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Abstract. Let F be a finite field and C,D smooth proper curves over F and set K = F(D).
We consider Brauer-Manin and abelian descent obstructions to the existence of rational
points and to weak approximation for the curve C ⊗F K. In particular, we show that
Brauer-Manin is the only obstruction to weak approximation and the Hasse principle in the
case that the genus of D is less than that of C. We also show that we can identify the points
corresponding to non-constant maps D → C using Frobenius descents.

1. Introduction

Let C be a smooth, irreducible, projective curve of genus > 1 over a global field K.
The question of whether the Brauer-Manin obstruction is the only obstruction to the Hasse
principle or weak approximation for C was raised around 1999 by Scharaschkin and Sko-
robogatov. Not much progress has been made in the number field case, but a substantial
amount of numerical evidence has been obtained, notably [BS08]. By contrast, the question
in the function field case has been settled affirmatively for “most” curves [PV10], namely
those curves whose Jacobian does not have an isotrivial factor and satisfy a certain condi-
tion on the p-power torsion points, where p is the characteristic of K. The latter condition
has largely been removed due to recent work of Rössler [Rösa]. However, these results do
not address the case of isotrivial or even constant curves and the purpose of this paper is to
consider this case.

To put our results in context we begin with a summary of the general situation, assuming
that C is embedded in its Jacobian J and that J has finite Tate-Shafarevich group. If SC

is the set of primes of good reduction for (some model of) C, then there is a commutative
diagram

C(K) //

��

J(K)

��∏
v∈SC

C(Fv) //
∏

v∈SC
J(Fv) ,

where Fv denotes the residue field at the prime v of K. Scharaschkin [Sch99] considered
the intersection CMW-Sieve of the topological closures of the images of the solid arrows in
the product of the discrete topologies on J(Fv). Scharaschkin showed that if CMW-Sieve is
empty, then the set C(AK)Br of adelic points orthogonal to the Brauer group of C is too,
and used this to give examples of curves of genus at least 2 which are counterexamples to
the Hasse principle explained by the Brauer-Manin obstruction. Poonen conjectured, in the
number field case, that every counterexample to the Hasse principle could be explained this
way [Poo06]. Around the same time Stoll conjectured, in the number field case, that the set
C(AK)Br

• of adelic points, modified at archimedean primes, orthogonal to the Brauer group
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of C is equal to the (topological closure of the) image of C(K) [Sto07]. Recall that C(K)
can be infinite when C is an isotrivial curve over a global function field. For an example
showing that it is in general necessary to take the topological closure see [PV10, Remark
1.3]. One may also ask if CMW-Sieve is equal to the topological closure of the image of C(K)
in
∏

v∈SC
J(Fv). There are logical dependencies between these statements as follows.

C(K) = C(AK)Br
• in C(AK) +3 C(K) = ∅ ⇒ C(AK)Br = ∅

C(K) = CMW-Sieve in
∏

v∈SC
C(Fv) +3 C(K) = ∅ ⇒ CMW-Sieve = ∅

KS
(1.1)

All four statements are known to hold when J(K) is finite by a result of Scharaschkin [Sch99].
The statement in the upper-left is the conclusion of the theorem of Poonen-Voloch mentioned
above; the theorem says nothing about the statement in the lower-right.

1.1. Results for constant curves over global function fields. Let F be a finite field and
let C,D be smooth proper curves over F. Set K = F(D). We consider Brauer-Manin and
finite descent obstructions to the existence of K-rational points on the curve C ⊗FK, which
we also denote by C. We remark that C may be embedded in its Jacobian J since it has a
0-cycle of degree 1 defined over F by the Hasse-Weil bounds and that the Tate-Shafarevich
group of J is finite by results of Tate and Milne [Mil68, Theorem 3].

Let C(AK,F) :=
∏

v C(Fv) ⊂ C(AK) be the set of reduced adelic points on C (see Sec-
tion 2.2 for details). Since C can be defined over F we have a model with everywhere good
reduction and so CMW-Sieve ⊂ C(AK,F) ⊂ C(AK).

Theorem 1.1. C(AK)Br = C(K) ∪ CMW-Sieve.

