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MOST BINARY FORMS COME FROM A PENCIL

OF QUADRICS

BRENDAN CREUTZ

(Communicated by Romyar T. Sharifi)

Abstract. A pair of symmetric bilinear forms A and B determine a binary
form f(x, y) := disc(Ax−By). We prove that the question of whether a given
binary form can be written in this way as a discriminant form generically sat-
isfies a local-global principle and deduce from this that most binary forms over
Q are discriminant forms. This is related to the arithmetic of the hyperellip-
tic curve z2 = f(x, y). Analogous results for nonhyperelliptic curves are also
given.

1. Introduction

A pair of symmetric bilinear forms A and B in n variables over a field k of
characteristic not equal to 2 determine a binary form

f(x, y) := disc(Ax−By) = (−1)
n(n−1)

2 det(Ax−By) := f0x
n+f1x

n−1y+· · ·+fny
n

of degree n. The question of whether a given binary form can be written as a dis-
criminant form in this way is studied in [BG13,Wan13,BGW15,BGW16]. We prove
that the property of being a discriminant form generically satisfies a local-global
principle and deduce from this that most binary forms over Q are discriminant
forms.

It is easy to see that a binary form f ∈ k[x, y] is a discriminant form if and
only if the forms c2f are too, for every c ∈ k×. When k = Q, it thus suffices
to consider integral binary forms, in which case we define the height of f to be
H(f) := max{|fi|} and consider the finite sets Nn(X) of integral binary forms of
degree n with H(f) < X. We prove:

Theorem 1. For any n ≥ 3,

lim inf
X→∞

#{f ∈ Nn(X) : f is a discriminant form over Q}
#Nn(X)

> 75% .

Moreover, these values tend to 100% as n → ∞.

When n is even the corresponding lim sup is strictly less than 100%, as can been
seen by local considerations. For example, a square free binary form over R is a
discriminant form if and only if it is not negative definite (see [BGW16, Section
7.2]), a property which holds for a positive proportion of binary forms over R. One
is thus led to ask whether local obstructions are the only ones. This question was
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posed in [BS09, Question 7.2], albeit using somewhat different language. When
n = 2, the answer is yes and turns out to be equivalent to the Hasse principle for
conics, and in this case the limit appearing in Theorem 1 is the probability that a
random conic has a rational point, which is 0 (see [BCF15, Theorem 1.4]).

When k is a number field, define the height of f to be the height of the point
(f0 : · · · : fn) in weighted projective space Pn(2 : · · · : 2), and set Nn,k(X) to be
the finite set of degree n binary forms over k of height at most X. We prove the
following:

Theorem 2. Let k be a number field. For any n ≥ 1,

lim
X→∞

#{f ∈ Nn,k(X) : f is a discriminant form over k}
#{f ∈ Nn,k(X) : f is a discriminant form everywhere locally} = 100%.

It is known that a square free binary form f(x, y) is a discriminant form over k
if the smooth projective hyperelliptic curve with affine model given by z2 = f(x, 1)
has a rational point [BGW16, Theorem 28]. In particular binary forms of odd
degree are discriminant forms. Results of Poonen and Stoll allow one to compute the
proportion of hyperelliptic curves over Q of fixed genus that have points everywhere
locally [PS99a,PS99b]. This gives lower bounds on the proportion of binary forms
of fixed even degree that are locally discriminant forms. Computing these bounds
and applying Theorem 2, one obtains Theorem 1.

Theorem 2 states that the property of being a discriminant form satisfies a local-
global principle generically. This is rather surprising given that such a local-global
principle does not hold in general. For example, there is a positive density set of
positive square free integers c such that the binary form

(1.1) f(x, y) = c(x2 + y2)(x2 + 17y2)(x2 − 17y2) ∈ Q[x, y]

is a discriminant form locally, but not over Q (see [Cre13, Theorem 11]). Of course,
the forms appearing in (1.1) are not generic. It is well known (as was first proved
over Q by van der Waerden [vdW36]) that 100% of degree n univariate polynomials
over a number field have Galois group Sn. Therefore Theorem 2 is a consequence
of the following:

Theorem 3. Suppose f(x, y) ∈ k[x, y] is a binary form of degree n over a global
field k of characteristic not equal to 2 and such that f(x, 1) has Galois group Sn.
If f(x, y) is a discriminant form everywhere locally, then f(x, y) is a discriminant
form over k.

