algorithm 3.4 above can
be generalized to any smooth, projective and geometrically irreducible
curve X/k of genus at least 2 as follows.

Hyperelliptic Curves: If X is hyperelliptic of genus g and has points
in all completions of k, then there is a degree 2 map X → P1, which
we may assume is not ramified at ∞ ∈ P1. Then X has an affine
model of the form y2 = h(x) with h(x) ∈ Ok[x] of even degree. Let
∆ = Spec(L) denote the k-scheme of ramification points of the map
X → P1, so L = k[x]/(h(x)) and let f = (x− θ) ∈ k(X ×∆) where θ
denotes the image of x in L. In this case [L : k] = 2g + 2.

Nonhyperelliptic Curves: Let ∆ = Spec(L) denote the k-scheme
of odd theta characteristics on X. These are classes in Pic(X) of di-
visors βδ ∈ Div(X) such that 2βδ lies in the canonical class. Thus,
there is a function f ∈ k(X ×∆)× with divisor div(f) = 2β −D ×∆
for some D ∈ Div(X) representing the canonical class. In this case
[L : k] = 2(g−1)(2g − 1).

In both cases the data (2,∆, [β]) defines a ‘fake descent setup’ for X
(See [BPS16, Definition 6.7]). Lemma 3.1 goes through as stated using
the function f ∈ k(X × ∆). It is not difficult to show in the general
situation that there is an explicitly computable finite set S of primes of
k for which the local images at primes not in S are all unramified. Thus,
with the obvious modifications, one obtains an algorithm that takes as
input a subgroup B ⊂ (L×/L×2)S,N=1 and computes a (possibly empty)

subset VB,S(Y ) ⊂
∏

v L
×
v /k

×
v L

×2
v which contains the image of Y (k)′. In

the hyperelliptic case, this is essentially [CS23, Algorithm 5.1]. The
proof of correctness given there involves the Brauer group of X, which
we have thus far avoided here. In Section 6 we relate VB,S(Y ) from
Definition 3.2 to the descent and Brauer-Manin obstructions.

4. Examples of obstructions to rational points on
quartic curves

Our implementation of the algorithm and code verifying these ex-
amples can be found at [BC26].
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4.1. An example from [BPS16] revisited. The following was con-
sidered in [BPS16, Prop. 12.20] where it was proved that X(Q) = ∅
conditionally on GRH. As they note, removing the conditional part
following their approach would require verifying the class group com-
putation of the integer ring of a degree 28 number field with Minkowski
bound exceeding 1022. By way of contrast the approach described in
this paper gives the same result unconditionally.

Example 4.1. Let X be the curve in P2
Q defined by

x4 + y4 + x2yz + 2xyz2 − y2z2 + z4 = 0.

Then for all v ≤ ∞ we have X(Qv) ̸= ∅, but X(Q) = ∅.
Proof. One easily checks that X(R) ̸= ∅ and that X(Qv) ̸= ∅ for
v < 37 using Hensel’s lemma. The discriminant of this quartic form is
−28 · 52 · 1361 · 97103. In particular, the discriminant has valuation at
most 1 for all primes larger than 37. So, it follows from [BPS16, Lemma
12.14] that X(Qv) ̸= ∅ for all v ≥ 37. Hence X is locally soluble.

The bitangent algebra L of X is a degree 28 number field, with ring
of integers OL of discriminant 230 · 510 · 13616 · 971036. We find a linear
form ux+vy+wz ∈ OL[x, y, z] defining the generic bitangent, such that
the OL-ideal ⟨u, v, w⟩ is supported on primes above primes in the set
S0 = {∞, 2}. Therefore the set S = {∞, 2, 5, 1361, 97103} satisfies the
conditions in Theorem 3.3. To prove X(Q) = ∅, we compute the set
VB,S(X) where B is a subset of (O×

L,S0
/O×2

L,S0
)N=1 ⊂ (L×/L×2)S,N=1.

