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Abstract. We consider the local-global principle for divisibility in the Mordell-Weil group
of a CM elliptic curve defined over a number field. For each prime p we give sharp lower
bounds on the degree d of a number field over which there exists a CM elliptic curve which
gives a counterexample to the local-global principle for divisibility by a power of p. As a
corollary we deduce that there are at most finitely many elliptic curves (with or without
CM) which are counterexamples with p > 2d + 1. We also deduce that the local-global
principle for divisibility by powers of 7 holds over quadratic fields.

1. Introduction

Let E/k be an elliptic curve over a number field k. We say that a k-rational point
P ∈ E(k) is divisible by the integer N if there exists Q ∈ E(k) such that NQ = P . The
question motivating this paper is the extent to which this notion of divisibility satisfies a
local-global principle. Namely, if there exists Qv ∈ E(kv) such that NQv = P for all (or all
but possibly finitely many) completions kv of k does it follow that P is divisible by N?

Over the past decades there has been substantial interest in the problem of determining
conditions on N and k implying that such a local-global principle holds for all elliptic curves
over k [DZ01,DZ04,DZ07,PRV12,PRV14,Cre16,LW16,Ran18]. Due to its connection with
a question of Cassels [Cas62, Problem 1.3], the analogous question where E(k) = H0(k,E) is
replaced by the Galois cohomology group H1(k,E) has also recieved much attention [ÇS15,
Cre13,Cre16]. Function field analogues of these questions were studied in [CV17]. In all cases
the positive results in the literature concerning local-global divisibility in the groups E(k)
and H1(k,E) have relied on the same technique, which considers a more general local-global
principle for the N -torsion subgroup of E (see Definition 1.1 below).

The approach to establishing such a local-global principle can be summarized as follows.
First one aims to identify purely group-theoretic conditions on the image of the mod N
Galois representation ρN : Gal(k) → Aut(E[N ]) ' GL2(Z/N) which guarantee that the
local-global principle for divisibility by N holds. Elliptic curves for which these conditions
are not satisfied correspond to non-cuspidal k-rational points on some modular curve with
level N structure. These curves have only finitely many points defined over number fields
of degree ≤ d, provided N is sufficiently large. In many cases one can show that all of the
low degree points are cusps. This has resulted in proofs that these local-global principles for
divisibility by a prime power N = pn hold for all p larger than an explicit bound depending
only on the degree of the number field (See [PRV12, Corollary 2] or [ÇS15, Theorem B(1)]).
In the case k = Q, the bound is p ≥ 5 [PRV14, Corollary 4] and it is known to be sharp
[Cre16]. For degrees greater than 1 the exact bound is unknown.

Establishing an exact bound requires identifying the sporadic points on these modular
curves and checking whether the local-global principle holds for the corresponding elliptic
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curves. To that end, we undertake a detailed analysis of the local-global principle for di-
visibility on CM curves, as these are a common source of low degree points on modular
curves.

Before stating our main results let us define the local-global principle we refer to.

Definition 1.1. For a set of places S of k define

X1(k,E[N ];S) := ker

(
H1(k,E[N ])→

∏
v/∈S

H1(kv, E[N ])

)
,

where H1(k,E[N ]) denotes Galois cohomology of the N-torsion subgroup of E. We say that
the local-global principle holds for (E/k,N) if X1(k,E[N ];S) = 0 for every finite set of
places S of k.

If the local-global principle holds for (E/k,N), then the local-global principle for divisi-
bility by N holds for Hi(k,E) for all i ≥ 0 (See [Cre16, Theorem 2.1] and Lemma 2.2). The
goal of this paper is to determine the minimal degree of a number field over which there is
a CM elliptic curve for which the local-global principle fails for given prime power N = pn.
In Section 3 we prove the following.

Theorem 1.2. Let O ⊂ K be an order of conductor f in a quadratic imaginary field K and
let j = j(O) be the j-invariant of an elliptic curve with complex multiplication by O. Let pn

be an odd prime power, let k = Q(j) and set u = 2 if j 6= 0 and u = 3 if j = 0.

(1) Let L be a number field and let E/L be an elliptic curve with CM by O. Then the
local-global principle for (E/L, pn) holds in any of the following cases:
(a) p does not divide f and p splits in K;
(b) p does not divide f , p is inert in K and [L : k] < (p2 − 1)/u; or
(c) p divides f or p ramifies in K and [L : k] < (p− 1)/2.

(2) These bounds above are sharp:
(b’) If p does not divide f and p is inert in K, then there exists a number field L of

degree (p2 − 1)/u over k and an elliptic curve E/L with j(E) = j such that the
local-global principle fails for (E/L, p2).

(c’) If p ramifies in K but does not divide f , then there exists a number field L of
degree (p − 1)/2 over k and an elliptic curve E/L with j(E) = j such that the
local-global principle fails for (E/L, p2).

