THE BRAUER-MANIN OBSTRUCTION FOR NONISOTRIVIAL CURVES OVER GLOBAL FUNCTION FIELDS

BRENDAN CREUTZ, JOSÉ FELIPE VOLOCH, AND AN APPENDIX BY DAMIAN RÖSSLER

Abstract

We prove that the set of rational points on a nonisotrivial curves of genus at least 2 over a global function field is equal to the set of adelic points cut out by the Brauer-Manin obstruction.

1. Introduction

Let X / K be a smooth projective and geometrically irreducible curve of genus at least 2 over a global field K of characteristic $p>0$. We prove that if X is not isotrivial, then the Brauer-Manin obstruction cuts out exactly the set of rational points on X.
Theorem 1.1. Let X / K be a smooth projective curve of genus at least 2 over a global function field K. If X is not isotrivial, then $X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=X(K)$.

We refer the reader to [PV10] for the definition of the Brauer-Manin obstruction and the relevant background in this context. Theorem 1.1 is proved in that paper for X contained in an abelian variety A such that $A\left(K^{\text {sep }}\right)\left[p^{\infty}\right]$ is finite and no geometric isogeny factor of A is isotrivial. That result holds more generally for any 'coset free' subvariety of such an abelian variety. We remove the hypotheses on an abelian variety containing X, but our proof does not immediately extend to higher dimensional subvarieties of abelian varieties.

As in [PV10] our results are a consequence of related results concerning adelic intersections whose connection to the Brauer-Manin obstruction was first observed in [Sch99] for curves over number fields.

Theorem 1.2. Suppose $X \subset A$ is a proper smooth curve of genus at least 2 contained in an abelian variety A over a global field K of characteristic $p>0$. Then $X\left(\mathbb{A}_{k}\right) \cap \overline{A(K)}=X(K)$, where $\overline{A(K)}$ denotes the topological closure of $A(K)$ in $A\left(\mathbb{A}_{K}\right)$.

We follow the strategy of the proof in [PV10], but there are two new ingredients allowing us to remove all hypotheses on an abelian variety containing X. The first, appearing as Proposition 2.3 below, is based on ideas in the proof of the Mordell-Lang Conjecture appearing in [AV92, Vol91]. This replaces the input in [PV10] from [Hru96] which relies heavily on model theory and requires assumptions on the Jacobian of X. The second new ingredient is an isogeny constructed by Rössler in the appendix to this paper. We use this instead of multiplication by p in some of the arguments appearing in [PV10] to prove Proposition 3.1. This removes the need for the hypothesis on $A\left(K^{\text {sep }}\right)\left[p^{\infty}\right]$ in [PV10, Proposition 5.3] and elsewhere.

The theorems above are expected to hold (in a slightly modified form) for any closed subvariety of an abelian variety over a global field. This was originally posed as a question in the case of curves over number fields by Scharaschkin [Sch99] and, independently, by Skorobogatov [Sko01]. It was later stated as a conjecture for curves over number fields in
[Poo06] and [Sto07]. The number field case has seen little progress and remains wide open. Building on [PV10], this paper settles the function field analogue of these conjectures for nonisotrivial curves of genus ≥ 2. Some partial results toward the conjecture in the isotrivial case are given in [CV22, CV23], but this case too remains open.

2. ZARISKI DENSE ADELIC POINTS SURVIVING p^{∞}-DESCENT

In this section we assume $X \subset A$ is a proper smooth curve of genus ≥ 2 contained in an abelian variety A over K.
Definition 2.1. Let $N \geq 1$ be an integer. An N-covering of a subvariety $X \subset A$ of an abelian variety A over K is an fppf-torsor $Y \rightarrow X$ under the N-torsion subgroup scheme $A[N]$ such that the base change of $Y \rightarrow X$ to K^{sep} is isomorphic to the pull back of multiplication by N on A. An adelic point on X is said to survive N-descent if it lifts to an adelic point on some N-covering of X.