We obtain generators for B from the relation matrix obtained when
computing the conditional class group ofOL as described in Section 2.1.

The Tamagawa numbers at 1361 and 97103 are odd since the dis-
criminant has valuation 1 there. The Tamagawa number at p = 5 is
also odd, as can be verified by computing the component group of a
regular model of X using Magma’s intrinsic RegularModel. Following
Remark 3.7(2) we check that Cf (X(Qv)) is contained in the unrami-
fied subgroup. It follows that for any (ℓv) ∈

∏
v∈S Cf (X(Qv)) and any

b ∈ B we have ⟨(ℓv), b⟩S = ⟨ℓ2, b⟩2 + ⟨ℓ∞, b⟩∞.
We compute the images of X(R) and X(Q2) under Cf using the

algorithm of [BPS16, 12.6.7]. The map Cf is constant on X(R) since
X(R) consists of a single connected component. We find 4 values in
the image of Cf : X(Q2) → L×

2 /Q×
2 L

×2
2 . For each of the four ele-

ments (ℓ2, ℓ∞) ∈ Cf (X(Q2))×Cf (X(R)) we find some b ∈ B such that
⟨ℓ2, b⟩2+ ⟨ℓ∞, b⟩∞ = 1/2. It follows that VB,S(X) = ∅ and so X(Q) = ∅
by Theorem 3.3. □

4.2. A database of plane quartics of small discriminant. The
database described in [Sut19] contains 82241 smooth plane quartic
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curves over Q with discriminant less than 107. Among these there
are 148 curves that are everywhere locally solvable, but contain no Q-
rational points of small height. Using the algorithm described in this
paper we found an obstruction to the existence of rational points for
over 90% of these, yielding 135 plane quartic curves that are coun-
terexamples to the Hasse principle. This leaves only 13 curves in the
database where the techniques described in this paper are not able to
decide on existence of rational points. Equations for these curves can
be found in [BC26, BMQexamples.m].

We initially computed VB,S(X) for each of the 148 curves, taking S
to be the minimal set of primes satisfying the conditions of Theorem 3.3
and S0 ⊂ S the primes above 2 and those where the Tamagawa number
is even. We computed the set B ⊂ (L×/L×2)N=1,S0 , with equality
conditional on GRH. This computation took approximately 24 hours
using eight 2.6GHz CPUs (67 hours cpu time - parallelization was used
for generating the relation matrices, but the rest was carried out using
a single core) and found obstructions for 131 of the curves. For the
17 curves remaining we ran the algorithm again now taking S and S0

to include additional primes up to 5000. This found four additional
curves with an obstruction.

4.2.1. Using good primes. The largest ‘good prime’ which played a de-
cisive role when rerunning the algorithm on these 17 curves was v = 11,
for the curve

X : x4 + xy3 + 4y4 + x3z + 2x2z2 − 2xyz2 − 4y2z2 + xz3 + z4 = 0

of discriminant 6037072 = 24 ·127 ·2971. For this curve, the Tamagawa
numbers are all odd and we found a function f such that the local
images of Cf are unramified at all odd primes. With S the set of
primes above {∞, 2, 127, 2971}, S0 the set of primes above {2,∞}, and
B a subgroup of (L×/L×2)N=1,S0 equal to the whole group conditionally
on GRH, we found VB,S(X) ̸= ∅. However, when including the primes
above 11 in S and S0 we found VB,S(X) = ∅. A geometric explanation
of this is that there is a torsor Z → X of type λ∆ which is locally
soluble at all primes other that v = 11 (These torsors are described in
Section 6.1 below).

4.2.2. Testing. We have also run our code on thousands of curves in
the database that do have obvious rational points and checked that

the images of these rational points under X(Q)
Cf−→ (L×/k×L×2)S

resS−→∏
v∈S L

×
v /k

×
v L

×2
v land in the computed set VB,S(X).
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5. Computing the index of a plane quartic

The index of a variety X over a field K is the GCD of the degrees
of the closed points on X. If X/K is a smooth geometrically integral
plane quartic curve the index divides 4. It is equal to 1 if and only
if Pic1(X) ̸= ∅ and equal to 4 if and only if Pic2(X) = ∅. If one has
Pic1(X) = ∅, then the index may be either 2 or 4.