Using Theorem 1.2 one can determine the minimal degree of a number field L for which
there exists a CM elliptic curve E/L for which the local-global principle for (E/L, pn) fails
for some n. In Section 4 we give several explicit examples where the local-global principle
fails over number fields of minimal degree. The following table gives the values d = d(p) for
some small values of p.

p 3 5 7 11 13 17 19 23
d 1 4 3 5 12 32 9 33

The case p = 3 recovers the examples given in [Cre16, LW16] showing that the local-global
principle for (E/Q, 9) can fail. For further details see Section 4.1.

Combining the above with [Ran18] and explicit lower bounds for the gonality of modular
curves [Abr96] we will prove the following.
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Theorem 1.3. Let d ≥ 1 be an integer and let p ≥ 17 be a prime number p > 2d+ 1. Then
there are at most finitely many elliptic curves E/L defined over a number field of degree
d = [L : Q] such that the local-global principle for (E/L, pn) fails for some n ≥ 1. Moreover,
any such counterexample to the local-global principle yields a non-cuspidal non-CM point of
degree ≤ d on the modular curve X(p) parameterizing isomorphism classes of elliptic curves
with full level p structure E[p] ' µp × Z/p.

Theorem 1.3 should be compared with [PRV12, Corollary 2] and [ÇS15, Theorem B(1)]
which assert that the local-global principle holds for (E/L, pn) for all [L : Q] ≤ d provided
p > (1 + 3d/2)2. The conclusion of our corollary is weaker in that it allows finitely many
possible exceptions, but our bound on p is linear rather than exponential in the degree
d. We expect that our bound holds without exceptions for most (if not all) primes p.
Sporadic points of degree d ≤ (p − 1)/2 on X(p) should be quite rare as these curves have
gonality Θ(p3). Moreover, the existence of such a point does not necessarily imply that
there is a counterexample to the local-global principle, as there are additional (and rather
strict) conditions which must also be satisfied by the mod p2 Galois representation of the
corresponding elliptic curves.

The points of degree at most 2 on the Klein quartic X(7) are determined in [Tze04]. The
rational points are all cusps and the degree 2 points have residue field Q(

√
−3) and lie above

j = 0 on X(1). Since 7 splits in Q(
√
−3), Theorem 1.2 shows that the local-global principle

for (E/Q(
√
−3), 7n) holds for the corresponding curves. Thus the following corollary.

Corollary 1.4. The local-global principle holds for (E/L, 7n) for every elliptic curve E/L
over a quadratic number field and every n ≥ 1.

Note that by Theorem 1.2 the local-global principle with N = 7n can fail for elliptic curves
over cubic number fields. For an explicit example, see Section 4.2.

2. Group theoretic results on H1
∗

Let p be an odd prime.

Definition 2.1. Let Vn := Z/pn×Z/pn be the natural module with a left action of GL2(Z/pn).
For a subgroup G ⊂ GL2(Z/pn) let Hi(G, Vn) denote the i-th cohomology group of the G-
module Vn. Define

H1
∗(G, Vn) :=

⋂
g∈G

ker
(

H1(G, Vn)
resg→ H1(〈g〉, Vn)

)
,

where 〈g〉 denotes the cyclic subgroup of G generated by g.

The following lemma is well known in the literature on questions of local-global divisibility.

Lemma 2.2. Let E/k be an elliptic curve over a number field and let G ⊂ GL2(Z/pn)
denote the image of the representation Gal(k) → Aut(E[n]) ' GL2(Z/pn) (for some choice
of isomorphism Aut(E[pn]) ' GL2(Z/pn)). Then the local global principle holds for (E/k, pn)
if and only if H1

∗(G, Vn) = 0.

Proof. To simplify notation let K := k(E[pn]) and identify G ' Gal(K/k). For each place v
of k, choose a place v of K above v and let Gv = Gal(Kv/kv) be the decomposition group. For
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any finite set of primes S, the inflation-restriction sequence gives the following commutative
and exact diagram.

0 // H1(G,E[pn])
inf

//

a
��

H1(k,E[pn])
res

//

b
��

H1(K, E[pn])

c
��

0 //
∏

v/∈S H1(Gv, E[pn]) //
∏

v/∈S H1(kv, E[pn]) //
∏

v/∈S H1(Kv, E[pn])

Since H1(K, E[pn]) = Homcont(Gal(K), E[pn]), Chebotarev’s density theorem implies that the
map c is injective. Hence X1(k,E[pn];S) = ker(b) = inf(ker(a)). By a second application
of Chebotarev’s density theorem, the groups Gv range (up to conjugacy) over all cyclic
subgroups of G. From this it follows that ker(a) ⊆ H1

∗(G,E[pn]). We deduce from this that
X1(k,E[pn];S) ⊂ inf

(
H1
∗(G,E[pn])

)
with equality in the case that S contains all of the

finitely many places where the decomposition group is not cyclic. The result follows. �

Definition 2.3. For an odd integer m ≥ 3 and δ ∈ Z/N define

Cδ,m :=

{[
a b
δb a

]
: a, b ∈ Z/m, a2 − δb2 ∈ (Z/m)×

}
⊂ GL2(Z/m) , and

Nδ,m :=

〈[
−1 0
0 1

]
, Cδ,m

〉
⊂ GL2(Z/m) .