In Corollary 4.3 we will deduce from Theorem 1.1 that the statements on the left in (1.1)
are equivalent in the case of constant curves over global function fields (and similarly for
those on the right, though this was already known [CVV18, Proposition 2.2]).

Our proof of Theorem 1.1 utilizes the connection between the Brauer-Manin and finite
abelian descent obstructions developed in [Sto07] building on work of Colliot-Thélène and
Sansuc, Harari and Skorobogatov. In particular, C(AK)Br is the set of adelic points surviving
all torsors C ′ → C arising as pullbacks of isogenies J → J (See Proposition 2.2). So
Theorem 1.1 is a consequence of the following two theorems proven in Sections 3 and 4,
respectively.

Theorem 1.2. Let C(AK)F
∞ denote the set of adelic points surviving the n-th iterate of the

F-Frobenius isogeny F : J → J for all n ≥ 1. Then

C(AK)F
∞

= C(K) ∪ C(AK,F).

Theorem 1.3. Let C(AK)ét-isog denote the set of adelic points surviving all torsors arising
as pullbacks of étale isogenies J ′ → J . Then

C(AK)ét-isog ∩ C(AK,F) = CMW-Sieve.

This result remains true if C(AK)ét-isog is replaced by the a priori smaller set of adelic points
surviving all torsors under abelian group schemes overK (see Theorem 4.2). Propositions 4.4

2



and 4.5 show that in general non-étale torsors are required to cut out the set of rational points
(even if one includes non-abelian group schemes).

In Corollary 5.3 we give a characterization of the elements of CMW-Sieve in terms of maps
between the sets D(F) → C(F) which induce homomorphisms of their Jacobians. We are
thus lead to ask if all such maps arise from a global point.

Question 1.4. Suppose ψ : D(F) → C(F) is a Galois-equivariant map of sets which, when
extended linearly to divisors, sends principal divisors to principal divisors. Is there a mor-
phism of curves φ : D → C such that ψ is given by composing φ with a limit of Frobenius
maps?

An affirmative answer to this question implies that all four statements in (1.1) hold in the
case of constant curves over global function fields. In Section 5 we show that the answer to
this question is affirmative when the genus of D is less than the genus of C.

Theorem 1.5. If the genus of D is less than the genus of C, then C(AK)Br = C(K) = C(F).

2. Notation and preliminaries

As in the introduction C will denote a constant curve over the global function field K =
F(D) and J is the Jacobian of C. The places of K are in bijection with the set D1 of closed
points of D. Given a closed point v ∈ D1 we use Kv, Ov and Fv to denote the corresponding
completion, ring of integers and residue field, respectively. Let us fix once and for all an
algebraic closure F of F and for each place v, an embedding F ⊂ Fv ⊂ F. The embedding
determines a geometric point v ∈ D(F) in the support of v. Let GF = Gal(F/F) be the
absolute Galois group of F.

Throughout the paper X denotes a proper geometrically integral variety over F and XK :=
X ⊗F K.

2.1. Adelic points. The adele ring of K is the K-algebra AK =
∏

v∈D1(Kv : Ov), where
the restricted product runs over the closed points of D. For any place v of K, the inclusions
F ⊂ Fv ⊂ Ov ⊂ Kv endow Ov, Kv and AK with the structure of F-algebra. Consequently
the sets

X(Kv) := MorSpec(F)(Spec(Kv), X) ,

X(AK) := MorSpec(F)(Spec(AK), X)

are well defined. The universal property of fibered products gives canonical bijections of
these sets with XK(Kv) and XK(AK), respectively. Since X is proper we may identify
X(AK) = XK(AK) =

∏
v∈D1 X(Kv) =

∏
v∈D1 X(Ov).

2.2. Reduced adelic points. The reduced adele ring ofK is the F-algebra AK,F =
∏

v∈D1 Fv.
This is an F-subalgebra of AK . The set X(AK,F) = MorSpec(F)(Spec(AK,F), X) of reduced
adelic points on X is a closed subset of X(AK) which can be identified with

∏
v∈D1 X(Fv),

where the latter is endowed with the product of the discrete topologies. This agrees with
the subspace topology determined by the inclusion X(AK,F) ⊂ X(AK). The quotient of Ov

by its maximal ideal induces the reduction map rv : X(Kv) = X(Ov)→ X(Fv). These give
rise to a continuous projection r : X(AK)→ X(AK,F) sending (xv) to (rv(xv)).
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Lemma 2.1. A reduced adelic point (xv) ∈ X(AK,F) determines a unique map of sets ψ :

D(F) → X(F) with the property that ψ(v) = xv. This induces a bijection X(AK,F) ↔
MapGF

(D(F), X(F)).