A square free binary form f(x, y) of even degree gives an affine model of a
smooth hyperelliptic curve C : z2 = f(x, 1) with two points at infinity. As shown
in [BGW16] the SLn(k)-orbits of pairs (A,B) with discriminant form f(x, y) cor-
respond to k-forms of the maximal abelian covering of C of exponent 2 unramified
outside the pair of points at infinity. Geometrically these coverings arise as pull-
backs of multiplication by 2 on the generalized Jacobian Jm where m is the modulus
comprising the points at infinity. The Galois-descent obstruction to the existence
of such coverings over k (and hence to the existence of a pencil of quadrics over k
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with discriminant form f(x, y)) is an element of H2(k, Jm[2]) ([BGW16, Theorems
13 and 24]). The Galois action on Jm[2] factors faithfully through the Galois group
of f(x, 1), so Theorem 3 follows from:

Theorem 4. Suppose C is a hyperelliptic curve of genus g over a global field k of
characteristic not equal to 2 and that Gal(k(Jm[2])/k) = S2g+2. Then X2(k, Jm[2])

= 0; i.e., an element of H2(k, Jm[2]) is trivial if it is everywhere locally trivial.

This result is all the more surprising given that the analogous statement for the
usual Jacobian is not true! There exist hyperelliptic curves of genus g with Jacobian
J , generic Galois action on J [2] and such that X1(k, J [2]) � X2(k, J [2]) �= 0. A
concrete example is given in [PR11, Example 3.20]; see also Example 16 below.
This leads one to suspect that there may exist locally solvable hyperelliptic curves
whose maximal abelian unramified covering of exponent 2 does not descend to k
(or, equivalently, that the torsor J1 parameterizing divisor classes of degree 1 is not
divisible by 2 in the group H1(k, J)). This can happen when the action of Galois
on J [2] is not generic; an example is given in [CV15, Theorem 6.7]. But Theorem
4 implies that it cannot happen when the Galois action is generic:

Theorem 5. Suppose C is an everywhere locally soluble hyperelliptic curve satis-
fying the hypothesis of Theorem 4 and let C denote the base change to a separable
closure of k. Then

(a) the maximal unramified abelian covering of C of exponent 2 descends to k,
and

(b) the maximal abelian covering of C of exponent 2 unramified outside m de-
scends to k.

Proof. The covering in (a) is the maximal unramified subcovering of that in (b),
while (b) follows from Theorem 4 and the discussion preceding it. �

Theorem 4 generalizes to the context considered in [Cre16], which we now briefly
summarize. Given a curve C, an integer m and a reduced base point free effective
divisor m on C, multiplication by m on the generalized Jacobian Jm factors through
an isogeny ϕ : Am → Jm whose kernel is dual to the Galois module J [m] :=
(Pic(Ck)/〈m〉)[m]. In the situation considered above m = deg(m) = 2 and ϕ is
multiplication by 2 on Jm (in this case the duality is proved in [PS97, Section 6]).
Via geometric class field theory the isogeny ϕ corresponds to an abelian covering
of Ck of exponent m unramified outside m. The maximal unramified subcoverings
of the k-forms of this ramified covering are the m-coverings of C parameterized by
the explicit descents in [BS09,Cre14,BPS16]. The Galois-descent obstruction to the
existence of such a covering over k is the class in H2(k,Am[ϕ]) of the coboundary
of [J1

m] from the exact sequence 0 → Am[ϕ] → Am → Jm → 0.
The following theorem says that the group X2(k,Am[ϕ]) is trivial provided the

action of Galois on the m-torsion of the Jacobian is sufficiently generic. Theorem
4 is case (1).

Theorem 6. Suppose k is a global field of characteristic not dividing m, C is a
smooth projective and geometrically integral curve of genus g over k, and m,m and
ϕ are as above. In all of the cases listed below, X2(k,Am[ϕ]) = 0.

(1) m = deg(m) = h0([m]) = 2 and Gal(k(Jm[2])/k) � S2g+2.
(2) m = 2, m is a canonical divisor and Gal(k(J [2])/k) � Sp2g(F2).
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(3) g = 1 and m = deg(m) = 2.
(4) g = 1, m = deg(m) = pr for some prime p and integer r ≥ 1 and neither

of the following holds:
(a) The action of the absolute Galois group, Galk, on J [p] is reducible.
(b) The action of Galk on J [p] factors through the symmetric group S3.