When m = pn is a prime power, we say that G ⊂ Nδ,pn is a full subgroup if the kernels of
the reduction mod p maps Nδ,pn → GL2(Z/p) and G→ GL2(Z/p) are equal.

Lemma 2.4. Let G ⊂ Nδ,pn and let G′ := G ∩ Cδ,pn. If H1
∗(G, Vn) 6= 0, then H1

∗(G
′, Vn) 6= 0.

Proof. Note that G′ has odd order and index dividing 2 in G. So Hi(G/G′, V G′
n ) = 0 for i ≥ 1.

Thus, the inflation-restriction sequence gives an injective map H1(G, Vn)→ H1(G′, Vn). This
map sends H1

∗(G, Vn) to H1
∗(G

′, Vn) because every cyclic subgroup of G′ is also a cyclic
subgroup of G. �

2.1. Split case.

Lemma 2.5. Suppose δ is a nonzero square mod p. Then for every G ⊂ Nδ,pn, we have
H1
∗(G, Vn) = 0.

Proof. By Lemma 2.4 we may assume that G ⊂ Cδ,pn . Let d ∈ Z/pn be a square root
of δ. Then Cδ,pn is conjugate to the group of diagonal matrices in GL2(Z/pn). Since G
is diagonal, Vn splits as a product Vn = W1 ×W2 of cylic G-modules of order pn. Hence
H1(G, Vn) ' H1(G,W1) × H1(G,W2). We will show below that H1

∗(G,Wi) = 0 for i = 1, 2.
It follows that H1

∗(G, Vn) = 0 as required.
Write G = H1 × H2 where Hi ⊂ G is the subgroup containing all matrices whose i-th

diagonal entry is 1. Note that WH1
1 = W1 and that H2 acts faitfully on W1 (i.e., through

an injective map H2 → Aut(W2) ' (Z/pn)×). It follows from a standard computation in
the cohomology of cyclic groups that H1(H2,W1) = 0 (see [NSW08, Lemma 9.1.4]). Let
ξ ∈ H1

∗(G,W1). Since H1 ⊂ G is a cyclic subgroup the restriction of ξ to H1 is trivial. Hence
ξ is in the image of the inflation map H1(H2,W1) = H1(H2,W

H1
1 ) → H1(G,W1). As noted

above, H1(H2,W1) = 0, so ξ = 0 showing that H1
∗(G,W1) = 0. Swapping indices the same

argument shows that H1
∗(G,W2) = 0. �
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2.2. Inert case.

Lemma 2.6. Suppose that δ is not a square modulo p. Let G ⊂ Nδ,pn and let G1 ⊂ GL2(Z/p)
denote the image of G modulo p.

(1) If G1 is contained in neither

[
±1 0
0 1

]
nor

[
1 0
0 ±1

]
, then H1

∗(G, Vn) = 0.

(2) If G is a full subgroup of Nδ,p2 with G1 ⊂
[
±1 0
0 1

]
or G1 ⊂

[
1 0
0 ±1

]
, then H1

∗(G, V2) 6=
0.

Proof. Let us prove the first statement. Suppose H1
∗(G, Vn) 6= 0. Letting G′ = G ∩ Cδ,pn

we have H1
∗(G

′, Vn) 6= 0 by Lemma 2.4. Let G′1 denote the image of G′ modulo p. Since
#Cδ,p = p2 − 1 is prime to p, [Ran18, Theorem 2] there are two possibilities for G′1

(a) G′1 is generated by a element of order dividing p− 1 with 1 as an eigenvalue, or
(b) G′1 is generated by an element of order 3 acting irreducibly on V1 = pn−1Vn.

(We note that G′1 = S3 is impossible because Cδ,p is abelian). First consider case (a). The
elements of order p − 1 in Cδ,p are diagonal matrices, so the condition on the eigenvalues
implies that G′1 is trivial. Then G1 is generated by an element of order dividing 2 which has
1 as eigenvalue, so it must be contained in one of the two groups in the statement.

Now consider case (b). Then G′ is abelian of order 3pm, so the Sylow-3-subgroup P ⊂ G′

is normal. The inflation-restriction sequence reads

H1(G′/P, V P
n )→ H1(G′, Vn)→ H1(P, Vn) .