Definition 2.2. An adelic point $\left(P_{v}\right)_{v} \in X\left(\mathbb{A}_{K}\right)$ is called Zariski dense if for any proper closed subvariety $Y \subsetneq X$, there exists v such that $P_{v} \notin Y$.
Proposition 2.3. Suppose $X \subset A$ is a proper smooth curve of genus at least 2 contained in an abelian variety A over a global field K of characteristic $p>0$. If there is a Zariski dense adelic point on X which survives p^{n}-descent for all $n \geq 1$, then X is isotrivial.

The proof of this proposition will be given at the end of this section.
Definition 2.4. Let $L \subset K$ be a subfield. We say that X is defined over L if there exists X_{0} / L such that $X \simeq X_{0} \times_{K} L$. We say that X is definable over L if there exists X_{0} / L such that $X \times_{K} \bar{K} \simeq X_{0} \times_{L} \bar{K}$, where \bar{K} denotes an algebraic closure of K containing L.

For an abelian variety A / K, multiplication by p^{n} factors as

$$
A \xrightarrow{F^{n}} A^{\left(p^{n}\right)} \xrightarrow{V^{n}} A,
$$

where F^{n} and V^{n} are the n-fold compositions of the absolute Frobenius and Verschiebung isogenies.

Lemma 2.5. Suppose X contains a Zariski dense adelic point which lifts to a p^{n}-covering $Y^{\prime} \rightarrow X$ and let $Y \rightarrow X$ be the torsor under $\operatorname{ker}\left(V^{n}: A^{\left(p^{n}\right)} \rightarrow A\right)$ through which it factors. Then Y_{red} is geometrically reduced and definable over $K^{p^{n}}$.
Proof. Let $\left(P_{v}\right)_{v} \in X\left(\mathbb{A}_{K}\right)$ be the given adelic point and let $Y^{\prime} \rightarrow X$ be the p^{n}-covering to which $\left(P_{v}\right)_{v}$ lifts. By passing to a separable extension of K (which is harmless because $\left(K^{\text {sep }}\right)^{p} \cap K=K^{p}$ and [Hug05, Lemma 1.5.11]) we can assume $Y^{\prime} \rightarrow X$ is the pullback of multiplication by p^{n} on A. In particular, it factors through the n-fold Frobenius morphism $F^{n}: A \rightarrow A^{\left(p^{n}\right)}$ and we have a commutative diagram with Y the torsor in the statement,

2

Let $\left(Q_{v}\right)_{v} \in Y^{\prime}\left(\mathbb{A}_{K}\right)$ denote a lift of $\left(P_{v}\right)_{v}$. For any v, the point $Q_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow Y^{\prime}$ factors through $Y_{\text {red }}^{\prime}$, because $\operatorname{Spec}\left(K_{v}\right)$ is reduced. So $\left(Q_{v}\right)_{v}$ is also a Zariski dense adelic point on $Y_{\text {red }}^{\prime}$. Its image $\left(R_{v}\right)_{v}$ in $Y_{\text {red }}\left(\mathbb{A}_{K}\right)$ is a Zariski dense adelic point and by commutativity of the diagram the image of $\left(R_{v}\right)_{v}$ in $A^{\left(p^{n}\right)}$ lies in $F^{n}\left(A\left(\mathbb{A}_{K}\right)\right)$. In particular, for each v, the point R_{v} lies in $A^{\left(p^{n}\right)}\left(K_{v}^{p^{n}}\right)$. It then follows from the proof of [AV92, Lemma 1] that $Y_{\text {red }}$ is defined over $K^{p^{n}}$ and is geometrically reduced. Below is an alternative argument using [Vol91], in particular, the last paragraph.

We show that that $Y_{\text {red }}$ is defined over $K^{p^{n}}$ and is geometrically reduced. Assume $n=1$, which is enough, as the argument can be repeated n times. Let U be an affine open subset of $Y_{\text {red }}$ and f a function defined on an affine open set of $A^{\left(p^{n}\right)}$ which vanishes on U. We have that $f\left(R_{v}\right)=0$ and differentiating this equation with respect to a derivation δ on K with kernel K^{p}, gives $f^{\delta}\left(R_{v}\right)=0$. Since $\left(R_{v}\right)_{v}$ is Zariski dense on $Y_{\text {red }}$, we conclude that f^{δ} also vanishes on U. This means that δ extends to a vector field on a spreading out of $Y_{\text {red }}$ and we conclude via [Vol91, Lemma 1].