Proof. Since D(F) is the union, as v ranges over the closed points of D, of the GF-orbits of
the points v, it is clear that there is a unique GF-equivariant map with the stated property.
Conversely, given a map of GF-sets ψ : D(F) → X(F), we define an adelic point (xv) ∈
X(AK,F) by xv = ψ(v) ∈ X(F). Galois equivariance of the map shows that xv ∈ X(Fv). �

2.3. Rational points. The universal property of fibered products and the valuative crite-
rion for properness give identificationsXK(K) = X(K) = MorF(Spec(K), X) = MorF(D,X).
Together with previous lemma we have a commutative diagram

X(K)
r

// X(AK,F)

MorF(D,X) // MapGF
(D(F), X(F))

where the bottom map is the obvious one taking a morphism of varieties to the map it
induces on geometric points. Since a morphism of varieties over a field is determined by
what it does to geometric points, the horizontal maps are injective.

2.4. Brauer-Manin and abelian descent obstructions. Consider the category Cov(XK)
of XK-torsors under finite group schemes over K (see [Sto07, Section 4]). We say that
an adelic point P ∈ X(AK) = XK(AK) survives (X ′, G) ∈ Cov(XK) if the element of∏

v H1(Kv, G) given by evaluating (X ′, G) at P lies in the image of the diagonal map
H1(K,G). Equivalently P survives (X ′, G) if and only if P lifts to an adelic point on some
twist of (X ′, G). The set of adelic points surviving a set of torsors is a closed subset of X(AK)
containing K. Let X(AK)ab denote the set of adelic points surviving all (X ′, G) ∈ Cov(XK)
for which G is a finite abelian group scheme over K.

When X is a subvariety of an abelian variety A/F we shall consider the subset of torsors
in Cov(XK) which arise as pullbacks of (étale) isogenies φ : A′ → A defined over F. We note
that these are geometrically connected torsors under finite abelian group schemes over F.
They depend on the embedding X → A, but only up twist by elements of H1(F, ker(φ)). As
such the sets X(AK)isog and X(AK)ét-isog of adelic points surviving all such torsors do not
depend on the embedding.

Proposition 2.2. Suppose X/F is either a curve or an abelian variety. Then X(AK)Br =

X(AK)ab = X(AK)isog. If X is an abelian variety, then X(AK)Br = X(K).

Proof. Stoll proved the number field analogue of the first statement [Sto07, Section 7]. For
the extension to global function fields see [CVV18, Section 2]. For the second statement see
[PV10, Remark 4.5]. �

3. Frobenius descent obstruction

Let J be the Jacobian of C and fix an embedding C → J . Consider the Fp-Frobenius
isogeny F : J (−1) → J . Zariski locally, defining equations for J are obtained from those
defining J (−1) by taking p-th powers and F is given by raising coordinates to their p-th
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powers. The pullback of F is a torsor (C ′, ker(F )) ∈ Cov(CK) under the finite abelian F-
group scheme ker(F ) ⊂ J (−1). The torsor (C ′, ker(F )) does not depend on the choice of
embedding because F : J (−1)(F) → J(F) is surjective. We note that C ′ is not reduced; the
induced morphism C ′red → C on the reduced subscheme of C ′ is the Fp-Frobenius morphism
C(−1) → C which has degree p, while C ′ → C has degree pg.

Lemma 3.1. There is a functorial (on separable extensions L/K) injection µL : H1(L, kerF )→
Ω⊕gL/F such that the induced map J(L)/F (J (−1)(L)) → Ω⊕gL/F is given by x 7→ x∗(ω1, . . . , ωg)

where ω1, . . . , ωg is a basis of holomorphic differentials of C (so of J as well).