Remark 7. The statement and proof of the theorem depend only on the cohomology
of the Galk-module J [m] := (Pic(Ck)/〈m〉)[m] and its dual Am[ϕ] = J [m]∨. If one
likes, this can be taken as the definition of Am[ϕ], and the isogeny can be ignored.

In the case of genus one curves, the corresponding coverings can be described
using the period-index obstruction map in [CFO+08]. For example, a genus 1
hyperelliptic curve C : z2 = f(x, y) can be made into a 2-covering of its Jacobian.
If f(x, y) is the discriminant form of the pair (A,B), then the quadric intersection
C ′ : A = B = 0 in P3 is a lift of C to a 4-covering of the Jacobian. This covering has
trivial period-index obstruction in the sense described in [CFO+08] and, conversely,
any lift to a 4-covering with trivial period-index obstruction may be given by an
intersection of quadrics which generate a pencil with discriminant form f(x, y). The
analogous statement holds for any m ≥ 2 (see [Cre16]). Using this and Theorem 6
we obtain the following:

Theorem 8. Fix m ≥ 2. For 100% of locally solvable genus one curves C of
degree m there exists a genus one curve D of period and index dividing m2 such
that m[D] = [C] in the group H1(k, Jac(C)) parameterizing isomorphism classes of
torsors under the Jacobian of C.

When m = 2 case (3) of Theorem 6 shows that we may replace “100%” with
“all”. This was first proved in the author’s PhD thesis [Cre10, Theorem 2.5]. It
would be interesting to determine if this is always true when m is prime. In this
case it is known that there always exists D such that m[D] = [C] [Cas62, Section
5] (but not for composite m [Cre13]). However, it is unknown whether D may be
chosen to have index dividing m2.

The proportion of locally solvable genus one curves of degree 3 has been com-
puted by Bhargava-Cremona-Fisher [BCF16]. As 100% of cubic curves satisfy the
hypothesis in case (4) of Theorem 6, this yields the following:

Theorem 9. At least 97% of cubic curves C admit a lift to a genus one curve D of
period and index 9 such that 3[D] = [C] in the Weil-Châtelet group of the Jacobian.

2. Proof of Theorem 6

For a Galk-module M let

Xi(k,M) := ker

(
Hi(k,M)

∏
resv−→

∏
v

Hi(kv,M)

)
,

the product running over all completions of k. For a finite group G and G-module
M define

Hi
∗(G,M) := ker

⎛
⎝Hi(G,M)

∏
resg−→

∏
g∈G

Hi(〈g〉,M)

⎞
⎠ .
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Lemma 10. Suppose M is a finite Galk-module and let G := Gal(k(M)/k) be the
Galois group of its splitting field over k. Then

(1) X1(k,M) is contained in the image of H1
∗(G,M) under the inflation map,

(2) if H1
∗(G,M) = 0, then X1(k,M) = 0, and

(3) if H1
∗(G,M∨) = 0, then X2(k,M) = 0.

Proof. (1) ⇒ (2) because the inflation map is injective, and (2) ⇒ (3) by Tate’s
global duality theorem. We prove (1) using Chebotarev’s density theorem as follows.

Let K = k(M) and for each place v of k, choose a place v of K above v and let
Gv = Gal(Kv/kv) be the decomposition group. The inflation-restriction sequence
gives the following commutative and exact diagram:

0 �� H1(G,M)
inf ��

a

��

H1(k,M)
res ��

b

��

H1(K,M)

c

��

0 ��
∏

v H
1(Gv,M) ��

∏
v H

1(kv,M) ��
∏

v H
1(Kv,M)

Since M splits over K, we have H1(K,M) = Homcont(GalK ,M). The map c is
therefore injective by Chebotarev’s density theorem. Hence ker(b) = inf(ker(a)).
By a second application of Chebotarev’s density theorem, the groups Gv range (up
to conjugacy) over all cyclic subgroups of G. From this it follows that ker(a) ⊂
H1

∗(G,M). �

Recall that J [m] := (Pic(Ck)/〈m〉)[m]. Since J [m]∨ = Am[ϕ] (see [Cre16]) it
suffices to prove, under the hypothesis of Theorem 6, that

H1
∗(Gal(k(J [m])/k),J [m]) = 0.