Remark 2.6. From the above proof, if $Y_{\text {red }}$ is not defined over K^{p}, some f^{δ} does not vanish on Y_{red} and the equation $f^{\delta}=0$ defines a proper Zariski closed subset containing $\left(R_{v}\right)_{v}$.

Lemma 2.7. If $X^{\prime} \rightarrow X$ is a torsor under an étale group scheme and X^{\prime} is definable over $K^{p^{n}}$, then X is definable over $K^{p^{n}}$.

Proof. [Vol91, Lemma 2] proves this for Galois covers. This gives the result, since taking a separable extension to trivialise the Galois action on the étale group scheme is harmless.

Lemma 2.8. Suppose $Y_{i} \subset A_{i}$ are geometrically integral curves contained in abelian varieties A_{i} over K, for $i=1,2$. Suppose there is an isogeny $A_{1} \rightarrow A_{2}$ restricting to a generically purely inseparable map $Y_{1} \rightarrow Y_{2}$. If Y_{1} and A_{1} are definable over $K^{p^{n}}$, then Y_{2} is definable over $K^{p^{n}}$.

Proof. Passing to a finite separable extension we can assume Y_{1} is defined over $K^{p^{n}}$. In particular, Y_{1} is defined over K^{p}, so the argument in [AV92, Theorem A(2)] shows that Y_{2} is defined over K^{p}. Replacing K with K^{p} and repeating n times we find that Y_{2} is defined over $K^{p^{n}}$.

Proof of Proposition 2.3. Let $P:=\left(P_{v}\right)_{v} \in X\left(\mathbb{A}_{K}\right)$ be a Zariski dense adelic point that survives p^{n}-descent for all $n \geq 1$.

Let $n \geq 1$ and let $Y^{\prime} \rightarrow X$ be a p^{n}-covering to which P lifts. By Lemma 2.5, $Y^{\prime} \rightarrow X$ factors through a torsor $Y \rightarrow X$ under the kernel of $V^{n}: A^{\left(p^{n}\right)} \rightarrow A$, with $Y_{\text {red }}$ geometrically reduced and definable over $K^{p^{n}}$. We can factor $V^{n}=V_{e} \circ V_{c}$, with V_{c} an isogeny whose kernel is a connected abelian p-group scheme and V_{e} étale. Let $Y \rightarrow X_{e} \rightarrow X$ be the corresponding factorization of $Y \rightarrow X$. Since $X_{e} \rightarrow X$ is étale and X is smooth, X_{e} is geometrically integral. The isogeny V_{c} restricts to a morphism $Y_{\text {red }} \rightarrow X_{e}$ which is generically purely inseparable, so X_{e} is definable over $K^{p^{n}}$ by Lemma 2.8. Then X is definable over $K^{p^{n}}$ by Lemma 2.7.

Since P survives p^{n}-descent for all n, we conclude that X is definable over $K^{p^{n}}$ for all $n \geq 1$. This implies that X is isotrivial (see the discussion in [Szp81, Section 0]).

3. Rational points on finite subschemes of abelian varieties

Proposition 3.1. Let $Z \subset A$ be a finite subscheme of an abelian variety defined over a global function field K. Then

$$
Z(K)=Z\left(\mathbb{A}_{K}\right) \cap \overline{A(K)}=Z\left(\mathbb{A}_{K}\right) \cap A\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}
$$

Proof. By [PV10, Theorem E] we have $Z(K) \subset \overline{A(K)} \subset A\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \subset \widehat{\operatorname{Sel}}(A)$. So it suffices to show that $Z\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(A) \subset Z(K)$. As in the proof of [PV10, Prop. 3.9], it suffices to show that this holds after a finite separable extension, so we can assume that Z is a finite set of K-points.

Replacing K by a further finite separable extension if needed, we can also assume that $A[n]$ is a constant group scheme for some n prime to p and that the Néron model of A has semiabelian connected component. In the appendix by D. Rössler it is shown that, under these hypotheses, there exists an étale isogeny $f: A \rightarrow B$ and an isogeny $g: B \rightarrow B$ of degree >1 such that $\operatorname{ker}(g)\left(K^{\text {sep }}\right)=0$. Let $W=f(Z) \subset B$. If $B\left(K^{\text {sep }}\right)[p]=0$, then [PV10, Proposition 5.3] gives that $W\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(B)=W(K)$. Working with the given endomorphism g instead of multiplication by p, the argument there can be adapted to give the same conclusion (Details are given in Lemma 3.2 below).