The existence of the map is a slight restatement of [Rösb, Proposition 1.1] (which is, in
turn, a variant of [AM76, §2]) and the explicit expression follows from the proof there. See
also [BV95, pg 123-124] for a proof in the ordinary case.

Lemma 3.2. If (xv) ∈ C(AK) survives (C ′, ker(F )) and µKv(xv) 6= 0 for some v, then
(xv) ∈ C(K) unless p = 2 and C is hyperelliptic, in which case a similar result holds with F
replaced by F 2.

Proof. If x = (xv) ∈ C(AK) survives F -descent, then (xv) = y + F (zv), for some y ∈ J(K)
and (zv) ∈ J (−1)(AK). For any v we have that µKv(xv) = x∗v(ω1, . . . , ωg) = y∗(ω1, . . . , ωg) =
µK(y). Choose a separating variable t ∈ K and write ωi = fidt with fi ∈ F(C).

Consider the case that p is odd or C is not hyperelliptic. Suppose µK(y) is non-zero and
consider the point P = (f1(xv) : · · · : fg(xv)) = (f1(y) : · · · : fg(y)) ∈ Pg−1. From the right
hand side we see that P ∈ Pg−1(K). From the left hand side P the image of xv under the
canonical morphism C → Pg−1, and this immediately gives that (xv) is a global point, unless
C is hyperelliptic and C → Pg−1 is not ramified above P . In this case the fiber of C → Pg−1

above P is a locally trivial torsor under Z/2Z and, hence, consists of a pair of global points
Q,Q′ ∈ C(K) interchanged by the hyperelliptic involution. Since Q+Q′ is linearly equivalent
to an F-rational divisor it lies in F (J (−1)(F)) ⊂ ker(µK) and so µ(Q) = −µ(Q′). Since p
is odd, this shows that µ(Q) 6= µ(Q′). Since xv ∈ {Q,Q′} and µKv(xv) = µK(y) does not
depend on v, we conclude that all xv must be equal and so (xv) ∈ C(K). For hyperelliptic
curves in characteristic 2 a similar argument using F 2-descent taking values in a module over
the ring W2(K) of length two Witt vectors gives the result (we omit details). �

Remark 3.3. In the case p = 2 and C is hyperelliptic the proof shows that an adelic point
(xv) surviving (C ′, ker(F )) which does not lift to C ′ has xv ∈ C(K) for each v and in
particular that C(K) 6= ∅. The issue is that the various xv may differ from one another by
the hyperelliptic involution and so (xv) may not be global.

Corollary 3.4. The nontrivial twists of the Frobenius torsor C ′ → C satisfy the Hasse
principle.

Proof. If X is such a torsor and contains an adelic point, then this point maps to an adelic
point of C unobstructed by F . Hence, C contains a global point that is the image of a
Kv-point on X by the lemma (and the remark above). Since X → C is purely inseparable,
this implies that X contains a global point as well. �

Note that whether or not the trivial torsor satisfies the Hasse principle depends on whether
or not C itself does.
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Proof of Theorem 1.2. Let (xv) ∈ C(AK)F
∞ . In particular, (xv) survives (C ′, ker(F )). If

µKv(xv) 6= 0, then (xv) is global by the lemma. Otherwise (xv) ∈ F (J (−1)(AK)) in which
case (xv) lifts to some (yv) ∈ C(−1)(AK). By [GAT12, Main Theorem] X1(K, ker(F )) =
ker
(
H1(K, ker(F ))→

∏
v H1(Kv, ker(F ))

)
= 0, so (xv) does not lift to any nontrivial twist

of (C ′, ker(F )). It follows that (yv) ∈ C(−1)(AK)F
∞ . This argument may be iterated,

so we conclude that (xv) is either global or arbitrarily divisible by Frobenius, hence in
C(AK,F). This proves that C(AK)F

∞ ⊂ C(K)∪C(AK,F). For the reverse inclusion note that
C ′(AK,F) = C(−1)(AK,F) and the map F : C ′(AK,F)→ C(AK,F) agrees with the Fp-Frobenius
map C(−1)(AK,F)→ C(AK,F) which is surjective. Hence C(AK,F) ⊂ C(AK)F

∞ . �

Remark 3.5. It follows from the proof of Theorem 1.2 that the subset of C(K) corresponding
to non-constant maps D → C is characterized as the set of adelic points surviving F∞-descent
that, at some stage, lift to a non-trivial torsor.