Lemma 5.1. Let X/K be a smooth plane quartic curve of index I(X)
over a field K.

(1) If I(X) = 1, then there is a closed point of degree 1 or 3 on X.
(2) If I(X) = 2, then there is a closed point of degree 2 or 6 on X.

Proof. If I(X) = 1, then X contains a K-rational divisor D of degree 1.
Then 3D has degree 3 and is linearly equivalent to an effective divisor
by Riemann-Roch. This divisor is either a closed point of degree 3 or
contains a closed point of degree 1 in its support. If I(X) = 2, then X
contains a K-rational divisor D of degree 2. Then D + κX has degree
6 and is linearly equivalent to an effective divisor, again by Riemann-
Roch. Either this is a closed point of degree 6 or contains a closed point
of degree 2 in its support. Note that it cannot contain any divisors of
odd degree in its support because the index is 2. □

For a local fieldK, there are only finitely many extensions ofK of any
given degree. Using Hensel’s lemma one can check for rational points
over these extensions. This gives a practical algorithm to compute
the index of a plane quartic curve over a local field. Given a plane
quartic curve over a global field, one can compute the indices of X
over all of the completions (note that the index is 1 for all primes of
good reduction greater or equal to 37 by Hensel’s Lemma and the Weil
bounds). The maximum local index gives a lower bound for the global
index. The obstruction sets described above allow us in many cases to
obtain a lower bound for the index that is larger by a factor of 2.

Proposition 5.2. Let X/k be a smooth quartic curve over a num-
ber field k and B, S as in Algorithm 3.4 satisfying the conditions of
Theorem 3.3.

(1) If the maximum local index of X is 1 and VB,S(Pic
1
X) = ∅, then

I(X) ∈ {2, 4}.
(2) If the maximum local index of X is 2 and VB,S(Pic

2
X) = ∅, then

I(X) = 4.

Remark 5.3. If the maximum local index is 1, then VB,S(Pic
2
X) ̸= ∅.

The reason for this is as follows. If Dv ∈ Pic1(Xkv), then Cf (2Dv) = 0



EXPLICIT BRAUER-MANIN OBSTRUCTIONS ON PLANE QUARTICS 13

and Pic2(Xkv) = 2Dv +Pic0(Xkv), so the image of Pic2(Xkv) under Cf

will always contain 1. Then 1 ∈ VB,S(Pic
2
X) ̸= ∅.

The next lemma is helpful in computing the local images Cf (Pic
2(Xkv))

at primes v where the index is 2.

Lemma 5.4. Let X/K be a smooth quartic curve of index 2 over a
p-adic field K. Then the image of Pic0(X) in Pic0X(K)/2Pic0X(K) is a
subgroup of index 2.

Proof. Let I be the index of X. To ease notation let J = Pic0X and
J1 = Pic1X , which is a torsor under J . The period P of X is the order
of J1 in the group H1(K, J) and this integer divides I. Since K is a
p-adic field, [Lic69] gives that I = P , except possibly when (g−1)/P is
odd. In our case the genus g is 3, so we cannot have P = 1 and I = 2.
Hence I = P = 2.

The Tate pairing J(K)/2J(K) × H1(K, J)[2] → Br(K)[2] is non-
degenerate. Since J1 is a nontrivial element in H1(K, J)[2], the map
Θ: J(K)/2J(K) → Br(K)[2] given by pairing with the class of J1 is
nonzero. By the proof of [Lic69, Proof of Corollary 1] this map sits in
an exact sequence

0 −→ Pic0(X)/2 −→ J(K)/2J(K)
Θ−→ Br(K) .