Now suppose $P \in Z\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(A)$. It follows from the definition of the Selmer groups that $f(\widehat{\operatorname{Sel}}(A)) \subset \widehat{\operatorname{Sel}}(B)$. So $f(P) \in W\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(B)=W(K)$. For any $v \in \Omega_{K}$, the v-adic component of P is the image of some $Q_{v} \in Z(K)$. The adelic point $P-Q_{v} \in A\left(\mathbb{A}_{K}\right)$ lies in the kernel of f and in $\widehat{\operatorname{Sel}}(A)$. So $P-Q_{v} \in \widehat{\operatorname{Sel}}(A)_{\text {tors }}$. By [PV10, Lemma 5.1] this implies that $P-Q_{v} \in A(K)$. So $P \in A(K)$.

Here are details of the claimed analogue of [PV10, Proposition 5.3] used in the proof above.
Lemma 3.2. Let $W \subset B$ be a finite subscheme of an abelian variety defined over K. Suppose there exists an endomorphism $g: B \rightarrow B$ of degree >1 such that $B\left(K^{\mathrm{sep}}\right)[g]=0$. Then $W\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(B)=W(K)$.

Proof. We have

$$
W(K) \subset B(K) \subset B\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \subset \widehat{\operatorname{Sel}}(B)
$$

So it suffices to show that $W\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(B) \subset W(K)$. Moreover we can assume $W=W(K)$ as in [PV10, Prop. 3.9].

Suppose $P \in W\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(B)$. For any $v \in \Omega_{K}$, the v-adic component of P is the image of some point $Q_{v} \in W(K)$, and $P-Q_{v} \in \widehat{\operatorname{Sel}}(B)$ maps to 0 in $B\left(K_{v}\right)^{(g)}:=$ ${\underset{\longleftarrow}{n}}^{\lim _{n}} B\left(K_{v}\right) / g^{n}\left(B\left(K_{v}\right)\right)$. In particular, $P-Q_{v}$ is in the kernel of $\operatorname{Sel}^{(g)}(B) \rightarrow B\left(K_{v}\right)^{(g)}$ where $\mathrm{Sel}^{(g)}(B)$ denotes the inverse limit of the Selmer groups corresponding to the isogenies g^{n} for $n \geq 1$. Below we show that this map is injective, so the image of $P-Q_{v}$ in $\operatorname{Sel}^{(g)}(B)$ is 0 .

Since this holds for any v, if v^{\prime} is any other prime we have

$$
Q_{v^{\prime}}-Q_{v} \in \operatorname{ker}\left(B(K) \rightarrow{\underset{\underset{n}{n}}{ }}_{\lim _{4}} B(K) / g^{n} B(K) \hookrightarrow \operatorname{Sel}^{(g)}(B)\right)
$$

In other words, $\left(Q_{v}-Q_{v^{\prime}}\right) \in \cap_{n \geq 1} g^{n} B(K)$. Since $B(K)$ is finitely generated, this implies that $\left(Q_{v}-Q_{v^{\prime}}\right) \in B(K)_{\text {tors }}$. Again, since this holds for all v we see that $R:=P-Q_{v} \in \widehat{\operatorname{Sel}}(B)_{\text {tors }}$. By [PV10, Lemma 5.1] this implies that $P-Q_{v} \in B(K)$. So $P \in W(K)$.