4. Etale abelian descent obstruction

In this section we show that, at the level of reduced adelic points, all of the information
given by the Brauer group can be obtained from finite abelian and étale torsors. We use
X(AK,F)? to denote X(AK)? ∩X(AK,F).

Proposition 4.1. Suppose X is a subvariety of an abelian variety. Then X(AK,F)isog =
X(AK,F)ét-isog.

Proof. Suppose P ∈ X(AK,F)ét-isog and let (X ′, G) be the pullback of some isogeny φ :
A′ → A. We sill show that P survives (X ′, G). Since G/F is abelian it decomposes as
a direct product G = Gc × Ge of a connected group scheme and an étale group scheme
[Mil17, Proposition 11.3]. This gives rise to an etale torsor (X ′/Gc, Ge) and an iseparable
torsor (X ′/Ge, Gc), and it suffices to show that P survives both. It survives the first by
assumption. Evaluation of the second torsor at P gives an element of

∏
v∈D1 H1(Fv, Gc).

But H1(Fv, Gc) = 0 since Gc is connected and Fv is perfect. So P lifts to (X ′/Ge, Gc) as
well. �

Theorem 4.2. If X/F is either a curve or an abelian variety, then X(AK,F)Br = X(AK,F)ab =
X(AK,F)ét-isog. If X is a curve, then also X(AK,F)Br = XMW-Sieve.

Proof. The first statement follows from Propositions 2.2 and 4.1. The proof of [CVV18,
Proposition 2.12] gives the second. �

This proves Theorem 1.3 and, consequently, Theorem 1.1, which has the following Corol-
lary.

Corollary 4.3. Suppose C/F is a curve. Then C(K) = C(AK)Br in C(AK) if and only if
CMW-Sieve = r(C(K)) in C(AK,F).

Proof. Assume C(K) = C(AK)Br and let P ∈ CMW-Sieve. By Theorem 1.1 there exist Pn ∈
C(K) such that Pn → P in C(AK). Since r : C(AK) → C(AK,F) is continuous, r(Pn) →
r(P ) = P , so P ∈ r(C(K)).

Conversely, suppose CMW-Sieve = r(C(K)) and let P ∈ C(AK)Br. By Theorem 1.1 we
have P ∈ C(K) or P ∈ CMW-Sieve. The result holds trivially in the former case, so suppose
P ∈ CMW-Sieve. By assumption there are Pn ∈ C(K) such that r(Pn) → P in the subspace
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C(AK,F) ⊂ C(AK). By [CVV18, Lemma 2.13] the sequence F n! : C(AK)→ C(AK) of n!-th
iterates of the F-Frobenius converges uniformly to r. Hence limn F

n!Pn = P , showing that
P lies in the closure of C(K) in C(AK). �

Theorem 4.2 does not hold if one replaces X(AK,F) with X(AK).

Proposition 4.4. Let X/F be an abelian variety of p-rank 0 with X(K) = X(F), then
X(K) = X(AK)Br 6= X(AK)ét-isog.

Proof. Let (xv) ∈ X(AK) be such that r(xv) = 0X . For each v, the kernel of reduction in
X(Kv) is divisible by all integers prime to p. So, for any n prime to p we have (xv) ∈ nX(AK).
The assumption on the p-rank implies that all (geometrically connected) torsors under étale
abelian group schemes are dominated by a twist of [n] : X → X for some n prime to p and
so (xv) ∈ X(AK)ét-isog. Then X(AK)ét-isog is infinite, while X(K) = X(F) is not. �

In the case of curves the étale torsors do not always cut out the set of rational points,
even if one allows torsors under finite non-abelian group schemes that are not required to be
geometrically connected.

Proposition 4.5. There exists a curve C/F such that C(K) = C(AK)Br 6= C(AK)ét.