2.1. Proof of Theorem 6 case (1). By assumption, the complete linear system
associated to m gives a double cover of π : C → P1 which is not ramified at m.
Changing coordinates if necessary, we may arrange that m is the divisor above
∞ ∈ P1. Then C is the hyperelliptic curve given by z2 = f(x, y), where f(x, y) is
a binary form of degree n := 2g + 2 with nonzero discriminant. The ramification
points of π form a finite étale subscheme Δ ⊂ C of size n which may be identified
with the set of roots of f(x, 1).

As described in [PS97, Section 5] (see also [BGW16, Proposition 22]), we may
identify Am[ϕ] = Jm[2] � Res1Δ μ2 with the subsets of Δ of even parity, while J [2] �
ResΔ μ2/μ2 corresponds to subsets modulo complements and J [2] � Res1Δ μ2/μ2

corresponds to even subsets modulo complements. Parity of intersection defines a
Galois equivariant and nondegenerate pairing,

e : Jm[2]× J [2] → Z/2Z .

(See [PS97, Section 6] or [Cre16].) The induced pairing on J [2] × J [2] is the Weil
pairing (written additively). Fixing an identification of the roots of f(x, 1) with
the set {1, . . . , n}, the action of Galk on J [2] factors through the symmetric group
Sn. The following lemma proves Theorem 6(1).

Lemma 11. H1
∗(Sn,J [2]) = 0.

Proof. For t = 1, . . . , n − 1, let τt denote the transposition τt := (t, t + 1) ∈ Sn

and let Pt := {t, t + 1} ∈ Jm[2] (recall Jm[2] is identified with the even subsets of
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{1, . . . , n}). We use P̃t to denote the image of Pt in J [2] ⊂ J [2]. We note that for
any Q ∈ J [2],

τt(Q) +Q = e(Pt, Q)P̃t.

This is because τt is a transposition, addition is given by the symmetric difference,
and the pairing e is given by parity of intersection.

Now suppose ξ is a 1-cocycle in Z1(Sn,J [2]) which represents a class in
H1

∗(Sn,J [2]). By our assumption, the restriction of ξ to the subgroup 〈τt〉 is
a coboundary. Hence there is some Qt ∈ J [2] such that ξτt = τt(Qt) + Qt =

e(Pt, Q)P̃t . Since P1, . . . , Pn−1 form a basis for Jm[2] and e is nondegenerate, we
can find Q ∈ J [2] such that e(Pt, Q) = e(Pt, Qt) for all t. From this it follows that
ξτt = τt(Q) + Q, for all t. In other words, Q simultaneously plays witness to the
fact that ξ is a coboundary on each of the subgroups 〈τt〉. But then ξ must be a
coboundary, since the τt generate Sn. �

2.2. A lemma. Identifying J [m] with Pic0(Ck)[m] gives an exact sequence,

0 → J [m]
ι−→ J [m]

1
� deg−→ Z/mZ → 0 ,

where the integer � is deg(m)/m.

Lemma 12. Let G = Gal(k(J [m])/k) and G′ = Gal(k(J [m])/k). The map ι∗◦inf :
H1(G, J [m]) → H1(G′,J [m]) induces a surjection

ker

⎛
⎝H1(G, J [m]) →

⊕
g∈G′

H1(〈g〉,J [m])

⎞
⎠ −→ H1

∗(G
′,J [m]) .

Proof. Cohomology of G′-modules gives an exact sequence,

Z/mZ
δ→ H1(G′, J [m]) → H1(G′,J [m]) → H1(G′,Z/mZ) .

Since H1
∗(G

′,Z/mZ) = 0, we see that H1
∗(G

′,J [m]) is contained in the image of
H1(G′, J [m]). Hence, we may lift any x ∈ H1

∗(G
′,J [m]) to some y ∈ H1(G′, J [m]).

Now G′ sits in an exact sequence 0 → N → G′ → G → 1. We must show it
is possible to choose y such that resN (y) = 0, where resN is as in the inflation-
restriction sequence

0 → H1(G, J [m])
infN−−−→ H1(G′, J [m])

resN−−−→ H1(N, J [m])G .