Since P acts irreducibly on V [p] we have V P
n = 0, so the first term in the sequence is 0. The

final term in the sequence is also trivial because P and Vn have relatively prime orders. By
exactness of the inflation-restriction sequence we conclude H1(G′, Vn) = 0, contradicting the
assumption H1

∗(G
′, Vn) 6= 0.

We now prove part 2 of the lemma. Consider the matrices

σ1 =

[
−1 0
0 1

]
, σ2 =

[
1 0
0 −1

]
, h1 =

[
1 + p 0

0 1 + p

]
, h2 =

[
1 p
δp 1

]
∈ GL2(Z/p2) .

By assumption G is generated by h1, h2 and at most one of the σi. Then G is the semidirect
product of H = 〈h1, h2〉 and a subgroup of order dividing 2. Since G/H has order dividing
2 and p is odd the inflation-restriction sequence gives an isomorphism

H1(G, V2[p]) ' H1(H, V2[p])
G/H = HomG/H(H,V2[p]) .

Let v ∈ V2[p]G be a nonzero element fixed by G and define φ : H → V2[p] as the homomor-
phism determined by φ(h1) = v and φ(h2) = 0. Since h1 lies in the center of G and v is fixed
by G, φ is a G/H-equivariant homomorphism. By the isomorphism above this determines
a nonzero class in H1(G, V2[p]). We claim that the image φ′ of this class in H1(G, V2) is a
nonzero element of H1

∗(G, V2).
Let us give the details assuming σ1 ∈ G, the other cases being handled similarly. Let g ∈ G.

We will show that the restriction of φ to the subgroup generated by g is a coboundary. If
g ∈ H, then g = ha1h

b
2 for some a, b and the condition that φ′ restricts to a coboundary on

the subgroup generated by g is that the equation

(2.1)

[
ap bp
bδp ap

]
x =

[
0
ap

]
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has a solution x ∈ V2. This clearly has solutions when ap = 0. When ap 6= 0, (a2 − δb2) ∈
(Z/p2)× because we have assumed δ is not a square modulo p. In this case the unique

solution to (2.1) is x = a
a2−δb2

[
−b
a

]
.

If, on the other hand, g 6∈ H, then g = σha1h
b
2 in which case the local condition becomes

(2.2)

[
ap bp
−bδp −2− ap

]
x =

[
0
ap

]
,

which has the solution x = p, y = −ap/2.
The fact that (2.1) and (2.2) have solutions for any choice of a, b gives that φ′ ∈ H1

∗(G, V2).
The fact that there is no common solution to (2.1) as one varies a, b shows that φ′ is not
trivial. �

2.3. Ramified case.

Lemma 2.7. Suppose that δ ≡ 0 mod p. Let G ⊂ Nδ,pn and let G1 denote the image of G
modulo p.

(1) If G1 is contained in neither

[
1 ∗
0 ±1

]
nor

[
±1 0
0 1

]
, then H1

∗(G, Vn) = 0.

(2) If δ 6= 0 mod p2, G is a full subgroup of Nδ,p2 and G1 =

[
1 ∗
0 ±1

]
, then H1

∗(G, V2) 6= 0.

Proof. For the first statement suppose H1
∗(G

′, Vn) 6= 0 where G′ = G ∩ Cδ,pn . Let G′1 denote
the image of G′ modulo p. If p - #G′1, then as in the proof of the preceding lemma, [Ran18]
implies that G1 is generated by a diagonal matrix of order dividing 2 with 1 as an eigenvalue.
Otherwise p | #G′1. Since δ ≡ 0 mod p, Cδ,p is a Borel subgroup. So in this case [Ran18]
implies that G′1 is the subgroup of stricly upper triangular matrices and that G1 = G′1 or G1

is generated by G′1 and diag(1,−1) as required.
The assumption in the second statement of the lemma implies that G is generated by the

matrices

σ =

[
1 0
0 −1

]
, g =

[
1 1
δ 1

]
, h =

[
1 + p 0

0 1 + p

]
∈ GL2(Z/p2) .

We note that any element of G can be written in the form σagbhc for some integers a, b, c.
Let H = 〈h, gp〉 be the kernel of reduction modulo p. Then G/H is the dihedral group of
order 2p generated by the images σ and g of σ and g. A direct calculation shows that the
cochain defined by

σagb 7→ p

[
b(b− 1)/2

(−1)ab+ (1 + (−1)a+1)/2

]
gives a nontrivial class in H1(G/H, V2[p]). We will show that the image ξ of this class in
H1(G, V2) is a nonzero element of H1

∗(G, V2). The proof is similar to that found in [Ran18,
Lemma 11].