Proof. Take K = Fp(t), p 6= 2, 5 and X : y2 = x5 + 1, so C(K) = C(F) and J(K) = J(F) are
finite. The latter implies that C(AK)Br = C(K) by a result of Schraschkin. Now, for every
place v of K choose a local parameter tv and let xv = (tv,

∑
j

(
1/2
j

)
t5jv ). Then the adelic point

(xv) survives all finite étale torsors, lifting to the same twist that r((xv)) = (0, 1) ∈ C(F) ⊂
C(K) does. �

5. Reduced adelic points and maps

Let JD be the Jacobian of D and fix an embedding D → JD corresponding to a 0-cycle
of degree 1 (which exists by the Hasse-Weil bounds). Recall that by Lemma 2.1 there is a
bijection between the set X(AK,F) of reduced adelic points and the set MapGF

(D(F), X(F))
of Galois equivariant maps on geometric points.

Theorem 5.1. Let A/F be an abelian variety. For any pair (ψ, P ) ∈ HomGF(JD(F), A(F))×
A(F) the map ψ|D + P : D(F) → A(F) corresponds to a reduced adelic point which survives
all torsors in Cov(AK). This induces bijections

r(A(K)) = A(AK,F)Br ↔ HomGF(JD(F), A(F))× A(F) .

Proof. Let (xv) ∈ A(AK,F)Br and let ψ : D(F) → A(F) be the corresponding Galois-
equivariant map. Extending by linearity we obtain a Galois-equivariant homomorphism
ψ′ : Z0(D) → Z0(A) on the groups of 0-cycles. The map sending a 0-cycle z ∈ Z0(A) to
the pair (sum(z), deg(z)) ∈ A(F)× Z induces an isomorphism of the group of 0-cycles on A
modulo albanese equivalence onto A(F)× Z.

We claim that if z ∈ Z0(D) is a principal divisor, then the 0-cycle ψ′(z) is albanese
equivalent to 0. To see this, suppose z =

∑
nPP where P are geometric points of D. Let

F n be a power of the F-Frobenius which fixes all P appearing in the support of z. By
Theorem 4.2, (xv) ∈ A(AK,F)ét-isog so it must lift to a twist of (1 − F n) : A → A. Since
X(K,A) is finite [Mil68, Theorem 3] we may choose n large enough so that the twist to
which it lifts contains a rational point, and hence be of the form (1 − F n) + γ : A → A
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for some γ ∈ A(K). Evaluating at a point P ∈ D(F) in the support of z we conclude
that ψ(P ) = (1 − F n)(P ) + γ(P ) = γ(P ). By linearity it follows that ψ(z) = γ(z). By
the universal property of the Jacobian of D, γ ∈ A(K) = MorF(D,A) factors through a
morphism γ0 : JD → A of abelian varieties. Hence, if the image of z in JD is trivial, its
image in A must trivial as well.

The claim established in the previous paragraph implies that ψ′ factors through a Galois-
equivariant map Pic(D)→ A(F)×Z. We obtain a pair (ψ, P ) ∈ HomGF(JD(F), A(F))×A(F)
by taking ψ as the restriction of the above map to Pic0(D) = JD(F) and defining P by
ψ′(z1) = (P, 1) ∈ A(F)×Z, where z1 ∈ Z0(D) is the 0-cycle of degree 1 used to embed D in
JD. This yields the map A(AK,F)Br → HomGF(JD(F), A(F))× A(F).

Now suppose (ψ, P ) ∈ HomGF(JD(F), A(F)) × A(F). The map ψ|D + P : D(F) → A(F)
corresponds to a reduced adelic point of A and it is easy to check that this yields an inverse
to the map constructed above. We will show that the adelic point corresponding to ψ|D +P
lies in the closure of the image of A(K) in A(AK,F). This suffices to prove the theorem since
A(AK,F)Br is a closed set containing the image of A(K). Furthermore, we may assume P = 0.

The homomorphism ψ : JD(F)→ A(F) induces also a morphism ψ′ ∈ HomGF(TétJD, TétA)
between the full étale Tate modules of JD and A, i.e., TétA = lim←−n

A(F)[n]. Since F is
perfect, the abelian group schemes A[n] split as a direct product of an étale and a connected
group scheme [Mil17, Proposition 11.3]. It follows that the full Tate module (profinite group
scheme) splits as TA = TétA × A0, with A0 a connected pro-p group scheme and similiarly
for JD. As there are no nontrivial morphisms between étale and connected group schemes
we obtain a surjective map HomF(TJD, TA)→ HomGF(TétJD, TétA). Tate’s isogeny theorem
[Tat66,WM71] gives an isomorphism HomF(JD, A) ⊗ Ẑ → HomGF(TJD, TA). From this it
follows that, for every n, there is some φn ∈ HomF(JD, A) ⊂ A(K) which agrees with ψ on
JD[n](F). Then the sequene r(φn!) converges in A(AK,F) to the adelic point corresponding
to ψ.