It remains to prove that $\operatorname{Sel}^{(g)}(B) \rightarrow B\left(K_{v}\right)^{(g)}$ is injective. For this it suffices (as in [PV10, Proof of 5.2]) to prove injectivity of $\operatorname{Sel}^{(g)}(B) \rightarrow B\left(K_{v}^{\prime}\right)^{(g)}$, where $K_{v}^{\prime} \subset K^{\text {sep }}$ denotes the Henselization with respect to v and $\operatorname{Sel}^{\prime(g)}(B)$ is defined in the same way as $\operatorname{Sel}^{(g)}(B)$ but using K_{v}^{\prime} instead of K_{v}. Let $b \in \operatorname{ker}\left(\operatorname{Sel}^{(g)}(B) \rightarrow B\left(K_{v}^{\prime}\right)^{(g)}\right)$ and let b_{M} denote its image in $\operatorname{Sel}^{\prime g^{M}}(B) \subset \mathrm{H}^{1}\left(K_{v}^{\prime}, B\left[g^{M}\right]\right)$. Then the image of b_{M} under

$$
\operatorname{Sel}^{\prime g^{M}}(B) \rightarrow \frac{B\left(K_{v}^{\prime}\right)}{g^{M} B\left(K_{v}^{\prime}\right)} \subset \mathrm{H}^{1}\left(K_{v}^{\prime}, B\left[g^{M}\right]\right) \rightarrow \mathrm{H}^{1}\left(K^{\text {sep }}, B\left[g^{M}\right]\right)
$$

is 0 . The inflation-restriction sequence

$$
0 \rightarrow \mathrm{H}^{1}\left(\operatorname{Gal}\left(K^{\mathrm{sep}} / K\right), B\left(K^{\mathrm{sep}}\right)\left[g^{M}\right]\right) \rightarrow \mathrm{H}^{1}\left(K, B\left[g^{M}\right]\right) \rightarrow \mathrm{H}^{1}\left(K^{\mathrm{sep}}, B\left[g^{M}\right]\right)
$$

shows that b_{M} comes from an element of $\mathrm{H}^{1}\left(\operatorname{Gal}\left(K^{\text {sep }} / K\right), B\left(K^{\text {sep }}\right)\left[g^{M}\right]\right)$. But this group is trivial since $B\left(K^{\text {sep }}\right)\left[g^{M}\right]=0$. Since this holds for all $M \geq 1$, we conclude that $b=0$.

4. Proofs of the theorems

Proof of Theorem 1.2. By [PV10, Theorem E] we have $\overline{A(K)} \subset A\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \subset \widehat{\operatorname{Sel}}(A) \subset$ $A\left(\mathbb{A}_{K}\right)$. intersecting with $X\left(\mathbb{A}_{K}\right)$ we have

$$
X\left(\mathbb{A}_{K}\right) \cap \overline{A(K)} \subset X\left(\mathbb{A}_{K}\right) \cap A\left(\mathbb{A}_{K}\right)^{\operatorname{Br}} \subset X\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(A)
$$

where the rightmost set consists of the adelic points on X which survive N-descent for all $N \geq 1$ (relative to the embedding $X \subset A$). In particular, any $P \in X\left(\mathbb{A}_{K}\right) \cap \overline{A(K)}$ survives p^{n}-descent for all $n \geq 1$. Since X is not isotrivial, Proposition 2.3 implies that there is a finite subscheme $Z \subset X \subset A$ which contains P. Then $P \in Z\left(\mathbb{A}_{K}\right) \cap \overline{A(K)}=Z\left(\mathbb{A}_{K}\right) \cap A\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=$ $X\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(A)=Z(K)$, where the final equality is Proposition 3.1.

Remark 4.1. The preceding proof shows that for $X \subset A$ as in Theorem 1.2 we have

$$
X(K)=X\left(\mathbb{A}_{K}\right) \cap \overline{A(K)}=X\left(\mathbb{A}_{K}\right) \cap A\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=X\left(\mathbb{A}_{K}\right) \cap \widehat{\operatorname{Sel}}(A)
$$