By induction one proves that

gb =

[
1 + δ b(b−1)

2
b+ δ

∑b
i=1

i(i−1)
2

δb 1 + δ b(b−1)
2

]
.
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If C ⊂ G is a cyclic subgroup generated by γ = gbhc, the condition that ξ is the class of a
coboundary on C is that the equation

(2.3)

[
cp+ δ b(b−1)

2
b+ cp+ δ

∑b
i=1

i(i−1)
2

δb cp+ δ b(b−1)
2

] [
x
y

]
=

[
p b(b−1)

2
pb

]
.

has a solution with x, y ∈ Z/p2 for any choice of integers b, c. Since the right hand side lies
in pV2 = V2[p] and the determinant of the matrix on the left hand side is δb2 6≡ 0 mod p2,
this equation has a solution. Namely, x = p/δ, y = −cp2/δb (which is well defined in Z/p2
since δ 6≡ 0 mod p2).

Similarly, if C is generated by σgbhc, the local condition gives rise to the equation[
cp+ δ b(b−1)

2
b+ bcp+ δ

∑b
i=1

i(i−1)
2

−δb −2− cp− δ b(b−1)
2

] [
x
y

]
=

[
p b(b−1)

2
−pb+ p

]
.

in which case x = 0, y = (b − 1)p/2 is a solution. We conclude that ξ lies in H1
∗(G, V2). As

the solutions to (2.3) depend on b, ξ is nontrivial. �

3. Proofs of the theorems

Before beginning the proof let us recall some relevant results concerning the mod N rep-
resentations attached to CM elliptic curves.

Let E/Q(j(E)) be an elliptic curve over k = Q(j(E)) with complex multiplication by
an order O ⊂ K where K is a quadratic imaginary field. Let H = K(j(E)) and let
h : E → E/Aut(E) = P1 be a Weber function. All elliptic curves with CM by O are twists
of one another and the field HN := H(h(E[N ])) does not depend on the choice of twist.

As E[N ] is an End(E) = O module of rank 1 there is an isomorphism AutO(E[N ]) '
(O/N)×. Assuming N is odd, the natural map O× → (O/N)× is injective and its image
identifies with Aut(E) as a subgroup of AutO(E[N ]). The restriction of ρH,N to GHN

induces
a representation ρHN

: GHN
→ Aut(E) ' O×. In particular, Gal(H(E[N ])/HN) may be

viewed as a subgroup of Aut(E). On the other hand, any choice of basis for E[N ] determines
an isomorphism of groups Aut(E[N ]) ' GL2(Z/NZ). The main theorems of class field
theory allow one to classify the possibilities for the image of the mod N representation
ρk,N : Gal(k)→ Aut(E[N ]). The following is taken from [LR].

Theorem 3.1 ([LR, Theorem 1.1]). Suppose N is odd and let δ = ∆Kf
2/4, where ∆K is the

fundamental discriminant of K and f is the conductor of O. Then there is a basis for E[N ]
such that the image of ρk,N : Gal(k)→ GL2(Z/N) lies in the group Nδ,N (see Definition 2.3)

and is generated by

[
−1 0
0 1

]
and Cδ,N = image(ρH,N). Moreover the index of the image of

ρH,N in Cδ,N is equal to the index of Gal(H(E[N ])/HN) as a subgroup of Aut(E) ' O×.

Lemma 3.2. Suppose N = p is an odd prime and the mod p representation attached to E/k
surjects onto Nδ,p. Let A ⊂ Aut(E) ⊂ Nδ,p and G ⊂ Nδ,p with A ∩ G = 1. Let L ⊂ k(E[p])
be the fixed field of the group AG ⊂ Nδ,p. There exists a twist E ′/L of E/L by a character
χ : Gal(L)→ A ⊂ Aut(E) such that the mod p image attached to E ′/L is equal to G if and
only if G is a normal subgroup of AG.

Remark 3.3. The subgroup A = µ2 ⊂ Aut(E) lies in the center of Nδ,p so in this case G is
always normal in AG.
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Proof. To ease notation let K = k(E[p]) and identify Nδ,p = Gal(K/k). If G is a normal
subgroup of AG, then the extension KG/L is Galois with Galois group isomorphic to A,
which may be identified with a subgroup of Aut(E) = µm. Then there is a character
χ : Gal(L)→ µm with kernel Gal(KG) whose restriction to Gal(KA) is the inverse of ρE/KA :

Gal(KA) → A ⊂ µm. Let E ′/L be the twist of E/L by χ. The mod p representations are
related by ρE/L,p ⊗ χ = ρE′/L,p. So KA = ker(ρE′/L,p) = L(E ′[p]) and the image of ρE′/L,p is
equal to G.