To that end we will determine resN ◦δ(1). Since N acts trivially on J [m] we
have that H1(N, J [m])G = HomG(N, J [m]) (here G acts on the abelian group N by
conjugation in G′). Let ε ∈ J [m] be a lift of 1 ∈ Z/mZ. By definition, resN ◦δ(1) is
(represented by) the map i : N → J [m] given by i(σ) = σ(ε)−ε. It follows from the
general theory that i is a morphism of G-modules. This is verified by the following
computation:

i(gσ) = i(g̃σg̃−1) (where g̃ is a lift of g to G′)

= g̃
(
σ(g̃−1(ε))− g̃−1(ε)

)
= g̃ (σ(ε+ a)− (ε+ a)) (where g̃−1(ε)− ε = a ∈ J [m])

= g (σ(ε)− ε) (since N acts trivially on J [m])

= g(i(σ)).
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We claim moreover that i is injective. Indeed, if σ ∈ N acts trivially on ε, then
σ acts trivially on all of J [m] (because N acts trivially on J [m], and J [m] is
generated by J [m] and ε).

By assumption on x, resg(y) lies in the image of δ : Z/mZ → H1(〈g〉, J [m]), for
every g ∈ G′. It follows that resN (y) lies in the subgroup

EndG(N) = HomG(N, i(N)) ⊂ HomG(N, J [m])

and, moreover, that this endomorphism sends every element to some multiple of
itself. Any such endomorphism is a multiple of the identity, in which case resN (y)
is a multiple of resN ◦δ(1). We may therefore adjust our lift y of x by a multiple
δ(1) to arrange that resN (y) = 0. This proves the lemma. �

2.3. Proof of Theorem 6 case (2). Suppose C has genus g ≥ 2, m = 2 and m

is a reduced and effective canonical divisor. Then deg(m) = 2g − 2. Since the Weil
pairing on J [2]×J [2] is alternating and Galois equivariant, the action of Galk on J [2]
factors through the symplectic group Sp(J [2]) � Sp2g(F2). By [BPS16, Proposition
5.4] the action of Galk on J [2] = Pic(Ck)/〈[m]〉 also factors through Sp(J [2]).

We will show that H1
∗(Sp(J [2]),J [2]) = 0, after which the theorem follows from

Lemma 10(3).
Let δ be the coboundary in Sp(J [2])-cohomology of the exact sequence 0 →

J [2] → J [2] → Z/2Z → 0. The sequence is not split, so δ(1) is nonzero. A direct
(but rather involved) computation of group cohomology shows that H1(Sp(V ), V )
has F2-dimension 1 for any symplectic space V of dimension ≥ 4 over F2 (see
[Pol71, Theorems 5.2, 4.8 and 4.1]). It follows that H1(Sp(J [2]), J [2]) = 〈δ(1)〉.
Since the image of δ(1) in H1(Sp(J [2]),J [2]) is trivial, Lemma 12 shows that
H1

∗(Sp(J [2]),J [2]) = 0.

2.4. Proof of Theorem 6 case (3). We may assume g = 1. Let

G = Gal(k(J [2])/k).

By Lemma 12 it is enough to show that H1(G, J [2]) = 0. Noting that G ⊂ S3, let G0

be the intersection of G with the unique index 2 subgroup of S3. Then G0 has odd
order, so H1(G0, J [2]) = 0. Also, the order of G/G0 and the characteristic of J [2]G0

both divide 2, so H1(G/G0, J [2]
G0) = 0. (This follows easily from the computation

of cohomology of cyclic groups, since the conditions imply that the kernel of the
norm is equal to the image of the augmentation ideal.) The inflation-restriction
sequence then gives that H1(G, J [2]) = 0 as desired.

2.5. Proof of Theorem 6 case (4). Suppose C is a genus one curve and deg(m) =
m = pr for some prime p and positive integer r. It suffices to show thatX1(k,J [m])
= 0 except possibly when one of the following holds.

(a) The action of Galk on J [p] is reducible, or
(b) r > 1 and the action of Galk on J [p] factors through the symmetric group

S3.

So let us assume neither of these conditions holds. For s≥1 letGs=Gal(k(J [ps])/k).
By Lemma 12 it suffices to show that H1(Gr, J [p

r]) = 0. The case r = 1 follows
from Lemma 13 below. For r > 1, [ÇS15, Theorem 1] shows that the hypothe-
ses ensure that the G1-modules J [p] and End(J [p]) have no common irreducible
subquotient. In this case the proof is completed by Lemma 14.
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Lemma 13. If G1 acts on J [p] irreducibly, then H1(G1, J [p]) = 0.