Proof of Theorem 1.1. Let X / K be as in the statement and let $J=\operatorname{Jac}(X)$ be its Jacobian. It suffices to show that $X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \subset X(K)$. Passing to some finite separable extension L / K we can embed X_{L} in J_{L} via the Abel-Jacobi map corresponding to an L-rational point. If $P \in X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}$, then its image under the inclusion $X\left(\mathbb{A}_{K}\right) \subset X\left(\mathbb{A}_{L}\right)=X_{L}\left(\mathbb{A}_{L}\right)$ is orthogonal to $\operatorname{Br}\left(X_{L}\right)$ by [CV, Lemma 3.1]. By functoriality of the Brauer pairing and Remark 4.1 we have $X_{L}\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \subset X_{L}\left(\mathbb{A}_{L}\right) \cap J_{L}\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=X_{L}(L)$. Then P is in $X\left(\mathbb{A}_{K}\right) \cap X(L)$ which is equal to $X(K)$ by [PV10, Lemma 3.2].
Remark 4.2. In the proof of Theorem 1.1 just given [CV, Lemma 3.1] and [PV10, Lemma 3.2] allow us to pass to an extension over which X can be embedded in its Jacobian. Alternatively one can use the following construction suggested to one of us by Poonen. Restriction of scalars gives a map $\operatorname{Res}_{L / K}\left(X_{L}\right) \rightarrow \operatorname{Res}_{L / K}\left(J_{L}\right)$. Composing this with the canonical map $X \rightarrow \operatorname{Res}_{L / K}\left(X_{L}\right)$ gives a closed immersion $X \rightarrow A$ into the abelian variety $A:=\operatorname{Res}_{L / K}\left(J_{L}\right)$ over K. To prove Theorem 1.1 one can then apply Remark 4.1 to $X \subset A$.

Acknowledgements

The authors were supported by the Marsden Fund Council, managed by Royal Society Te Apārangi. We are grateful to Damian Rössler for allowing us to include his note [Rös12] (which was originally circulated in 2012 as an improvement to a result in [Rös13]) as an appendix to this paper. We thank Bjorn Poonen for suggesting the construction in Remark 4.2.

Appendix A. On abelian varieties with an infinite group of separable p^{∞}-TORSION POINTS (BY DAMIAN RÖSSler)

If $n \in \mathbb{N}$, we write $[n]$ for the multiplication by n endomorphism on an abelian variety. If h is a finite endomorphism of an abelian variety A over a field L, we write

$$
A(L)\left[h^{\ell}\right]:=\left\{x \in A(L) \mid h^{\circ \ell}(x)=0\right\}
$$

and

$$
A(L)\left[h^{\infty}\right]:=\left\{x \in A(L) \mid \exists n \in \mathbb{N}: h^{\circ n}(x)=0\right\}
$$

Here $h^{\circ n}(x):=h(h(h(\cdots(x) \cdots))$, where there are n pairs of brackets. The notation $A(L)\left[n^{\ell}\right]$ (resp. $A(L)\left[n^{\infty}\right]$) will be a shorthand for $A(L)\left[[n]^{\ell}\right]$ (resp. $A(L)\left[[n]^{\infty}\right]$).

Let now K_{0} be the function field of a smooth and proper curve U over a finite field \mathbb{F} of characteristic $p>0$. Let B be an abelian variety over K_{0}. Suppose that for some $n>3$ prime to p, the group scheme $B[n]$ is constant and that the Néron model of B over U has a semiabelian connected component.

Proposition A.1. There exists

- an abelian variety C over K_{0};
- an étale K_{0}-isogeny $\phi: B \rightarrow C$;
- an étale K_{0}-isogeny $f: C \rightarrow C$;
- a K_{0}-isogeny $g: C \rightarrow C$;
- a natural number $r \geq 0$
such that
(a) $g \circ f=\left[p^{r}\right]$ and $g \circ f=f \circ g$;
(b) $C\left(K_{0}^{\mathrm{sep}}\right)\left[p^{\infty}\right]=C\left(K_{0}^{\mathrm{sep}}\right)\left[f^{\infty}\right]=C\left(\bar{K}_{0}\right)\left[f^{\infty}\right]$;
(c) $C\left(K_{0}^{\text {sep }}\right)\left[g^{\infty}\right]=0$.