We conclude that the image of Pic0(X) in J(K)/2J(K) has index 2,
since Br(K)[2] has order 2. □

5.1. Examples.

5.1.1. Local index 4. In the database of plane quartic curves over Q
described in [Sut19] there is just one curve with max local index 4
(hence also global index 4). This is the curve of discriminant 2201024.
There is a unique prime (v = 2) where the local index is 4, hence this
curve is ‘odd’ in the sense of [PS99], meaning that Pic2X represents a
nontrivial element in the Tate-Shafarevich group of its Jacobian and
this group has odd 2-rank.

5.1.2. Local index 2. There are 479 curves in the database with max
local index 2, of which all but 15 have obvious quadratic points (hence
have global index 2). To find ‘obvious’ quadratic points we searched

for points on X of small height over fields Q(
√
d) with |d| < 200. In

contrast to the situation for Q-points where the lack of obvious points
gives high confidence that there are in fact no points, it is plausible that
some of these 15 curves have quadratic points over larger quadratic
fields. The following example is one of the 15 for which the methods
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described in this paper can prove that the global index is in fact 4,
despite there being no local obstruction to having index 2.

Proposition 5.5. Let X ⊂ P2
Q be the curve given by the vanishing of

x4 + x3y + 4x2y2 + 2xy3 + 3y4 + 2x3z + 2x2yz + 2xy2z

+ 3y3z + x2z2 + 7xyz2 + 3y2z2 − 4xz3 − 6yz3 + 2z4

Then X is a smooth genus 3 curve of index 4, but for every prime
v ≤ ∞ the index of XQv is at most 2.

Proof. It is straightforward to verify that X(Qv) ̸= ∅ for all v ̸∈ {2,∞},
and one finds points over quadratic extensions of Qv for v ∈ {2,∞}.
Hence there is no local obstruction to having index 2. We will use
Algorithm 3.4 to show that Pic2(X) is empty. Proposition 5.2 then
applies to show that X has index 4.

The bitangent algebra splits as a product L = Q(
√
−5)×K4×K6×

K16, where Ki is a field of degree i over Q. The discriminant of X is
7331200 = 27 · 52 · 29 · 79 and we find a linear form defining the generic
bitangent such that the ideal generated by its coefficients is supported
at the primes dividing the discriminant.
For the primes v ∈ {5, 29, 79}, Pic1(XQv)) ̸= ∅, so the local images

Cf (Pic
2(XQv)) must contain 1 by Remark 5.3. The Tamagawa numbers

at these primes are odd, so the images of Pic2(XQv) are contained in
some coset of the unramified subgroup by Remark 3.7. Since these
cosets contain 1, these images must be unramified. Since X(R) = ∅,
we have that Piceven(XR) is generated by the classes of divisors that
are pairs of conjugate C-points. Hence the image of Cf : Pic2(XR) →
(L ⊗ R)×/R×(L ⊗ R)×2 is trivial. In the algorithm, we can take B ⊂
(L×/L×2){2,∞},N=1 and avoid computing local images at the primes
other than v = 2.
Let us now describe the computation of the local image Cf (Pic

2(XQ2)).
First, we check that X has no points of degree 3 over Q2. This can be
done by enumerating the finitely many degree 3 extensions and using
Hensel’s lemma to check local solubility for each. We conclude that
Pic1(XQ2) = ∅ and, hence, that the index of XQ2 is 2.