�

Corollary 5.2. Suppose ψ : D(F) → A(F) is the map corresponding to a point (xv) ∈
A(AK,F)Br. Then ψ is either constant, in which case (xv) ∈ A(F), or ψ has infinite image.

Proof. It is enough to show that the image of the induced map ψ : JD(F) → A(F) has
infinite image. This follows since JD(F) is a divisible group and, hence, has no nontrivial
finite homomorphic image. �

Corollary 5.3. Suppose C/F is a smooth proper curve with a fixed embedding C → J . There
is a bijection

C(AK,F)Br ↔
{

(ψ, P ) ∈ HomGF(JD(F), J(F))× J(F) : ψ(D(F)) ⊂ C(F)− P
}
.

Proof. We have C(AK,F)Br = C(AK,F) ∩ J(AK,F)Br by Theorem 4.2 and the definition of
C(AK,F)ét-isog. A pair (ψ, P ) as in Theorem 5.1 corresponds to a reduced adelic point on C
if and only if ψ(D(F)) + P ⊂ C(F). �

Remark 5.4. Given a reduced adelic point (xv) ∈ C(AK,F)Br one can always choose an
embedding of C into J such that the corresponding pair (ψ, P ) has P = 0.

Remark 5.5. Zilber [Zil14,Zil] , resolving a conjecture of Bogomolov, Korotiaev and Tschinkel
[BKT10], has shown that if ψ : JD(F) → J(F) is an isomorphism such that ψ(D(F)) =
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ψ(C(F)), then ψ is a morphism of curves composed with a limit of Frobenius maps. In par-
ticular, the corresponding reduced adelic point lies in the closure of the image of C(K) in
C(AK,F).

Corollary 5.6. Suppose (xv) ∈ C(AK,F)Br and J has only finitely many abelian subvarieties.
Then the induced ψ : JD(F) → J(F) is either constant or surjective, in which case J is an
isogeny factor of JD.

Proof. By functoriality of the Brauer pairing we have (xv) ∈ J(AK,F)Br. Now J(AK,F)Br =

J(K)∩J(AK,F) in J(AK) by Proposition 2.2, so (xv) = limφn : D → J for some sequence of
φn ∈ J(K). It suffices to show that the induced maps φn : JD → J are eventually surjective.
If φn : JD → J is not surjective, then φn(D) is contained in a translate of a proper abelian
subvariety. The intersection C ∩ (x + A) of C ⊂ J with a translate of a proper abelian
subvariety A is finite. If there are only finitely many proper abelian subvarieties, then these
intersection numbers are bounded. But then so is φn(D)∩C. This implies ψ(D(F)) is finite,
so ψ is constant by Corollary 5.2. �

Proof of Theorem 1.5. Note that the equality C(K) = C(F) is trivial and that it then fol-
lows from Theorem 1.2 that C(AK)Br = C(AK,F)Br. Hence, it is enough to show that
C(AK,F)Br = C(F). Suppose (xv) ∈ C(AK,F)Br and let ψ : JD(F)→ J(F) be the correspond-
ing homomorphism as in Corollary 5.3. We may choose embeddings D ⊂ JD and C ⊂ J ,
such that ψ restricted to D(F) is the map corresponding to (xv). Let I = ψ(JD(F)). Since
JD(F) is generated by the divisors of degree g = gD on D, we have I ⊂ W g(C), whereW g(C)
is the image of the g-th symmetric power of C in J under the map induced by the embedding
C → J . As I is a topological subgroup of J(F) with the Zariski topology, its Zariski closure
I is an algebraic subgroup of J contained in W g(C). Since g = dimW g(C) < dim J , we
have that C ∩ I is finite. As this intersection contains ψ(D(F)) we conclude by applying
Corollary 5.2. �
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