Proof. For $\ell \geq 0$, define inductively

$$
B_{0}:=B
$$

and

$$
B_{\ell+1}:=B_{\ell} /\left(B_{\ell}\left(K_{0}^{\mathrm{sep}}\right)[p]\right)
$$

For $\ell_{2} \geq \ell_{1}$, let $\phi_{\ell_{1}, \ell_{2}}: B_{\ell_{1}} \rightarrow B_{\ell_{2}}$ be the (étale!) morphism obtained by composing the natural morphisms $B_{\ell_{1}} \rightarrow B_{\ell_{1}+1} \rightarrow \cdots \rightarrow B_{\ell_{2}}$. We first claim that

$$
\begin{equation*}
\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\mathrm{sep}}\right)=B_{\ell_{1}}\left(K_{0}^{\mathrm{sep}}\right)\left[p^{\ell_{2}-\ell_{1}}\right] \tag{A.1}
\end{equation*}
$$

We prove the claim by induction on $\ell_{2}-\ell_{1}$. For $\ell_{2}-\ell_{1} \leq 1$, the claim is true by definition. Suppose that $\ell_{2}-\ell_{1} \geq 1$. Let $x \in B\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right]$. Then $\left[p^{\ell_{2}-\ell_{1}-1}\right](x) \in B\left(K_{0}^{\text {sep }}\right)[p]$ and thus

$$
\phi_{\ell_{1}, \ell_{1}+1}\left(\left[p^{\ell_{2}-\ell_{1}-1}\right](x)\right)=\left[p^{\ell_{2}-\ell_{1}-1}\right]\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=0 .
$$

Applying the inductive assumption to $\phi_{\ell_{1}, \ell_{1}+1}(x)$, we see that $\phi_{\ell_{1}+1, \ell_{2}}\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=\phi_{\ell_{1}, \ell_{2}}(x)=$ 0 . This proves that $\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right) \supseteq B_{\ell_{1}}\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right]$. To prove the opposite inclusion, let $x \in\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right)$. We compute

$$
\phi_{\ell_{1}, \ell_{2}}(x)=\phi_{\ell_{1}+1, \ell_{2}}\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=0,
$$

which implies (by the inductive hypothesis) that

$$
\left[p^{\ell_{2}-\ell_{1}-1}\right]\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=\phi_{\ell_{1}, \ell_{1}+1}\left(\left[p^{\ell_{2}-\ell_{1}-1}\right](x)\right)=0,
$$

which in turn implies that $[p]\left(\left[p^{\ell_{2}-\ell_{1}-1}\right](x)\right)=\left[p^{\ell_{2}-\ell_{1}}\right](x)=0$. This proves that $\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right) \subseteq$ $B_{\ell_{1}}\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right]$ and completes the proof of the claim.

Now we know that by the reasoning made in the last page of [Rös13], that there are only finitely many isomorphism classes of abelian varieties over K_{0} in the sequence $\left\{B_{\ell}\right\}_{\ell \in \mathbb{N}}$. Let C be an abelian variety over K_{0}, which appears at least twice in the sequence $\left\{B_{\ell}\right\}_{\ell \in \mathbb{N}}$. Let $n_{2}>n_{1}$ be such that $C \simeq B_{n_{1}} \simeq B_{n_{2}}$. Then by construction (under the identification $C=B_{n_{1}}$)

$$
\begin{equation*}
\phi_{n_{1}, n_{2}}^{\circ \ell}=\phi_{n_{1}, n_{1}+\ell \cdot\left(n_{2}-n_{1}\right)} \tag{A.2}
\end{equation*}
$$

for any $\ell \geq 1$ and thus

$$
\begin{equation*}
C\left(K_{0}^{\mathrm{sep}}\right)\left[p^{\infty}\right]=C\left(K_{0}^{\mathrm{sep}}\right)\left[\phi_{n_{1}, n_{2}}^{\infty}\right] \tag{A.3}
\end{equation*}
$$

Now define $f:=\phi_{n_{1}, n_{2}}$ and $r:=n_{2}-n_{1}$. Define g as the only K_{0}-isogeny such that $g \circ f=\left[p^{r}\right]$.
Notice then that the identity $g \circ f=\left[p^{r}\right]$ implies the identity $f \circ g=\left[p^{r}\right]$. To see this last fact directly, recall first that there are natural injection of rings

$$
\operatorname{End}_{K_{0}}(C) \hookrightarrow \operatorname{End}_{\bar{K}_{0}}\left(C_{\bar{K}_{0}}\right) \hookrightarrow \operatorname{End}_{\mathbb{Z}_{t}}\left(T_{t}\left(C\left(\bar{K}_{0}\right)\right)\right) \hookrightarrow \operatorname{End}_{\mathbb{Q}_{t}}\left(T_{t}\left(C\left(\bar{K}_{0}\right)\right) \otimes \mathbb{Q}_{t}\right)
$$