By considering the action of Galois on the bitangents we deduce
that J(Q2)[2] has order 2

2. It follows from [BPS16, Remark 11.6] that
J(Q2)/2 has order 25. By Lemma 5.4 we have that Pic0(XQ2)/2 has
order 24. The image of Pic2(XQ2) is a coset of this, so also has size 24.
We then compute the images random elements of Pic2(XQ2) under the
map Cf until their affine span is of size 24.
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Since the local images are unramified at odd primes and trivial at R,
the pairing between B = (L×/L×2){2,∞},N=1 and

∏
v∈S Cf (Pic

2(XQv))

reduces to the pairing of B with Cf (Pic
2(XQ2)). An explicit computa-

tion with Hilbert symbols checks that every element of Cf (Pic
2(XQ2))

pairs nontrivially with some element of B under ⟨ , ⟩2. We thus con-
clude that VB,S(Pic

2
X) is empty and so Pic2(X) = ∅ by Theorem 3.3.

Hence the index of X is 4. □

Remark 5.6. In the proof above, Lemma 5.4 allowed us to obtain a
sharp upper bound for the size of the local image. In turn, this allows
us to compute the local image by considering random points and the
image they span. Without a sharp upper bound, one would have to
compute the image systematically, which may have been impractical.

5.1.3. Local index 1. The remaining 81751 curves in the database have
maximum local index 1. All but 117 of these have obvious rational or
cubic points (and hence have global index 1). To find ‘obvious’ cubic
points we searched for points of small naive height over cubic fields
of absolute discriminant at most 4000. Among these 117, all but one
have an obvious quadratic or sextic point (and hence have global index
in the set {1, 2}). The following is an example of one of these where
we can prove that the global index is 2, despite there being no local
obstruction to having index 1.

Proposition 5.7. Let X ⊂ P2
Q be the curve given by the vanishing of

x4 + 3x2y2 − xy3 + 3y4 + 3x3z + 3x2yz + 4xy2z + 6y3z

− x2z2 + 5xyz2 − 2y2z2 − 4xz3 − 5yz3 + 2z4 .

Then XQv has index 1 for all primes v, but X has index 2.

Proof. This curve has Qv-points for all v ≤ ∞, so the local indices are
all 1. It has the degree 2 point (−

√
3 − 1 : 0 : 1), so the index is at

most 2.
The bitangent algebra of X is a degree 28 number field L. The

discriminant of F is 2560173 = 569 · 4517. We find a linear form
ux + vy + wz ∈ OL[x, y, z] defining the generic bitangent such that
the ideal ⟨u, v, w⟩ is supported on primes above 2953. Hence the set
S = {∞, 2, 569, 2953, 4517} satisfies the conditions of Theorem 3.3.
Moreover, the local images Cf (Pic

1(XQv)) are contained in a coset of
the unramified subgroup for v ̸= 2,∞. We compute a subgroup B ⊂
(L×/L×2){2,∞},N=1, equal to the whole group conditionally on GRH.

The image of Pic1(XR) is equal to the image of X(R), which consists
of two connected components. Since Cf is locally constant, we compute
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the image of Pic1(XR) by computing Cf (x) for one x ∈ X(R) on each
component. For v = 2, the Galois action on the bitangents shows that
J(Q2) = 0, and so by [BPS16, Remark 11.6] the size of Cf (Pic

1(Q2))
is bounded above by 23. We find degree 1 divisors on XQ2 supported
on closed points of degree 1 and 2 whose images have an affine span
of size 23. Thus we have computed the full local image of Pic1(XQ2).
We can then use Remark 3.7 to compute VB,S(Pic

1
X) without having

to compute the full local image at the other primes of S. We find that
VB,S(Pic

1
X) = ∅ and so X has index 2 by Proposition 5.2. □

Remark 5.8. It follows from Corollary 6.3 below that, for the curve X
in Proposition 5.7, we have that Pic1X represents a nontrivial element
in the Tate-Shafarevich group X(Pic0X)[2] and that #X(Pic0X)[2] ≥ 4.

Remark 5.9. It should be possible to also compute VB,S(Pic
1
X) for the

other 116 curves with max local index 1 and no obvious odd degree
points, but we have not yet done so. The main obstacle is the compu-
tation of the local images Cf (Pic

1(XQv)). As described in [BPS16] this
can be done by computing the local images of X(K) for all extensions
K/Qv of degree up to 3. One can obtain an upper bound for the size
of the image from the Galois action on J(Qv)[2] and then compute the
images of random points until they span a space of the correct size.
However, this upper bound need not always be sharp, in which case
one would have to compute the full image of X(K) for all extensions
K/Qv of degree up to 3, which may be impractical in some cases.