Conversely, if there exists a twist as in the statement, then M = ker(χ) is a Galois
extension of L and Gal(K/M) = G, so G is normal in AG = Gal(K/L). �

Proof of Theorem 1.2.
Part (1): Let L/k be a finite extension and let E/L be an elliptic curve with CM by
O. By [LR, Theorem 4.6] there exists an elliptic curve E ′/k with CM by O such that
(under a suitable choice of basis for E ′[pn]) the image GE/k,pn of the representation ρE′/k,pn :
Gal(k) → Aut(E ′[n]) ' GL2(Z/pn) is equal to Nδ,pn . The image GE′/L,pn of the mod pn

representation attached to the base change E ′/L is the restriction of ρE′/k,pn to the subgroup
Gal(L) ⊂ Gal(k). Galois theory gives [Nδ,pn : GE′/L,pn ] ≤ [L : k].

There is a character χ : Gal(L) → µm = Aut(E) such that E ′ = Eχ is the twist of E/L
by χ. The mod pn representations are related by ρE/L,pn = ρE′/L,pn ⊗χ. The images GE/L,pn

and GE′/L,pn of these representations are subgroups of Nδ,pn whose sizes differ by a factor
which divides ` := #image(χ). Thus [Nδ,pn : GE/L,pn ] ≤ `[L : k]. In particular, if j 6= 0, 1728,
then [Nδ,pn : GE/L,pn ] ≤ 2[L : k].

(a) Assume that p does not divide f and that p splits in K. Then δ = ∆Kf
2/4 is

a nonzero square modulo p. By Lemma 2.5 we have H1
∗(GE/L,pn , Vn) = 0. So the

local-global principle holds for (E/L, pn) by Lemma 2.2.
(b) Assume that p does not divide f , p is inert in K and [L : k] < (p2 − 1)/2. First

assume j 6= 0, 1728. Then by the discussion above we have

[Nδ,p : GE/L,p] ≤ [Nδ,pn : GE/L,pn ] ≤ 2[L : k] < p2 − 1 .

The assumption on p implies that δ = ∆Kf
2/4 is not a square modulo p. So #Nδ,p =

2(p2 − 1) and the estimate above gives #GE/L,p > 2. In particular GE/L,p cannot be
contained in either of the subgroups appearing in Lemma 2.6. We conclude from this
and Lemma 2.2 that the local-global principle holds for (E/L, pn).

Now we consider the cases j = 0 or j = 1728. Let m = # Aut(E) ∈ {4, 6}.
Suppose H1

∗(GE/L,pn , Vn) 6= 0. We must show [L : k] ≥ 2(p2 − 1)/u. By Lemma 2.6,
GE/L,p is trivial or is generated by diag(−1, 1) or diag(1,−1). If G is trivial, then the
estimate [Nδ,pn : GE/L,pn ] ≤ u[L : k] gives [L : k] ≥ 2(p2−1)/u. If GE/L,p is generated
by either diag(−1, 1) or diag(1,−1), then GE/L,p is not normal in GE/L,p Aut(E). In
fact, the only nontrivial subgroup A ⊂ Aut(E) for which GE/L,p is normal in GE/L,pA
is A = µ2. By Lemma 3.2 we conclude that the image of χ is contained in µ2. So
` := #image(χ) = 2 and our estimate above gives [Nδ,pn : GE/L,pn ] ≤ `[L : k] ≤ 2[L :
k], which implies [L : k] ≥ (p2 − 1)/2 ≥ 2(p2 − 1)/u as required.

(c) Assume that p divides f or p is ramified in K. Assume that [L : k] < (p−1)/2. These
conditions imply j 6= 0, 1728 (Note that the condition on [L : k] implies p > 3), so
Aut(E) = µ2. Arguing as in the previous case we have [Nδ,p : GE/L,p] < (p− 1)/2. In
this case δ = ∆Kf

2/4 is 0 mod p, so #Nδ,p = 2p(p−1) and we conclude #GE/L,p > 2p.
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In particular GE/L,p cannot be contained in either of the subgroups appearing in
Lemma 2.7. We conclude from this and Lemma 2.2 that the local-global principle
holds for (E/L, pn).

Part (2): We now show that the bounds obtained in Part (1) are sharp. Let E ′/k be, as
above, an elliptic curve such that the mod pn representation surjects onto Nδ,pn . Let K =
k(E ′[p]). We identify Nδ,p = Gal(K/k). Let Hp ⊂ K be the subfield fixed by Aut(E ′) ⊂ Nδ,p.
As the notation suggests, Hp = k(h(E ′[p])) for a Weber function h. Hence Hp is independent
the choice of twist of E ′. Let H ′p ⊂ K be the subfield fixed by µ2 ⊂ Aut(E) ⊂ Nδ,p. Then
Hp = H ′p if j 6= 0, 1728.