Proof. If p � #G1, then H1(G1, J [p]) is obviously trivial. If p | #G1, then a well
known result of Serre [Ser72, Proposition 15] implies that either SL2(Fp) ⊂ G1 or
G1 is contained in a Borel subgroup of GL2(Fp). In the latter case the action is
reducible, so we may assume SL2(Fp) ⊂ G1. As the case p = 2 has already been
addressed in the proof of case (3) of the theorem, we may assume p is odd. In this
case G1 contains the normal subgroup μ2 of order prime to p which has no fixed
points. The corresponding inflation-restriction sequence

0 → H1(G/μ2, J [p]
μ2) → H1(G, J [p]) → H1(μ2, J [p])

shows that H1(G1, J [p]) must vanish. �

Lemma 14. If H1(G1, J [p]) = 0 and the G1-modules J [p] and End(J [p]) have no
common irreducible subquotient, then H1(Gr, J [p

r]) = 0 for all r ≥ 1.

Proof. We will prove below that the hypothesis of the lemma implies that
H1(Gr, J [p]) = 0. Assuming this, induction on s and the exact sequence 0 →
J [ps] → J [ps+1] → J [p] → 0 prove that H1(Gr, J [p

s]) = 0 for every 1 ≤ s ≤ r.
As we have assumed H1(G1, J [p]) = 0, the inflation-restriction sequence gives an

injective map H1(Gr, J [p]) ↪→ HomG1
(Hr, J [p]) , where Hr = Gal(k(J [pr])/k(J [p]))

is the kernel of Gr → G1. The G1-module Hr admits a filtration 0 ⊂ H1 ⊂ · · · ⊂ Hr

whose successive quotients are G1-submodules of ker
(
GL(J [ps]) → GL(J [ps−1])

) ∼=
End(J [p]). So the hypothesis of the lemma implies that HomG1

(Hr, J [p]) = 0. �

3. Further remarks

The coboundary of 1 under the exact sequence of Galk-modules

(3.1) 0 → J [m] → J [m] → Z/mZ → 0

gives a class in H1(k, J [m]) which we denote by [J�
m]. If either

(i) m = deg(m) = h0([m]) = 2 and g is even (i.e., C is a hyperelliptic curve of
even genus) or

(ii) m = 2 and m is a canonical divisor,

then [J�
m] ∈ H1(k, J [2]) is the class of the theta characteristic torsor (cf. [PR11,

Definition 3.15]).

Lemma 15. The inclusion J [m] ↪→J [m] induces a map H1(k, J [m])→H1(k,J [m])
for which the following hold.

(1) X1(k,J [m]) is contained in the image of H1(k, J [m]).
(2) If X1(k,J [m]) = 0, then X1(k, J [m]) ⊂ 〈[J�

m]〉.
(3) If [J�

m] ∈ X1(k, J [m]), then there is an exact sequence

0 → 〈[J�
m]〉 ⊂ X1(k, J [m]) → X1(k,J [m]) → 0 .

Proof. Take Galois cohomology of (3.1) and use the fact that X1(k,Z/mZ) =
0. �

Example 16. Suppose C : y2 = x6+x+6. Theorem 6, Lemma 15 and [PR11, Ex-
ample 3.20b] together show thatX1(k, J [2]) = 〈[J1

2 ]〉 � Z/2Z, whileX1(k,J [2]) =
0.
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In a sense this is the generic situation. Specifically one has the following.

Proposition 17. Suppose that m = 2 and either

(i) deg(m) = h0([m]) = 2 and Gal(k(J [2])/k) � S2g+2 or
(ii) m is a canonical divisor and Gal(k(J [2])/k) � Sp2g(F2).

Let S be any finite set of primes of k containing all archimedean primes, all
primes above 2, and all primes where [J�

2 ] is ramified. Then

X1(k, S, J [2]) = 〈[J�
2 ]〉 and X1(k, S,J [2]) = 0 ,

where X1(k, S,M) ⊂ H1(k,M) denotes the subgroup that is locally trivial outside
S.

Proof. We first note that the assumptions in case (i) require that the genus be
even, so that in both cases [J�

2 ] is the theta characteristic torsor. It follows from
[PR11, Proposition 3.12] that [J�

2 ] ∈ X1(k, S, J [2]). On the other hand, Lemma 10
parts (1) and (2) and Lemma 15 all remain valid if we replace X1(k,M) with
X1(k, S,M). �
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