6. Brauer and Selmer sets

Let X/k be a smooth, projective and geometrically irreducible plane
quartic curve over a number field and Y ⊂ PiciX a smooth closed sub-
scheme such that Pic0Y = Pic0X . This holds for example if Y = X or
Y = PiciX . In this section we explain how the set VB,S(Y ) computed
in Algorithm 3.4 is related to finite abelian descent and Brauer-Manin
obstructions. This section is not needed to prove correctness of the
algorithm or for the examples above (other than in Remark 5.8), but
provides some context for method as well as insight into which elements
in (L×/L×2)S,N=1 are (or are not) useful for computing the obstruction.

6.1. Fake descent setups and Selmer sets. As described in Sec-
tion 3.1, the data we consider for defining VB,S(Y ) gives rise to a fake
descent setup (n,∆, [β]) in the sense of [BPS16, Definition 6.7], with
n = 2. As in [BPS16, Section 6.4] this gives rise to a Galois module
E = (Z/nZ)∆deg 0 and an exact sequence 0 → R → E → J∨[n] → 0,

where J∨ = Pic0X = Pic0Y and R is the kernel. Dualizing gives an exact
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sequence 0 → J [n] → E∨ → R∨ → 0, where J = Alb0
X = Alb0

Y is the
Albanese variety. Let λ∆ : E → J∨[n] → PicY be the composition.

In the language of [Sko01, Chapter 6], λ∆ is a type map. A Y -torsor
of type λ∆ is a torsor π : Z → Y under E∨. Since the map λ∆ has non-
trivial kernel R, the torsors of type λ∆ are not geometrically connected.
The k-scheme π0(Z) of connected components of a torsor of type λ∆ is
a torsor under R∨, and each geometric component of Z is an n-covering
of Y , a geometrically connected torsor Z ′ → Y under J [n] whose type
is the map J∨[n] → PicY .

The torsors of type λ∆ cut out a subset of the adelic points, Y (Ak)
λ∆ =⋃

π(Z(Ak)), the union ranging over all torsors π : Z → Y of type
λ∆. Every rational point on Y lifts to some torsor of type λ∆, and so
Y (k) ⊂ Y (Ak)

λ∆ . It follows that if Y (Ak)
λ∆ = ∅, then Y (k) = ∅. In

this case, one says there is an obstruction to the existence of rational
points on Y coming from torsors of type λ∆. This is a particular case
of the finite abelian descent obstruction.

Torsors of type λ∆ are classified by H1(k,E∨). By taking Galois
cohomology of 1 → µn → µ∆

n → E∨ → 1 and Hilbert’s Theorem 90 we
get an injective map L×/k×L×n → H1(k,E∨). If Y (kv)

′ = Y (kv) for
all primes v, then all torsors with points everywhere locally lie in the
image. With

Self (Y ) := {ℓ ∈ L×/k×L×2 : resv(ℓ) ∈ Cf (Y (kv)
′) for all v} .

from [BPS16, Definition 9.4] and [Cre20, Definition 5.1] we have that
Self (X) parameterizes the set of torsors π : Z → X of type λ∆ such
that Z(kv) ̸= ∅ for all primes v.

Proposition 6.1. If Self (Y ) = ∅, then Y (k)′ = ∅. Moreover, if
Y (kv)

′ = Y (kv) for all primes v, then Self (Y ) = ∅ if and only if
Y (Ak)

λ∆ = ∅.
The following relates VB,S(Y ) to the Selmer set.

Proposition 6.2. Let S,B, VB,S(Y ) be as in Algorithm 3.4. Assume
that the images of Cf : Y (kv)

′ → L×
v /k

×
v L

×2
v are unramified at all

primes not in S. The image of Self (Y ) under the restriction map
L×/k×L×2 →

∏
v∈S L

×
v /k

×
v L

×2
v is contained in VB,S(Y ).