(b’) Assume that p does not divide f and p is inert in K. Let M ⊂ K be the subfield
fixed by g = diag(−1, 1) ∈ Nδ,p and let L = M ∩H ′p = K〈g,−1〉. Note that [K : L] = 4

and [K : k] = #Nδ,p = 2(p2 − 1), so [L : k] = (p2 − 1)/2. Let χ : Gal(L) → µ2 be
the quadratic character with ker(χ) = Gal(M) and let E/L be the quadratic twist
of E ′/L by χ. The image GE/L,p2 of the mod p2 representation attached to E/L is
a full subgroup of Nδ,p2 whose image mod p is generated by g = diag(−1, 1). So by
Lemma 2.6 we have that H1

∗(GE/L,p2 , V2) 6= 0. By Lemma 2.2 we conclude that the
local-global principle fails for (E/L, p2).

In the case j = 0 we can construct an example over a field of degree (p2 − 1)/3 as
follows. The field Hp = k(E ′[p]) has degree 2(p2−1)/6 = (p2−1)/3 and Gal(K/Hp) =
Aut(E) = µ6. By Lemma 3.2 (applied with G = 1) there exists a sextic twist of E ′/Hp

such that Hp = Hp(E
′[p]). The image of the mod p2 associated to this curve is the full

subgroup of Nδ,p2 congruent to the trivial group modulo p. By Lemmas 2.6 and 2.2
the local-global principle fails for (E ′/Hp, p

2).
(c’) Assume that p ramifies in K but does not divide f . Let G ⊂ Nδ,p be the subgroup

generated by diag(1,−1) and the strictly upper triangular matrices. Let M ⊂ K
be the fixed field of G and let L = M ∩ H ′p. In this case [K : k] = 2p(p − 1), so
[L : k] = (p− 1)/2.

As in the preceding case, twisting E ′/L by the quadratic character Gal(L) → µ2

with kernel Gal(M) yields an elliptic curve E/L such that the image GE/L,p2 of the
mod p2 representation is the full subgroup of Nδ,p whose image mod p is G. By
Lemma 2.7 and 2.2 we conclude that the local-global principle fails for (E/L, p2).

�

Proof of Theorem 1.3. Let E/L be an elliptic curve over the number field L of degree d =
[L : Q]. Suppose p > 2d + 1 and that the local-global principle for (E/L, pn) fails. The
determinant of the mod p representation Gal(k) → Aut(E[p]) ' GL2(Z/p) → Z/p× is the
p-cyclotomic character. Since d < (p − 1)/2 = [Q(µp)

+ : Q], the image of this determinant
map is of size > 2. [Ran18, Theorem 2] shows that the possibilities for the image of the
mod p representation are rather limited. The only possibility compatible with the image of

the determinant map having size greater than 2 is that the image is contained in

[
1 0
0 ∗

]
.

In other words, E[p] ' Z/p× µp as a Galois module, so E/L corresponds to a non-cuspidal
point in X(p)(L). By Theorem 1.2, E/L does not have CM. It remains only to prove
the finiteness of the set of points of degree ≤ (p − 1)/2 on X(p). By [Fre94] it suffies
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to check that X(p) has gonality γ(X(p)) ≥ (p − 1). In [Abr96] one finds the estimate
γ(X(p)) ≥ [PSL2(Z) : Γ(p)]7/800 = 7(p3 − p)/1600, which suffices for p ≥ 17. �

4. Explicit Examples

Proposition 4.1. Suppose p ≡ 3 mod 4 is a prime ramifying in K and let E/k be an
elliptic curve with CM by an order in K whose conductor is not divisible by p. We assume
k = Q(j(E)). Then [k(µp) : k] = p− 1. Let k(µp)

+ be the unique intermediate field of degree
(p − 1)/2 over k. There is a twist E ′/k of E/k such that the local-global principle fails for
(E ′/k(µp)

+, p2).

Proof. Twisting if necessary, we may assume that the mod pn representations attached to
E/k surject onto Nδ,pn . Let K = k(E[p]) and identify Nδ,p = Gal(K/k). Since δ ≡ 0 mod p,
Nδ,p consists of the upper triangular invertible matrices. Note that k(µp) ⊂ K is the subfield
fixed by SL2(Z/p) ∩ Nδ,p. Since p ≡ 3 mod 4, SL2(Z/p) ∩ Nδ,p is the group generated by
−1 and the strictly upper triangular matrices. The subfield k(µp)

+ is fixed by the complex
conjugation, which acts on E[p] as diag(−1, 1) or diag(1,−1). So k(µp)

+ is the fixed field

of the group

[
±1 ∗
0 ±1

]
of order 4p. The fixed field M ⊂ K of the group G =

[
1 ∗
0 ±1

]
is

a quadratic extension of k(µp)
+. Let E ′/k(µp)

+ be the twist of E/k(µp)
+ by the quadratic

character with kernel Gal(M). Then the image of the mod p representation attached to
E ′/k(µp) is equal to G. By Lemma 2.7 we have H1

∗(GE′/k,p2 , E[p2]) 6= 0. The only primes
that ramify in the extension k(µp)