where $T_{t}\left(C\left(\bar{K}_{0}\right)\right)$ is the classical Tate module of $C_{\bar{K}_{0}}$ and $t>0$ is some prime number $\neq p$. Now if M and N are two square matrices of the same size with coefficients in a field of characteristic 0 , such that $M \cdot N=p^{r}$, then $p^{-r} N$ is the inverse matrix of M and thus $N \cdot M=p^{r}$. This fact combined with the existence of the above injections implies that $f \circ g=\left[p^{r}\right]$ if $g \circ f=\left[p^{r}\right]$.

We have already proven (a). Point (b) is contained in equation (A.3).
We now prove (c). Suppose that for some $\ell \geq 0$ and some $x \in C\left(K_{0}^{\text {sep }}\right)$, we have $g^{\circ l}(x)=0$. Let $y \in\left(f^{\circ \ell}\right)^{-1}(x) \subseteq C\left(K_{0}^{\text {sep }}\right)$. Then $g^{\circ l}\left(f^{\circ l}(y)\right)=\left[p^{r \ell}\right](y)=0$. Hence $f^{\circ l}(y)=0=x$ by (A.1) and (A.2).

References

[AV92] Dan Abramovich and José Felipe Voloch, Toward a proof of the Mordell-Lang conjecture in characteristic p, International Math. Research Notices 5 (1992), 103-115. $\uparrow 1,3$
[CV] Brendan Creutz and Bianca Viray, Quadratic points on intersections of two quadrics, Algebra Number Theory. to appear. $\uparrow 5$
[CV22] Brendan Creutz and José Felipe Voloch, The Brauer-Manin obstruction for constant curves over global function fields, Ann. Inst. Fourier (Grenoble) 72 (2022), no. 1, 43-58 (English, with English and French summaries). $\uparrow 2$
[CV23] Brendan Creutz and José Felipe Voloch, Etale descent obstruction and anabelian geometry of curves over finite fields (2023), available at arXiv:2306.04844. $\uparrow 2$
[Hru96] Ehud Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc. 9 (1996), no. 3, 667-690. $\uparrow 1$
[Hug05] Bonnie Sakura Huggins, Fields of moduli and fields of definition of curves, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-University of California, Berkeley. $\uparrow 2$
[Poo06] Bjorn Poonen, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), no. 4, 415-420. $\uparrow 2$
[PV10] Bjorn Poonen and José Felipe Voloch, The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields, Ann. of Math. (2) 171 (2010), no. 1, 511-532. $\uparrow 1,2,4,5$
[Rös13] Damian Rössler, Infinitely p-divisible points on abelian varieties defined over function fields of characteristic $p>0$, Notre Dame J. Form. Log. 54 (2013), no. 3-4, 579-589. 个6, 7
[Rös12] Damian Rössler, On abelian varieties with an infinite group of separable p^{∞}-torsion points (2012). unpublished note available at http://people.maths.ox.ac.uk/rossler/mypage/publi.html. $\uparrow 6$
[Sch99] Victor Scharaschkin, Local-global problems and the Brauer-Manin obstruction, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)-University of Michigan. $\uparrow 1$
[Sko01] Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. $\uparrow 1$
[Sto07] Michael Stoll, Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), no. 4, 349-391. $\uparrow 1,2$
[Szp81] Lucien Szpiro, Propriétés numériques du faisceau dualisant relatif, Astérisque 86 (1981), 44-78. Seminar on Pencils of Curves of Genus at Least Two. $\uparrow 3$
[Vol91] José Felipe Voloch, On the conjectures of Mordell and Lang in positive characteristics, Invent. Math. 104 (1991), no. 3, 643-646. $\uparrow 1,3$

School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

E-mail address: brendan.creutz@canterbury.ac.nz
URL: http://www.math. canterbury.ac.nz/~ $\mathrm{b} . \mathrm{creutz}$
School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

E-mail address: felipe.voloch@canterbury.ac.nz
URL: http://www.math.canterbury.ac.nz/~f.voloch
University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom

E-mail address: damian.rossler@maths.ox.ac.uk
URL: http://people.maths.ox.ac.uk/rossler/