Proof. By assumption Self (Y ) is contained in (L×/k×L×2)S. Hence,
the image of Self (Y ) under the restriction map is orthogonal to B
with respect to ⟨ , ⟩S by Theorem 2.2. Then the image is contained in
VB,S(Y ) as claimed. □

Corollary 6.3. Suppose that Pic1(Xkv) ̸= ∅ for all v. If VB,S(Pic
1
X) =

∅, then Pic1X is not divisible by 2 in X(Pic0X) and #X(Pic0X)) ≥ 4.



18 NILS BRUIN AND BRENDAN CREUTZ

Proof. The conclusion is known to hold when Self (Pic1X) = ∅ and
Pic1(Xkv) ̸= ∅ for all v by [Cre20, Theorem 5.3 and Remark 5.4]. □

Remark 6.4. The size of Self (Pic0X) is often used to compute an upper
bound for the rank of the Mordell-Weil group of the Jacobian Pic0X .
We do have a surjective map Self (Pic0X) ↠ VB,S(Pic

0
X) but it seems

unavoidable that determining the size of the kernel involves information
on the class and unit groups of L. Consequently, we do not see how the
computational advantages of our method can extend to the problem of
bounding the rank of the Jacobian.

6.2. Brauer sets. The étale cohomology group Br(X) := H2(X,Gm)
is called the Brauer group of X. By the purity theorem Br(X) can
be identified with the unramified subgroup of the Brauer group of the
function field of X. A class in Br(X) can be evaluated at a point
x ∈ X(K) = Hom(Spec(K), X) defined over some extension K/k by
pulling back to yield an element of Br(K). For a local point xv ∈ X(kv)
this can be composed with the invariant map invv : Br(kv) → Q/Z. For
given α ∈ Br(X), the resulting maps are nonzero for only finitely many
primes. In this way, each α ∈ Br(X) determines a map

α : X(Ak) =
∏
v

X(kv) ∋ (xv) 7→
∑
v

invv(α(xv)) ∈ Q/Z .

For a subset B′ ⊂ Br(X), letX(Ak)
B′

denote the subset of adelic points
which map to 0 ∈ Q/Z under all of the maps induced by the b ∈ B′.
By global class field theory one has X(k) ⊂ X(Ak)

B′
.

The type map λ∆ gives rise to a subgroup of the Brauer group
of X. From the Hochschild-Serre spectral sequence, one has a mor-
phism r : Br1(X) → Br1(X)/Br0(X) ≃ H1(k,Pic(X)). One defines
Brλ∆

(X) = r−1(λ∆∗(H
1(k,E))). The descent theory of abelian tor-

sors of finite type [Sko01, Theorem 6.1.2] gives an equality of sets
X(Ak)

λ∆ = X(Ak)
Brλ∆ (X) and hence equivalence of the obstructions.

The definition of E gives an exact diagram of Galois modules (the
bottom row follows from the snake lemma applied to the top two rows
and defines Q):
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0 R E J∨[n] 0

0 (Z/nZ)∆ (Z/nZ)∆ 0

0 J∨[n] Q Z/nZ 0

Taking Galois cohomology we obtain an exact diagram

(6.1)

H0(k,Q) Z/nZ 0

H1(k,R) H1(k,E) H1(k, J∨[n])

P

where P = ker
(
H1(k,Z/nZ∆) → H1(k,Z/nZ)

)
. The image of Brλ∆

(X)

in Br(X)/Br0(X) is the image of the map H1(k,E) → H1(k, J∨[n]) →
H1(k,PicX) ≃ Br1(X)/Br0(X). By exactness, this map H1(k,E) →
Br(X)/Br0(X) factors through P , so there is a surjective map Γ: P →
Brλ∆

(X)/Br0(X).
In the case n = 2, Hilbert’s Theorem 90 yields P ≃ (L×/L×2)N=1. So

there is a surjective homomorphism (L×/L×2)N=1 → Brλ∆
(X)/Br0(X).