+/k are those lying above p. �

4.1. The case p = 3. Proposition 4.1 shows that there is an elliptic curve E/Q of j-invariant
0 (so K = Q(

√
−3)) such that the local-global principle fails for (E/Q, 9). Examples of

such were first given in [Cre16] and then in [LW16]. In fact the proposition recovers these
examples as all have j-invariant 0 and mod 9 image the full subgroup of N6,9 congruent to[
1 ∗
0 ±1

]
modulo 3. In light of the fact that Aut(E) ' µ6 for these curves, one can obtain

infinitely many counterexamples to the local-global principle for (E/Q, 9) by taking cubic
twists (which was already evident from [Cre16, Corollary 4.3]). This family of twists also
contains the modular curve X0(27) whose mod 9 image is the full subgroup of N6,9 congruent

to

[
1 0
0 ±1

]
modulo 3, giving a counterexample to the local-global principle for (E/Q, 9) with

a different mod 3 image.
For an example with a different j-invariant one can consider the family of curves E/Q

with j-invariant 243353 which have CM by the order of conductor 2 in Q(
√
−3). In this case

Aut(E) ' µ2 so there is a unique curve in the family whose mod 9 representation is the full

subgroup of N−3,9 congruent to

[
1 ∗
0 ±1

]
modulo 3; it is the curve with Cremona reference

36.a2 and is a counterexample to the local-global principle for (E/Q, 9).

4.2. The case p = 7. There are two elliptic curves of conductor 49 over Q with CM by the
maximal order in Q(

√
−7). One is the modular curveX0(49) and the other, [LMFDB, Elliptic

Curve 49.a2], is its twist by the quadratic character corresponding to Q(
√
−7)/Q. The images
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of the mod 7 representations attached to the base changes of these curves to Q(µ7)
+ are[

±1 ∗
0 1

]
and

[
1 ∗
0 ±1

]
,

respectively. For both curves the local-global principle for (E/Q(µ7), 49) fails, while only for
the twist E of X0(49) does it fail for (E/Q(µ7)

+, 49). This gives the unique example of a CM
elliptic curve over a cubic number field for which the local-global principle fails with N = 7n.
Since the conductor is 49 = 72, the decomposition groups Dq ⊂ Gal(Q(E[49])/Q(µ7)

+)
are cyclic for all primes q - 7. Moreover, 7 is totally ramified in the degree 42 extension
Q(E[49])/Q and so if p is the prime of Q(µ7)

+ lying above 7, then the restriction map
H1(Q(µ+

7 ), E[7])→ H1(Q(µ7)
+
p , E[7]) is an isomorphism. We conclude that

X1(Q(µ7)
+, E[49];S) 6= 0 ⇔ p ∈ S .

So while the local-global principle fails for (E/Q(µ7)
+, 49) the local-global principle for di-

visibility by 7n holds in the groups E(Q(µ7)
+) and H1(Q(µ7)

+, E).

4.3. The case p = 5. There is no rational j-invariant j = j(O) of an order in a quadratic
imaginary field such that 5 divides the conductor or ramifies in O. So by Theorem 1.2 the
local-global principle with N = 5n holds for CM curves over quadratic and cubic fields. The
class number of Q(

√
−5) is 2, so there are elliptic curves with CM by the maximal order

O ⊂ Q(
√
−5) defined over a quadratic field, namely k = Q(

√
5) = Q(j(O)). Theorem 1.2(c’)

implies that there is a CM elliptic curves over some quadratic extension L/k such that the
local-global principle for (E/L, 52) fails. Here we provide an explicit example.

Consider the curve E/k [LMFDB, Elliptic Curve 4096.1-k1] with Weierstrass equation

E : y2 = f(x) := x3 − φx2 + (−φ− 9)x+ (−6φ− 15) ,

where φ ∈ Q(
√

5) satisfies φ2 + φ + 1 = 0. The image of the mod 5 Galois representation

is

[
±1 ∗
0 ±1

]
(note that k = Q(µ5)

+, so the diagonal entries must be squares in F×5 ). The

5-division polynomial of E/k has a root θ in a quadratic extension L/k, which turns out to
be L = Q(µ20)

+. The root θ is the x-coordinate of a 5-torsion point on E. The quadratic
twist of E by d = f(θ) ∈ L×/L×2 yields the curve [LMFDB, Elliptic Curves 25.a2] which
has an L-rational 5-torsion point. The image of the mod 5 Galois representation attached
to Ed is [

1 ∗
0 ±1

]
and so, by Lemma 2.7, the local-global principle fails for (Ed/L, 25). As 5 is the only prime
of bad reduction and 5 is totally ramified in L(Ed[5]) we conclude (similarly to the p = 7
case) that X1(L,Ed[25];S) 6= 0 if and only if S contains the prime of L above 5.
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