The following proposition gives an explicit description of this map, re-
lating it to the pairing (2.2) used to define VB,S(X).

Proposition 6.5. There is a homomorphism

γ :
(
L×/L×2

)
N=1

→ Brλ∆
(X)

defined by γ(ℓ) = CorL/k (A(f, ℓ)). If S is a finite set of primes of k
such that

(1) for all v ̸∈ S, the local images Cf (X(kv)) ⊂ L×
v /k

×
v L

×2
v are

unramified, and
(2) ℓ represents a class in (L×/L×2)S.

Then for any adelic point (xv) ∈ X(Ak) =
∏

X(kv) we have∑
v∈Ωk

invv(γ(ℓ)(xv)) = ⟨(Cf (xv))v∈S, ℓ⟩S ∈ Q/Z .

Proof. This follows similarly to the proof of [CV15, Theorem 1.1]. □
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Corollary 6.6. Given B ⊂ (L×/L×2)S,N=1, let B′ = {γ(b) : b ∈
B} ⊂ Br(X). If X and S satisfy the conditions of Theorem 3.3, then
VB,S(X) is the image of X(Ak)

B′
under the map X(Ak) →

∏
v∈S X(kv).

In particular, if VB,S(X) = ∅, then X(Ak)
Br(X) = ∅.

6.3. Brauer classes from H1(k,R). By exactness of (6.1), elements
in the image of the map H1(k,R) → H1(k,E) map to 0 in Br1(X)/Br0(X).
This observation provides some insight into what kind of elements from
(L×/L×2)N=1 can provide non-trivial information on rational points.

We give an explicit example for a plane quartic with an even theta
characteristic. We first review some of the classical theory of theta
characteristics on plane quartics (see [Dol12, Chapter 6]). Let us write
κX ∈ Pic(X) for the canonical class on X. We say θ ∈ Pic(X) is a theta
characteristic if 2θ = κX . The contact points of a bitangent to X sum
to a theta characteristic. These are called odd theta characteristics.
There are 28 of those and the algebra L is the corresponding affine
coordinate ring for them.

The remaining 36 theta characteristics of X are even theta charac-
teristics. The even and odd theta characteristics are related via Aron-
hold sets. An Aronhold set is a collection of 7 odd theta characteris-
tics {θ1, . . . , θ7} such that no triple {θi, θj, θk} of distinct members has
θi − θj + θk equal to an odd theta characteristic.

We have that θ1+· · ·+θ7 = 7θ0 for some even theta characteristic θ0.
Indeed the 288 Aronhold sets are partitioned into 36 sets of 8, where
each set Aθ0 consist of those that sum to 7θ0. Any two Aronhold sets
from Aθ0 have a unique odd theta characteristic in their intersection,
reflecting that

(
8
2

)
= 28.

If we have an even theta characteristic θ0 on X and write A = Aθ0

for the corresponding octet, then we obtain an injective homomorphism
(Z/2Z)A → (Z/2Z)∆, sending each Aronhold set to its sum. Since these
sums all have the same image in Pic(X), we see that this map restricts
to a homomorphism (Z/2Z)Adeg 0 → R.

Let LA be the octic étale algebra that is the affine coordinate ring
of A. We have a morphism L×

A → Sym2(LA)
× by taking the product

of evaluation at the pair. With the observation about pairwise inter-
sections made above, we see that Sym2(LA) = LA ⊕ L, and hence we
obtain a map L×

A → L×. However, on the level of cohomology, this
represents the derived morphism H1(k, (Z/2Z)Adeg 0) → H1(k,R). As

noted above, elements in the image of H1(k,R) → H1(k,E) map to
0 in Br1(X)/Br0(X), so for the purpose of finding elements that are
non-trivial with respect to the ⟨ , ⟩S-pairing, any S-unit from LA is not
useful.
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